Do transmembrane domain neuregulin 1 mutant mice exhibit a reliable sensorimotor gating deficit?

No Thumbnail Available
File version
Author(s)
Karla, T.
Burne, Thomas
Van den Buusef, M.
Cheswortha, R.
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2011
Size
File type(s)
Location
License
Abstract

Evidence suggests that the heterozygous transmembrane domain mutant mouse model for the schizophrenia candidate gene neuregulin 1 (Nrg1 HET) exhibits a deficit in prepulse inhibition (PPI). However, not all mouse models for Nrg1 exhibit PPI deficits. Thus, our study intended to clarify the severity of the initially described PPI deficit in Nrg1 HET mice. For this, Nrg1 mutant mice and wild type-like littermates of one breeding colony were tested for PPI in four different phenotyping facilities in Australia employing a variety of different PPI protocols with fixed and variable interstimulus intervals (ISIs). Testing mutant and wild type-like mice in three Australian phenotyping facilities using PPI protocols with variable ISIs revealed no effect of mutant transmembrane domain Nrg1 on sensorimotor gating. Changes to the startle response and startle response habituation were site/protocol-specific. The employment of two different PPI protocols at the same phenotyping facility revealed a protocol-dependent and site-specific facilitation of PPI in Nrg1 mutant mice compared to wild type-like mice. In conclusion, the often-noted PPI phenotype of the transmembrane domain Nrg1 mutant mouse model is highly PPI protocol-specific and appears sensitive to the particular conditions of the test laboratory. Our study describes wild typelike PPI under most test conditions and across three different laboratories. The research suggests that analysing one of the alleged hallmarks of animal models for schizophrenia must be done carefully: to obtain reliable PPI data it seems necessary to use more than one particular PPI protocol.

Journal Title

Behavioural Brain Research

Conference Title
Book Title
Edition
Volume

223

Issue

2

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
Access the data
Related item(s)
Subject

Medical and Health Sciences

Psychology and Cognitive Sciences

Persistent link to this record
Citation
Collections