Numerical Analysis of the Structural Stability of Ideal (Defect-Free) and Structurally and Morphologically Degenerated Homogeneous, Linearly- and Angle-Adjoined Nanotubes and Cylindrical Fullerenes Under Axial Loading Using Finite Element Method
File version
Accepted Manuscript (AM)
Author(s)
Oechsner, Andreas
Kazemi, Seyedeh Alieh
Rybachuk, Maksym
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
We report on the structural stability of ideal (defect-free) and structurally and morphologically degenerate carbon nanotubes and nanotube junction systems under axial loading based on the finite element method. We estimated the values for critical buckling load for uncapped and capped single-walled carbon nanotubes (SWCNTs) and linear and angle-adjoined SWCNT heterojunctions in ideal and structurally degenerate systems containing single-, double-, triple-, pinhole- and pentagon–heptagon (i.e., 5–7) structural defects and also containing a substitutional nitrogen (N) atom inclusion under compressive loading. Absolute atomic vacancy (defect) concentration in studied SWCNTs models was assumed to be nil for ideal systems, and was up to 3.0 at.% for structurally and morphologically degenerate systems. It was found that all types of structural defects and the morphological N-defect had reduced the load carrying capacity and mechanical strength in all SWCNT systems studied. The SWCNT models containing physically large vacant sites, such as triple- and pinhole-defects, displayed significantly lower critical load values compared to the systems that contained only a single-, double- or triple-vacancies. In addition, we found that capped SWCNTs performed marginally better in critical load carrying capacity compared to uncapped SWCNT systems. Furthermore, majority of the investigated structures displayed reduced load in SWCNTs with narrower tube widths, proportional to the size and the type of the defect investigated. The effects of chirality, such as zigzag- versus armchair-type, on the structural stability of the investigated SWCNT models were also investigated.
Journal Title
International Journal of Applied Mechanics
Conference Title
Book Title
Edition
Volume
10
Issue
9
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Electronic version of an article published in International Journal of Applied Mechanics, Vol. 10, No. 09, 2018. https://doi.org/10.1142/S1758825118501004. Copyright World Scientific Publishing Company http://www.worldscinet.com/ijim/
Item Access Status
Note
Access the data
Related item(s)
Subject
Civil engineering
Mechanical engineering
Mechanical engineering not elsewhere classified