Evaluation of bisphenol A-based epoxy resin containing multiwalled carbon nanotubes to improve resistance to degradation
File version
Author(s)
Mahini, Saeed
Fellows, Christopher M
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
The influence of exposure to UV light and moisture on the durability of a multiwalled carbon nanotube(MWCNT)/epoxy nanocomposite was investigated. Samples of epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) cured with 2,2,4-trimethylene-1,6-hexadiamine (TMDA), and epoxy nanocomposite containing 0.5% MWCNT were exposed to different accelerated weathering times between one and six months. Changes in surface chemistry, mechanical properties (tensile tests), thermal properties (thermogravimetric analysis and differential scanning calorimetry), and morphology were evaluated before and after exposure to accelerated weathering for a period of up to six months. Epoxy nanocomposite (DGEBA–TMDA/0.5%MWCNT) samples had improved thermal stability and resistance to degradation, compared to epoxy resin (DGEBA–TMDA). The effect of MWCNT at reducing degradation was more pronounced than previously found for resins prepared with hydrogenated DGEBA.
Journal Title
Journal of Composite Materials
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
Item Access Status
Note
This publication has been entered into Griffith Research Online as an Advanced Online Version.
Access the data
Related item(s)
Subject
Aerospace engineering
Materials engineering
Mechanical engineering