Validation of a sub-epidermal moisture scanner for early detection of pressure ulcers in an ex vivo porcine model of localized oedema
File version
Version of Record (VoR)
Author(s)
Patton, D
Moore, Z
Palomeque-Chavez, JC
O'Brien, FJ
Boyle, CJ
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Pressure ulcers (PUs) remain a chronic health problem with severe impacts on healthcare systems. Early detection is crucial to providing effective interventions. However, detecting PUs currently relies on subjective tissue evaluations, such as visual skin assessment, precluding interventions prior to the development of visible tissue damage. There is an unmet need for solutions that can detect early tissue damage before visual and tactile signs occur. Assessments based on sub-epidermal moisture (SEM) measurements represent an opportunity for robust and objective early detection of PUs, preventing broken skin PUs in more high-risk patients at high-risk anatomical locations. While SEM assessment technology has been validated in computational, bench and tissue phantom models, validation in soft tissue was absent. In this study, we successfully validated the ability of a commercially available SEM assessment device to measure and detect sub-epidermal moisture changes in a novel ex vivo porcine soft tissue model of localised oedema. When controlled and incremental fluid volumes (Phosphate Buffer Solution) were injected into porcine soft tissues, statistically significant differences were found in SEM values between fluid-injected sites, representing an inflammatory oedematous condition, and healthy tissue control sites, as measured by the SEM device. The device provided reproducible readings by detecting localised oedema changes in soft tissues, reflecting the build-up of fluid as small as 1 ml into the underlying tissue. Spatial characterization experiments described the ability of the device technology to differentiate between healthy and oedematous tissue. Our findings validate the use of SEM assessment technology to measure and quantify localized oedema.
Journal Title
Journal of Tissue Viability
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2023 The Authors. Published by Elsevier Ltd on behalf of Tissue Viability Society / Society of Tissue Viability. This is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
This publication has been entered in Griffith Research Online as an advanced online version.
Access the data
Related item(s)
Subject
Clinical sciences
Allied health and rehabilitation science
Persistent link to this record
Citation
Brunetti, G; Patton, D; Moore, Z; Palomeque-Chavez, JC; O'Brien, FJ; Boyle, CJ, Validation of a sub-epidermal moisture scanner for early detection of pressure ulcers in an ex vivo porcine model of localized oedema, Journal of Tissue Viability, 2023