Edges of FeO/Pt (111) Interface: A First-Principle Theoretical Study

No Thumbnail Available
File version
Author(s)
Wang, Yun
Zhang, Haimin
Yao, Xiangdong
Zhao, Huijun
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2013
Size
File type(s)
Location
License
Abstract

An understanding of the reaction mechanisms of oxide/metal bicatalysts is important for their design to achieve better catalytic performance. Using the density functional theory calculations based on the GGA+U approach, the ferrous oxide (FeO) clusters on Pt(111) were systematically investigated as a model of oxide/metal bicatalyst since they showed high catalytic capacity on the preferential oxidation of carbon monoxide. Our calculations showed that the role of the coordinatively unsaturated ferrous (CUP) atoms at the edges of the FeO/Pt(111) interface was to help the dissociative adsorption of oxygen molecules. The oxygen atoms at the edges in the intermediate were more chemically active according to the analysis of their electronic properties. They can selectively attract the carbon monoxide molecules to oxide them. After the desorption of carbon dioxide molecules, the CUP atoms at the edges can be reproduced. The high efficiency and selectivity of FeO/Pt(111) bicatalysts were, therefore, explained using our theoretical results.

Journal Title

The Journal of Physical Chemistry C: Nanomaterials, Interfaces and Hard Matter

Conference Title
Book Title
Edition
Volume

117

Issue

4

Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

Self-archiving of the author-manuscript version is not yet supported by this journal. Please refer to the journal link for access to the definitive, published version or contact the authors for more information.

Item Access Status
Note
Access the data
Related item(s)
Subject

Condensed matter modelling and density functional theory

Chemical sciences

Inorganic green chemistry

Theoretical quantum chemistry

Engineering

Persistent link to this record
Citation
Collections