Thermoresistive Effect for Advanced Thermal-Based Sensors
File version
Author(s)
Primary Supervisor
Dao, Dzung
Nguyen, Nam-Trung
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
License
Abstract
Thermoresistive effects in semiconductors (e.g. silicon) and metals (e.g. platinum) have been widely utilized to develop MEMS (Micro Electro-Mechanical Systems) thermal-based sensors. Thanks to their simplicity in design and implementation using conventional MEMS technologies, these sensors have been found in a wide range of applications, including temperature sensing, flow monitoring and acceleration measurement. However, their material cost, inflexibility, inadequate sensitivity and, especially, their lack of ability to work in harsh environments impede these devices in many applications, particularly where the temperature is high. Therefore, there is a strong demand for investigating the alternative materials with high thermosensitivity for niche thermal-based sensors. This research aims to theoretically and experimentally investigate thermoresistive effect in a group of semiconductors (e.g. silicon, silicon carbide and graphite) for niche and advanced thermal-based sensors such as high-temperature sensors, low-cost and highly sensitive thermoresistive sensors, and flexible/wearable sensors for healthcare applications.
Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type
Thesis (PhD Doctorate)
Degree Program
Doctor of Philosophy (PhD)
School
Griffith School of Engineering
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
The author owns the copyright in this thesis, unless stated otherwise.
Item Access Status
Note
Access the data
Related item(s)
Subject
Semiconductors
Micro electro-mechanical systems
MEMS (Micro Electro-Mechanical Systems) thermal-based sensors
Thermoresistive sensors