Extending work tolerance time in the heat in protective ensembles with pre- and per-cooling methods
File version
Accepted Manuscript (AM)
Author(s)
Minett, GM
Bach, AJE
Stewart, KL
Stewart, IB
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Objectives: Investigate whether a range of cooling methods can extend tolerance time and/or reduce physiological strain in those working in the heat dressed in a Class 2 chemical, biological, radiological, nuclear (CBRN) protective ensemble. Methods: Eight males wore a Class 2 CBRN ensemble and walked for a maximum of 120 min at 35 °C, 50% relative humidity. In a randomised order, participants completed the trial with no cooling and four cooling protocols: 1) ice-based cooling vest (IV), 2) a non-ice-based cooling vest (PCM), 3) ice slushy consumed before work, combined with IV (SLIV) and 4) a portable battery-operated water-perfused suit (WPS). Mean with 95% confidence intervals are presented. Results: Tolerance time was extended in PCM (46 [36, 56] min, P = 0.018), SLIV (56 [46, 67] min, P < 0.001) and WPS (62 [53, 70] min, P < 0.001), compared with control (39 [30, 48] min). Tolerance time was longer in SLIV and WPS compared with both IV (48 [39, 58 min]) and PCM (P ≤ 0.011). After 20 min of work, HR was lower in SLIV (121 [105, 136] beats·min−1), WPS (117 [101, 133] beats·min−1) and IV (130 [116, 143] beats·min−1) compared with control (137 [120, 155] beats·min−1) (all P < 0.001). PCM (133 [116, 151] beats·min−1) did not differ from control. Conclusion: All cooling methods, except PCM, utilised in the present study reduced cardiovascular strain, while SLIV and WPS are most likely to extend tolerance time for those working in the heat dressed in a Class 2 CBRN ensemble.
Journal Title
Applied Ergonomics
Conference Title
Book Title
Edition
Volume
85
Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2020 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licence (http://creativecommons.org/licenses/by-nc-nd/4.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Sports science and exercise
Medical physiology
Design
Body cooling
Cardiovascular strain
Heat stress
Occupational
Thermal strain
Persistent link to this record
Citation
Maley, MJ; Minett, GM; Bach, AJE; Stewart, KL; Stewart, IB, Extending work tolerance time in the heat in protective ensembles with pre- and per-cooling methods, Applied Ergonomics, 2020, 85, pp. 103064