Highly Sensitive Homogeneous Immunoassays Based on Construction of Silver Triangular Nanoplates-Quantum Dots FRET System

Loading...
Thumbnail Image
File version

Version of Record (VoR)

Author(s)
Zeng, Qinghui
Li, Qin
Ji, Wenyu
Bin, Xue
Song, Jie
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
2016
Size
File type(s)
Location
Abstract

With growing concerns about health issues worldwide, elegant sensors with high sensitivity and specificity for virus/antigens (Ag) detection are urgent to be developed. Homogeneous immunoassays (HIA) are an important technique with the advantages of small sample volumes requirement and pretreatment-free process. HIA are becoming more favorable for the medical diagnosis and disease surveillance than heterogeneous immunoassays. An important subset of HIA relies on the effect of fluorescence resonance energy transfer (FRET) via a donor-acceptor (D–A) platform, e.g., quantum dots (QDs) donor based FRET system. Being an excellent plasmonic material, silver triangular nanoplates (STNPs) have unique advantages in displaying surface plasmon resonance in the visible to near infrared spectral region, which make them a better acceptor for pairing with QDs in a FRET-based sensing system. However, the reported STNPs generally exhibited broad size distributions, which would greatly restrict their application as HIA acceptor for high detection sensitivity and specificity purpose. In this work, uniform STNPs and red-emitting QDs are firstly applied to construct FRET nanoplatform in the advanced HIA and further be exploited for analyzing virus Ag. The uniform STNPs/QDs nanoplatform based medical sensor provides a straightforward and highly sensitive method for Ag analysis in homogeneous form.

Journal Title

Scientific Reports

Conference Title
Book Title
Edition
Volume

6

Issue
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

© The Author(s).2016. This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Item Access Status
Note
Access the data
Related item(s)
Subject

Analytical biochemistry

Persistent link to this record
Citation
Collections