Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis
File version
Version of Record (VoR)
Author(s)
De Coensel, Bert
Dekonink, Luc
Botteldooren, Dick
Griffith University Author(s)
Primary Supervisor
Other Supervisors
Editor(s)
Date
Size
File type(s)
Location
Abstract
Sufficient data refer to the relevant prevalence of sound exposure by mixed traffic sources in many nations. Furthermore, consideration of the potential effects of combined sound exposure is required in legal procedures such as environmental health impact assessments. Nevertheless, current practice still uses single exposure response functions. It is silently assumed that those standard exposure-response curves accommodate also for mixed exposures—although some evidence from experimental and field studies casts doubt on this practice. The ALPNAP-study population (N = 1641) shows sufficient subgroups with combinations of rail-highway, highway-main road and rail-highway-main road sound exposure. In this paper we apply a few suggested approaches of the literature to investigate exposure-response curves and its major determinants in the case of exposure to multiple traffic sources. Highly/moderate annoyance and full scale mean annoyance served as outcome. The results show several limitations of the current approaches. Even facing the inherent methodological limitations (energy equivalent summation of sound, rating of overall annoyance) the consideration of main contextual factors jointly occurring with the sources (such as vibration, air pollution) or coping activities and judgments of the wider area soundscape increases the variance explanation from up to 8% (bivariate), up to 15% (base adjustments) up to 55% (full contextual model). The added predictors vary significantly, depending on the source combination. (e.g., significant vibration effects with main road/railway, not highway). Although no significant interactions were found, the observed additive effects are of public health importance. Especially in the case of a three source exposure situation the overall annoyance is already high at lower levels and the contribution of the acoustic indicators is small compared with the non-acoustic and contextual predictors. Noise mapping needs to go down to levels of 40 dBA, Lden to ensure the protection of quiet areas and prohibit the silent “filling up” of these areas with new sound sources. Eventually, to better predict the annoyance in the exposure range between 40 and 60 dBA and support the protection of quiet areas in city and rural areas in planning sound indicators need to be oriented at the noticeability of sound and consider other traffic related by-products (air quality, vibration, coping strain) in future studies and environmental impact assessments.
Journal Title
International Journal of Environmental Research and Public Health
Conference Title
Book Title
Edition
Volume
14
Issue
6
Thesis Type
Degree Program
School
Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Item Access Status
Note
Access the data
Related item(s)
Subject
Acoustics and noise control (excl. architectural acoustics)
Urban and regional planning
Science & Technology
Life Sciences & Biomedicine
Public, Environmental & Occupational Health
Environmental Sciences & Ecology
Persistent link to this record
Citation
Lercher, P; De Coensel, B; Dekonink, L; Botteldooren, D, Community Response to Multiple Sound Sources: Integrating Acoustic and Contextual Approaches in the Analysis, International Journal of Environmental Research and Public Health, 2017, 14 (6), pp. 663