Dimensionality Reduction Using Factor Analysis

Loading...
Thumbnail Image
File version
Primary Supervisor

Paliwal, Kuldip

Other Supervisors
Editor(s)
Date
2006
Size
File type(s)
Location
License
Abstract

In many pattern recognition applications, a large number of features are extracted in order to ensure an accurate classification of unknown classes. One way to solve the problems of high dimensions is to first reduce the dimensionality of the data to a manageable size, keeping as much of the original information as possible and then feed the reduced-dimensional data into a pattern recognition system. In this situation, dimensionality reduction process becomes the pre-processing stage of the pattern recognition system. In addition to this, probablility density estimation, with fewer variables is a simpler approach for dimensionality reduction. Dimensionality reduction is useful in speech recognition, data compression, visualization and exploratory data analysis. Some of the techniques which can be used for dimensionality reduction are; Factor Analysis (FA), Principal Component Analysis(PCA), and Linear Discriminant Analysis(LDA). Factor Analysis can be considered as an extension of Principal Component Analysis. The EM (expectation maximization) algorithm is ideally suited to problems of this sort, in that it produces maximum-likelihood (ML) estimates of parameters when there is a many-to-one mapping from an underlying distribution to the distribution governing the observation, conditioned upon the obervations. The maximization step then provides a new estimate of the parameters. This research work compares the techniques; Factor Analysis (Expectation-Maximization algorithm based), Principal Component Analysis and Linear Discriminant Analysis for dimensionality reduction and investigates Local Factor Analysis (EM algorithm based) and Local Principal Component Analysis using Vector Quantization.

Journal Title
Conference Title
Book Title
Edition
Volume
Issue
Thesis Type

Thesis (Masters)

Degree Program

Master of Philosophy (MPhil)

School

School of Engineering

Publisher link
Patent number
Funder(s)
Grant identifier(s)
Rights Statement
Rights Statement

The author owns the copyright in this thesis, unless stated otherwise.

Item Access Status

Public

Note
Access the data
Related item(s)
Subject

Pattern recognition applications

dimensionality reduction

factor analysis

principal component analysis

linear discriminant analysis

Persistent link to this record
Citation