Testing the reality of Wigner’s friend’s experience
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Quantum mechanics is a robust theory which pro-
duces highly accurate predictions. Despite its successes,
it is still plagued with controversies like the measure-
ment problem. In short, the measurement problem is
the conflict between the evolution of the wavefunction
described by Schrédinger’s equation and the apparent
collapse of the wavefunction after a measurement is done.
The Wigner’s friend paradox illustrates the conflict be-
tween the two rules [1]. In the thought experiment, we
consider an observer (Wigner’s friend) who is able to per-
form measurement on the quantum system and assign a
quantum state. Wigner is a super-observer who is able
to measure the laboratory his friend is in and also as-
sign a quantum state. This process, however, leads to a
quantum state that does not ascribe a well-defined value
to the outcome of the friend’s observation, in apparent
contradiction with the friend’s perspective.

Brukner proposed a no-go theorem to demonstrate
that the assumptions of observer-independent facts, lo-
cality and freedom of choice are in contradiction with
the predictions of quantum mechanics for an extended
version of the Wigner’s friend scenario [2], where we now
have two superobservers, Alice and Bob, and their respec-
tive friends, Charlie and Debbie. Alice and Bob perform
measurements on the entire contents of the labs contain-
ing Charlie and Debbie respectively. Charlie and Debbie
measure a pair of particles prepared in an entangled state.
Brukner’s claim that the assumption mentioned leads to
a local hidden variable (LHV) correlations and thereby
to Bell’s inequality. He then proceeds to show that we
are able to violate the inequalities and concludes that the
assumptions are in contradiction with each other. A re-
cent 4-photon experiment, where the role of each friend
is played by a single photon, demonstrated the violation
of a Bell inequality proposed by Brunker [3]. Yet, recent
work by Healey [4] showed Brukner’s no-go theorem has
an additional implicit assumption related to the equal
treatment of performed and unperformed measurements.
The extra assumption weakens the conclusion made by
Brukner.

We formalised the assumptions in the no-go theorem
and improved it by replacing it with a weaker version.
The conjunction of the three assumptions is coined Local
Friendliness (LF). From the formalised LF assumptions,
they have derived a LF correlation. For the case when
there are two measurement settings, we are able to derive

the LHV correlations. Proving that the LHV correlation
is a subset of the LF correlation, and thus violation of
a Bell inequality does not imply a violation of a LF in-
equality. We were also able to find specific states and
measurements that show that quantum theory is able to
predict the violation of LF inequalities, which we were
able to test experimentally with polarization entangled
photon pairs.

Bell non-LF <AQBQ> — <AQB3> — <A332> — <A3Bg> -2 S 0
Brukner 7<AlBQ> -+ <A133> — <A3BQ> — <A;;B3> —2<0
(A1B1) — (A1B2) — (A1B3)
. —(A2B1) + (A2B2) — (A2Bs)
Semi-Brukner (AsBy) — (AsBa)
—(A1) + (A2) + (B1) — (B2) —4 <0
(A1B1) — (A1B2) — (A1 B3)
—(A2B1) + (A2B2) — (A2Bs)
13322 _(A3By) — (AsBs)
—(A1) + (A2) + (B1) = (B2) =4 <0
<AlBl> — 2<AlBg>
. — 2<A2B1> + 2(14232) — <A283>
Genuine LF — (A3Ba) — (AsBs)
(A1) — (A2) — (B1) — (B2) —6 <0

Table I. Categorization of Bell and LF inequalities from 9 in-
equivalent classes to 5 shown in the table above, according to
the measurement settings involved, and whether they are Bell
facets. Each category represents inequalities with the same
form up to arbitrary relabelling of measurement settings, out-
comes and parties.

The desired quantum state is generated via type-I
spontaneous parametric down-conversion using two or-
thogonally oriented BiBO crystals in Fig. 1. The crys-
tals are pumped with a mixture of a diagonally polarized
state, coming from the short arm of the interferometer,
and a decohered state, coming from the long arm. The
relative pump power in the long and short arm deter-
mines the g parameter which controls the degree of mix-
ture in the desired quantum state. In the measurement
section, tomography can be performed when the mo-
torized mirrors are removed such that the photon-pairs
pass through the beam displacer (BD) interferometers.
The tomography stages also transform into the projective
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Figure 1. Experimental setup.

measurement stages of Alice and Bob when the quarter-
wave plates (QWP) are removed. Charlie and Debbie’s
projective measurements correspond to the beam paths
within the interferometers, so that Alice and Bob can ask
their respective friends for their measurement outcomes
by inserting the motorized mirrors.

The results of the experiment are shown in Fig. 2. The
1 values cover the full range of interest, from none of the
inequalities being violated to the violation of all inequal-
ities. The experimental data demonstrate the sequential
violations of the Bell non-LF, semi-Brukner, and gen-
uine LF inequalities. The data points corresponding to
pw = 0.79 and p = 0.81 are of particular significance,
as they demonstrate that it is possible to violate Bell
inequalities without violating any LF inequalities. This
means that the correlations allowed by an LHV model are
a subset of the correlations allowed by LF assumptions.
Finally, the two highest p values show that genuine LF
inequality can also be violated.
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Figure 2. Experimental results of the left-hand sides of var-
ious Bell and LF inequalities in Table I. The dashed line in
the plot represents the bound above which a violation oc-
curs. The uncertainties for the data points are calculated
from a Monte Carlo simulation using 100 samples of Poisson
distributed photon counts. The solid lines are theory and the
points are experimental data
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