Mitochondrial and Plastid Genomes from Coralline Red Algae Provide Insights into the Incongruent Evolutionary Histories of Organelles

Jun Mo Lee¹, Hae Jung Song¹, Seung In Park¹, Yu Min Lee¹, So Young Jeong², Tae Oh Cho², Ji Hee Kim³, Han-Gu Choi³, Chang Geun Choi⁴, Wendy A. Nelson⁵,⁶, Suzanne Fredericq⁷, Debashish Bhattacharya⁸, and Hwan Su Yoon¹,∗

¹Department of Biological Sciences, Sungkyunkwan University, Suwon, Korea
²Department of Marine Life Science, Chosun University, Gwangju, Korea
³Division of Life Sciences, Korea Polar Research Institute, KOPRI, Incheon, Korea
⁴Department of Ecological Engineering, Pukyong National University, Busan, Korea
⁵National Institute for Water and Atmospheric Research, Wellington, New Zealand
⁶School of Biological Sciences, University of Auckland, New Zealand
⁷Biology Department, University of Louisiana at Lafayette, Lafayette, Louisiana
⁸Department of Biochemistry and Microbiology, Rutgers University

*Corresponding author: E-mail: hsyoon2011@skku.edu.

Accepted: September 27, 2018

Data deposition: All plastid genome sequences have been deposited as GenBank under Accession Numbers MH281621–MH281630.

Abstract

Mitochondria and plastids are generally uniparentally inherited and have a conserved gene content over hundreds of millions of years, which makes them potentially useful phylogenetic markers. Organelle single gene-based trees have long been the basis for elucidating interspecies relationships that inform taxonomy. More recently, high-throughput genome sequencing has enabled the construction of massive organelle genome databases from diverse eukaryotes, and these have been used to infer species relationships in deep evolutionary time. Here, we test the idea that despite their expected utility, conflicting phylogenetic signal may exist in mitochondrial and plastid genomes from the anciently diverged coralline red algae (Rhodophyta). We generated complete organelle genome data from five coralline red algae (Lithothamnion sp., Neogoniolithon spectabile, Renouxia sp., Rhodogorgon sp., and Synarthrophyton chejuensis) for comparative analysis with existing organelle genome data from two other species (Calliarthron tuberculosum and Sporolithon durum). We find strong evidence for incongruent phylogenetic signal from both organelle genomes that may be explained by incomplete lineage sorting that has maintained anciently derived gene copies or other molecular evolutionary processes such as hybridization or gene flow during the evolutionary history of coralline red algae.

Key words: organelle genome evolution, coralline red algae, Rhodophyta.

Introduction

Mitochondria and plastids originated from prokaryotes (i.e., α-proteobacteria and cyanobacteria, respectively) through independent primary endosymbioses that occurred early in eukaryote evolution, over a billion years ago (Timmis et al. 2004). These prokaryotic symbionts were integrated as intracellular compartments in the eukaryotic host cell through the process of organellogenesis, whereby their genomes were reduced due to outright gene loss or by endosymbiotic gene transfer (EGT) to the nuclear genome (Martin and Herrmann 1998; Bhattacharya et al. 2004; Timmis et al. 2004). Organelles are essential for several important metabolic...
pathways involved in photosynthesis and energy cycles in eu-
karyotic cells (Martin and Schnarrenberger 1997; Martin and
Herrmann 1998; Saraste 1999; Burger et al. 2003; Herrmann
2003). Through a series of endosymbioses involving different
host cells, about ten diverse phyla (e.g., Euglenophyta, Het-
erokontophyta, Haptophyta, Dinozoa) became plastid-
bearing photosynthetic euukaryotes. The members of most
of these lineages share a common evolutionary history even
if they contain three genomes from two organelles and one
host. Because of a conserved gene content and low mutation
rates, when compared with nuclear genes, organelle genome
data have been frequently applied to evolutionary studies.
High-throughput DNA sequencing has empowered the con-
struction of massive organelle genome databases from diverse
eukaryotes that has resulted in many new insights into their
phylogenetic relationships and the molecular evolution of the
organelle genomes (Smith and Keeling 2015). For example,
based on mitochondrial and plastid genome data, red algal
phylogenetic relationships have been robustly reconstructed
(Yang et al. 2015; Lee, Cho, et al. 2016; Muñoz-Gómez et al.
2017).

Despite the rich phylogenetic information, incongruent
phylogenetic relationships between organelle (mitochondria
or plastid) and nuclear (ITS) sequence data from a flowering plant, Pilosella
hawkweds, contain phylogenetic incongruence derived from ancient intergeneric hybridization (Fehrer et al. 2007). An in-
sect, the Hawaiian cricket, also showed incongruence be-
 tween mitochondrial and nuclear DNA phylogenies (Shaw
2002). Phylogenies of the mitochondrial genome, Y chromo-
some, and nuclear genome fragments of bears showed in-
congruence caused by introgression and gene flow (Kutschera et al. 2014; Kumar et al. 2017). Such results have been frequently reported from animal groups (Toews and Brelsford 2012), including a genome-wide analysis of birds that uncovered incomplete lineage sorting (ILS) caused by a rapid radiation, particularly in early-diverged lineages (Jarvis et al. 2014). In the red algae (Rhodophyta), phylogenetic incongruence was reported between two early diverged cor-
alline species based on plastid (psbA) and nuclear (18S rRNA)
markers (Broom et al. 2008). In the calcified red algal group
Corallinophycidae, phylogenetic analyses using molecular
markers are necessary because these species display complex
morphological diversity including geniculate (branching), non-
geniculate (crustose), and rhodolith (free-living) forms (as well as convergent morphologies within these growth forms; Adey and Macintyre 1973; Bosence 1983; Foster 2001). However,
complete organelle genomes have been reported for only two
species within this subclass (Janouškovec et al. 2013; Lee,

To better understand organelle genome evolution and in-
spect the phylogenetic signal encoded by mitochondrial and plastid genes, we generated a total of 10 complete organelle
genomes (five plastids and five mitochondria) from five cor-
alline species (Lithothamnion sp., Neogoniolithon spectabile,
Renouxia sp., Rhodogorgon sp., and Synarthrophyton che-
juensis). These data were then compared with existing organ-
elle genomes from two coralline red algae (Calliarastrum
tuberculatum and Sporolithon durum). These seven genomes
encompass the four major orders (Sporolithales, Rhodogorgonales, Hapalidales, and Corallinales) of the sub-
class Corallinophycidae (class Florideophyceae; Le Gall and
Saunders 2007; Nelson et al. 2015). From these analyses, we report incongruent phylogenetic histories between mito-
ochondrial and plastid genome data between the order
Sporolithales and Rhodogorgonales. Because phylogenetic in-
congruence between mitochondrial and plastid trees and be-
 tween 18S and 28S rRNA trees was unexpected, we describe
here these major trends in the genealogical history of organ-
elle genomes and discuss how to interpret these incongruent
phylogenetic signals in the coralline algae.

Materials and Methods

Genome Sequencing, Assembly, Gene Prediction and Annot

ation

Samples of coralline red algal species Lithothamnion sp.
(LAF6882; Campeche Banks, Mexico, SW Gulf of Mexico,
coll. S. Fredericq), N. spectabile (LAF6908A; Apr. 19, 2014,
Florida Keys, Florida, USA, coll. S. Fredericq), Renouxia sp.
(LAF6170; May 13, 2012, Hurghada, Egypt, coll. Thomas
Sauvage), Rhodogorgon sp. (SGAD1304047; Dec. 15, 2013,
Ternate Island, Nusa Tenggara Timur, Indonesia, coll. S. G.
Draisma), and Syn. chejuensis (Sep. 20, 2015, Song-do beach,
Busan, Korea) were collected from the subtidal zone.
Genomic DNA was extracted using the DNeasy Plant Mini
Kit (Qiagen, Hilden, Germany). These coralline species were
chosen for analysis: a rhodolith-forming taxon (i.e.,
Lithothamnion sp.), two nongeniculate species (N. spectabile,
Syn. chejuensis), and two fleshy species (Renouxia sp. and
Rhodogorgon sp.). The coralline taxa were subsampled with
care to avoid contamination; therefore, it is unlikely (though
not impossible) that the selected samples were contaminated
by different species in their natural habitats as may be the case
with crustose species where one species may grow on top of
another crust. The HiSeq2000 sequencing platform (llumina,
San Diego) was applied to generate genome sequencing data of
Syn. chejuensis using 100 bp paired-end sequencing library.
Other coralline genome sequencing data were generated
using the Ion Torrent PGM platform (Thermo Fisher
representative ML trees were merged by the method of intertwining phylogenetic networks (Schliep et al. 2017) and visualized with the phangorn package in R (https://github.com/KlausVigo/phangorn).

Results and Discussion

General Features of Coralline Mitochondrial Genomes

Mitochondrial genomes (mtDNAs) of five coralline species were assembled using high-throughput sequencing data from *Renouxia* sp. (1.5 Gbp; Ion Torrent PGM), *Rhodogorgon* sp. (1.5 Gbp; Ion Torrent PGM), *Lithothamnion* sp. (882 Mbp; Ion Torrent PGM), *N. spectabile* (972 Mbp; Ion Torrent PGM), and *Syn. chejuensis* (18 Gbp; illumina HiSeq2000). The mtDNAs of *Renouxia* sp. (30,019 bp, GC: 27.0%) and *Rhodogorgon* sp. (30,547 bp, GC: 26.0%) were circa 2–5 kbp larger than those of *Lithothamnion* sp. (25,605 bp, GC: 27.2%), *Syn. chejuensis* (28,264 bp, GC: 25.2%) and *N. spectabile* (26,050 bp, GC: 29.6%) as well as two published coralline mtDNAs *Spo. durum* (26,202 bp, GC: 28.4%), and *C. tuberculatum* (26,469 bp, GC: 27.3%; supplementary table S1, Supplementary Material online; Bi et al. 2015; Kim et al. 2015). The structures of these coralline mtDNAs were conserved with some size variation (ranging from 25 to 30 kb; supplementary table S1 and fig. S2, Supplementary Material online), and the conserved structure was also observed in the sister taxa of Nemaliophyceidae (supplementary fig. S2, Supplementary Material online; Yang et al. 2015). The mtDNAs of most coralline species contain two rRNAs and around 25 protein-coding sequences, except the mtDNA of *N. spectabile* that showed pseudogenization of several conserved CDSs (e.g., *atp8*, *rpl20*, and *sch4*). Nineteen to twenty-five tRNAs were commonly found between the secY and *atp6* genes as in other red algal mtDNAs (Lee et al. 2015; Yang et al. 2015). All seven coralline species encoded a group II intron-containing tRNA (*tmI*) between the *nad5* and *nad4* genes in mtDNA (supplementary table S2, Supplementary Material online).

It is notable that two Rhodogorgonales species (*Renouxia* sp. and *Rhodogorgon* sp.) contained additional introns in the *cox1* (two introns with intronic *orf780* and *orf790*) and *rnl* (one intron) regions. The total sequence lengths of these introns were 4,875 bp in *Renouxia* sp. (*cox1*: 463 + 3,794 bp and *rnl*: 618 bp) and 4,774 bp in *Rhodogorgon* sp. (*cox1*: 491 + 3,658 bp and *rnl*: 625 bp). These introns and intronic ORFs were one of the major contributors to size variation, together with noncoding regions (*Spo. durum*: 4,626 bp, *Renouxia* sp.: 6,139 bp, *Rhodogorgon* sp.: 6,188 bp, *Lithothamnion* sp.: 3,260 bp, *Syn. chejuensis*: 6,050 bp, *C. tuberculatum*: 4,220 bp, and *N. spectabile*: 5,552 bp). The homologs of Rhodogorgonales *orf780* gene were also found in various eukaryotes (i.e., rhodophytes, Viridiplantae,
stramenoples, fungi, and cryptophytes), but prokaryotic homologs were not identified from the public database (blastp e-value $\geq 1 \times 10^{-5}$ to local RefSeq database; supplementary fig. S3, Supplementary Material online). On the basis of the Conserved Domain search (Marchler-Bauer et al. 2017), most of these homologous genes encode group II intron-derived reverse transcriptase domain superfamily members (Intron_maturas2 domain superfamily, cl03174). Homologs of the Rhodogorgonales orf790 gene were also distributed in the mtDNAs of various eukaryotes; however, this gene showed a close relationship to diverse prokaryotic lineages (e.g., Proteobacteria, Bacteroidetes, Cyanobacteria, Chloroflexi, Firmicutes) as well as with plastid-encoded genes (e.g., Viridiplantae, cryptophytes, and euglenophytes; supplementary fig. S4, Supplementary Material online). On the basis of this result, we postulate that orf790 originated from endosymbiotic prokaryotes and then spread into eukaryotic organelle genomes. Only Rhodogorgonales contains the orf790 gene among seven coralline mtDNAs, but this gene is found in other red algae including Achnfella plicata (class Florideophyceae; subclass Achnfeliophycidae) and Bangiochrysea species (genus Bangia, Porphyra, and Pyropia). Although most eukaryote copies contain the reverse transcriptase domain superfamily (RVT_1, cl26764 and RVT_N, cl16337; Marchler-Bauer et al. 2017), these other red algal orf790 homologs did not form a monophyletic group (supplementary fig. S4, Supplementary Material online). The means and timing of spread of orf790 homologs in eukaryotes are still unclear, however, one possible scenario might be due to opportunistic gene transfer from prokaryotes into organelle genomes through a genetic vector (e.g., plasmid). This is because plasmid-mediated horizontal gene transfers have been frequently observed in red algal organelle genomes (Lee, Kim, et al. 2016).

General Features of Coralline Plastid Genomes
The plastid genomes (ptDNAs) of Renouxia sp. (192,307 bp, GC: 32.8%), Rhodogorgon sp. (190,860 bp, GC: 32.9%) and Spo. durum (191,464 bp, GC: 29.3%) were larger than those of Lithothamnion sp. (183,822 bp, GC: 31.1%), Syn. chejuensis (179,264 bp, GC: 28.8%), N. spectabile (174,280 bp, GC: 33.4%), and C. tuberculosum (178,981 bp, GC: 29.2%; supplementary table S1, Supplementary Material online). The means and timing of spread of orf790 homologs in eukaryotes are still unclear, however, one possible scenario might be due to opportunistic gene transfer from prokaryotes into organelle genomes through a genetic vector (e.g., plasmid). This is because plasmid-mediated horizontal gene transfers have been frequently observed in red algal organelle genomes (Lee, Kim, et al. 2016).

Phylogenetic Analyses of Coralline Species
It has been generally accepted that the order Sporolithales is the earliest branching group of coralline red algae, based on the application of different molecular markers (Le Gall and Saunders 2007; Nelson et al. 2015), as well as the fossil record, although fossils of Rhodogorgonales species are unknown (Aguirre et al. 2000; 2010). To study the genealogical history of coralline algae, we compared four ML trees using the complete sequences of concatenated rRNAs (18S + 28S rRNA), mitochondrial (cM; 22 mitochondrial genes) and plastid genes (cPT; 195 plastid genes) (fig. 1). The ML tree of concatenated rRNAs showed two monophyletic clusters (fig. 1A), one comprised of
Sporolithales (Spo. durum) and Rhodogorgonales (Renouxia sp. and Rhodogorgon sp.) with moderate support (BS: 81%), and the other of Hapalidiales (S. chejuensis) and Corallinales (C. tuberculosum and N. spectabile) with strong support (BS: 100%). To compare the genealogical histories of these coralline nuclear rRNAs, we constructed ML trees of each rRNA data set, and recovered two different tree topologies (supplementary fig. S7, Supplementary Material online). The ML tree of 18S rRNA showed that the early divergence of Sporolithales was followed by the Rhodogorgonales, with a monophyletic cluster formed by Hapalidiales and Corallinales. It is worth noting that the bootstrap supporting (BS) value for the divergence point of the Rhodogorgonales was relatively low (BS: 51%; supplementary fig. S7A, Supplementary Material online). In contrast, the ML tree of 28S rRNA (i.e., a member of the same operon) showed an identical topology to the concatenated rRNA tree (i.e., the monophyly of the Sporolithales and Rhodogorgonales with moderate support, BS: 83%; supplementary fig. S7B, Supplementary Material online). Interestingly, these two classes of conflicting topologies were recovered when we used mitochondrial (fig. 1B) and plastid (fig. 1C) genome data (all branches BS ≥ 90%).

To address this conflict, we analyzed individual gene data sets from each organelle genome (mtDNA 22 and ptDNA 195 genes, respectively). We determined which individual gene supports (or rejects) these two alternative topologies being addressed using the AU test. One mitochondrial and 18 plastid gene data significantly rejected the mitochondrial tree topology (P-value < 0.05; supplementary table S4, Supplementary Material online), suggesting that 8.7% of organelle genes have strong conflicts with regard to the basal position of Spo. durum (i.e., mitochondrial tree topology).

Analysis of Individual Gene Phylogenies in Coralline Organelle Genomes

To identify the phylogenetic signal that underlies the conflict in tree topologies, we compared the terminal branching patterns from all ML trees of individual mitochondrial and plastid genes to the concatenated mtDNA and ptDNA (cMT and cPT) topologies. We counted all observed gene numbers that show the monophyly (BS ≥ 50%) of target species to other species or to the group of species at each divergence point (supplementary figs. S8 and S9, Supplementary Material online). For example, the five genes nad5 (BS 99%), rps3 (BS 99%), nad4 (BS 98%), rpl16 (BS 91%), and nad1 (BS 72%) all showed a monophyletic relationship between Spo. durum and the other six coralline species (fig. 2A-i). Additionally, the atp8 gene phylogeny supported this topology (BS 86%), but the atp8 gene of N. spectabile was absent due to sequence degradation (low similarity of 428 bp of intergenic sequences between two conserved flanking genes) in the mtDNA (supplementary fig. S8A, Supplementary Material online). A total of six mitochondrial gene phylogenies (atp8, nad5, rps3, nad4, rpl16, and nad1) supported the early divergence of the Sporolithales (i.e., Spo. durum; supplementary fig. S8A, Supplementary Material online) with strong support (i.e., BS = 72–99%). However, the atp8 and nad1 ML trees showed the same tree topology as the cMT phylogeny (BS values in all branches ≥ 50%). The monophyletic cluster of Sporolithales and two Rhodogorgonales species was supported by five mitochondrial genes (ytm39, cox1, cox3, nad2, and cob; supplementary fig. S8A, Supplementary Material online), but only the nad2 gene showed the same tree topology to the cPT phylogeny (BS in all branches ≥ 50%). Although there were small numbers of
identical topology patterns within the cMT or cPT phylogeny, we postulate that the mitochondrial genes of these seven corallines contained both classes of genetic information that support the conflicting topologies: that is, the early divergence of Sporolithales (e.g., cMT topology), and the early divergence of the clades Sporolithales + Rhodogorgonales and Corallinales + Hapalidiales (e.g., cPT topology).

The monophyly of Rhodogorgonales and of Hapalidiales was supported by 16 and 14 mitochondrial genes with high BS values, respectively (fig. 2A-ii and iii, and supplementary fig. S8E, Supplementary Material online). However, the monophyletic cluster of Corallinales species (C. tuberculatum and N. spectabile) was found in only six mitochondrial gene phylogenies with relatively low BS values (fig. 2A-iv, supplementary fig. S8F-H, Supplementary Material online). The unstable phylogenetic behavior of Corallinales was primarily caused by N. spectabile because, excluding the six mitochondrial genes, the phylogenetic position of this species was not consistent across genes (supplementary fig. S8G, Supplementary Material online). In contrast, C. tuberculatum clustered with Neogoniolithon (six genes) or was sister to the Hapalidiales species (five genes; supplementary fig. S8F, Supplementary Material online).

On the basis of 195 ML trees using individual plastid genes, the cluster of Spo. durum—Rhodogorgonales (i.e., the cPT phylogeny) was recovered from 44 plastid genes among 134 reliable topologies (BS ≥ 50% in any Spo. durum clades), but these relevant BS values were relatively low (average BS: 69.2%; fig. 2B-i and supplementary fig. S9A, Supplementary Material online). Among these 44 plastid genes, however, only 18 plastid genes supported the cPT topology (BS in all branches ≥ 50%; supplementary table S5, Supplementary Material online), which contains the cluster Spo. durum—Rhodogorgonales and the other corallines (pattern 1 in supplementary fig. S9A, Supplementary Material online). Interestingly, two other topology patterns were present in the plastid gene phylogenies of Spo. durum (patterns 2 and 3 in supplementary fig. S9A, Supplementary Material online). One was the early divergence of the Sporolithales as shown in the cMT topology that was supported by 44 plastid genes; however, if different subtopology patterns were excluded, only five plastid gene phylogenies were identical to the cMT phylogeny (BS in all branches ≥ 50%; supplementary table S5, Supplementary Material online). The other was the monophyly of Spo. durum and the Hapalidiales-Corallinales clade that was supported by 27 plastid genes. Among these genes, one additional tree pattern encompassing 10 plastid gene phylogenies supported the early divergence of Rhodogorgonales, followed by the divergence of Spo. durum, and then by the monophyly of Hapalidiales and of Corallinales (BS in all branches ≥ 50%; supplementary table S5, Supplementary Material online).

The monophyletic orders of the Rhodogorgonales (170 genes; fig. 2B-ii), Hapalidiales (103 genes; fig. 2B-iii) and Corallinales (88 genes; fig. 2B-iv) were well-supported, among 182 plastid genes (fig. 2B and supplementary fig. S9H, Supplementary Material online), although there were frequent incongruent topology patterns in the Corallinales (Calliarthron and Neogoniolithon) that was found using mitochondrial genes (supplementary fig. S9B-H, Supplementary Material online). These incongruences were already reported from previous studies including a larger coralline taxon sample using one nuclear and three plastid markers (185 rRNA, psaA, psbA and rbcL; Nelson et al. 2015). In summary, we found three major phylogenetic tree topology patterns among coralline species using individual gene analysis.
In addition, we analyzed subsampled data set-based phylogenies of mitochondria and plastid genes using the TIGER program, that progressively excludes highly variable sites from the alignments (Cummins and McInerney 2011). We constructed subsampled data sets from concatenated mitochondria and plastid alignments with high-level gradient (option: -b 50), and then generated the phylogeny using IQ-tree. The proportions of maximum subsampled data set were 53% (plastid) and 60% (mitochondria) of alignments, which indicates 40% of highly variable amino acid sites (supplementary fig. S10, Supplementary Material online). When we excluded these highly variable sites, the tree topologies were unchanged both in mitochondrial and plastid gene analyses, however support values gradually decreased only in node “b” (i.e., monophyly of all coralline species except Sporolithales-first scenario; supplementary fig. S10B, Supplementary Material online). When we used this subsampling strategy on individual genes, most nodes collapsed with very short branches, likely caused by insufficient phylogenetic signal (results not shown). Thus, we found that mitochondrial and plastid tree topologies are well conserved across most nodes when using conserved or variable sequences. However, two particular nodes (see above) are supported only by highly variable sequences.

Three Evolutionary Scenarios of Coralline Organelle Genomes

On the basis of these tree topologies, we propose three alternate evolutionary scenarios to summarize coralline organelle genome evolution: 1) the Sporolithales diverged first (Sporo-first), 2) the cluster Sporolithales–Rhodogorgonales diverged first (Sporo-Rhodo-first), and 3) the Rhodogorgonales diverged first (Rhodo-first; fig. 3A). These scenarios are reflected in the fossil record in which the Sporolithales diverged earlier than the Hapalidiales and Corallinales (Aguirre et al. 2000, 2010), although fossils of Rhodogorgonales have not yet

Fig. 3.—Major topologies of individual organelle gene phylogenies among coralline species. (A) The three major topology categories reflecting the early diverging coralline order(s). (B) Number of organelle gene phylogenies supporting each topology category (BS values in all branches ≥ 50%). (C) Number of early diverging patterns (BS values in first branch ≥ 50%). Abbreviations: Sporo-first and S = Sporolithales-first scenario, Sporo-Rhodo-first and SR = Sporolithales–Rhodogorgonales-first scenario, Rhodo-first and R = Rhodogorgonales-first scenario.
been found because thalli in this lineage are less extensively calcified. Although these three evolutionary scenarios were supported by only circa 10% of genes from two organelle genome data (mtDNA: three genes and ptDNA: 32 genes; fig. 3B), we suggest that these complex evolutionary histories could be explained by ILS, in particular among the ancestors of Sporolithales and Rhodogorgonales. By this we mean that individual gene trees conflict with the overall genome tree because some alleles, surprisingly, failed to coalesce during the several hundred million years of coralline algal evolution. To identify potential ILS-impacted organelle genes, we focused on the early diverged taxa when compared with the outgroup (BS value in first branch ≥ 50%; fig. 3C and supplementary table S6, Supplementary Material online) regardless of other internal relationships (i.e., ignoring potential independent gene mutations in ingroup taxa). Almost one-half of each organelle genome (mtDNA: 10 genes and ptDNA: 120 genes) is involved in the conflicting phylogenetic signal in the early diverging branches, particularly in the plastid genome data (fig. 3C). To determine whether natural selection played a (dominant) role in the spectrum of genes putatively impacted by ILS, we compared the functional categories of these genes that support different topologies. This analysis provided no obvious evidence of correlation between gene function and the three evolutionary scenarios (Sporo-Rhodo-first/Sporo-first/Rhodo-first; supplementary table S6, Supplementary Material online) including ribosomal proteins (5/9/11 genes), photosystem related proteins (0/7/3 genes) and cytochrome related proteins (1/4/2 genes). In addition, each gene category was not highly clustered or concentrated in a specific region of organelle genomes (supplementary fig. S11, Supplementary Material online). On the basis of these comparisons, it is likely that there was no selection acting on the retention of ancestral polymorphisms with regard to gene function or genome structure in the different evolutionary histories of coralline organelle genomes (see test of diversifying selection below).

To compare phylogenetic relationships of coralline species under the three different evolutionary scenarios, we constructed concatenated ML trees using each differently categorized organelle genes: six mitochondrial genes for Sporo-first, three mitochondrial genes for Sporo-Rhodo-first (fig. 4A), 46 plastid genes for Sporo-first, 28 plastid genes for Sporo-Rhodo-first, and 46 plastid genes for Rhodo-first scenarios (fig. 4B). As

Fig. 4.—Concatenated ML trees built using the mitochondrial and plastid genes that support the major evolutionary scenarios. (A) ML trees of two competing topologies built using concatenated mitochondrial genes. (B) ML trees of three conflicting topologies built using concatenated plastid genes.
expected, these different evolutionary scenarios were supported with high BS values (most of BS values = 96–100%; fig. 4), although the monophyletic relationship of Corallinales species shows relatively low BS values in mitochondrial phylogenies (63–68%; fig. 4A), likely due to the long branches of *N. spectabile*. The monophyletic relationship of Hapalidiales and Corallinales was recovered in our study consistent with the fossil record (Aguirre et al. 2000, 2010). However, Sporolithales and Rhodogorgonales contained at least 2–3 different evolutionary histories in their organelle genomes.

To test whether these genes had undergone different selective pressures with respect to sequence evolution under the different evolutionary scenarios, we analyzed using the PAML package (alignment-based pairwise comparisons; run-mode = -2; Yang 2007) nonsynonymous substitution rates (dN) of these genes between coralline species and the outgroup *Palmaria palmata* (supplementary table S7 and fig. S12, Supplementary Material online). There were, however, similar patterns of nonsynonymous substitution between coralline species whether mitochondria (supplementary fig. S12A, Supplementary Material online) or plastid genes (supplementary fig. S12B, Supplementary Material online) were investigated. In addition, there were no significant differences between Sporolithales and Rhodogorgonales species (*P*-value > 0.1; Wilcoxon rank sum test; supplementary table S8, Supplementary Material online). On the basis of these results, it is hard to determine if these conflicts are derived from atypical mutation patterns in some organellar genes or in particular species. Therefore, we postulate that the incongruent topologies between the Sporolithales and Rhodogorgonales

Fig. 5.—Incongruent phylogenetic history among coralline organelle genomes. (A) Intertwining phylogenetic trees reflecting the major evolutionary histories encoded by mitochondrial and plastid genomes (grey regions indicate phylogenetic uncertainty). (B) Phylogenetic divergence scenarios reflecting incomplete lineage sorting based on the three competing evolutionary histories.
(e.g., fig. 1B and C) could be explained by ILS in the stem lineages of corallines resulting from a rapid radiation (i.e., fig. 3C) of taxa that contained many ancestral polymorphisms (supplementary fig. S10, Supplementary Material online). The rapid radiation of Florideophyceae, including the Corallinophycidae has already been reported (Lee, Cho, et al. 2016). In angiosperms, chloroplast phylogenomic analysis of 53 grape species shows incongruent phylogenetic relationships that were explained by both hybridizations and a rapid radiation (Wen et al. 2018). Phylogenetic analysis of the sunflower *Espeletia* using a large taxon sampling (41 species) also showed explosive adaptive radiation-derived ILS (Pouchon et al. 2018). A similar case revealed that the nuclear and mitochondrial phylogenies showed conflicts due to the ILS and introgression within the bear lineage (Kutschera et al. 2014; Kumar et al. 2017). A genome-wide analysis uncovered ILS in modern birds caused by a rapid radiation, particularly among early-diverged species (Jarvis et al. 2014). Another possible explanation is that the complex evolutionary history of coralline organelle genomes reflects gene flow by natural hybridization between ancestral coralline species.

Because such phylogenetic incongruence was also found in two nuclear rRNA markers (i.e., 18S and 28S rRNAs; fig. 1A and B), we presume that the coralline nuclear genomes may also contain a complex evolutionary history. Complex hybridization or ILS, as well as a high level of divergence (homoplasy, i.e., highly variable sequences) could explain these incongruences. For instance, potential hybridization has been suggested for the coralline genus *Chiharaea* (Corallinales) based on phylogenetic analyses using the nuclear, mitochondrial, and plastid markers (ITS, COI, rbCL, and *psbA*; Hind and Saunders 2013). However, to test the hypothesis of rapid radiation-derived ILS in the coralline algae, additional taxa need to be studied with their nuclear genomes.

To further study ILS in corallines (i.e., beyond incongruent phylogenies) we merged phylogenetic trees into consensus networks using the intertwining phylogenetic tree method (fig. 5A; the cutoff value of proportion from present topology patterns = 0.2; Schliep et al. 2017). For this approach, we only used reliable individual gene trees (all branches BS ≥ 50% with all taxa; supplementary table S9, Supplementary Material online) to minimize error from unresolved phylogenetic nodes, missing taxa, and a high divergence level. The intertwining phylogenetic trees show all possible well-supported phylogenetic variations among coralline organelle genomes (grey color in fig. 5A). It would be useful to document such complex phylogenetic relationships including some cryptic relationships. Although we cannot clearly establish “what is the first diverged coralline order within the subclass Corallinophycidae?” due to the cryptic relationship between these early diverged coralline orders, we nevertheless postulate that, from the ancestral divergence point of view regarding coralline species, ILS likely contributed to the different phylogenetic patterns (fig. 5B) and generated the conflicts between mtDNA and ptDNA trees and perhaps the intergenic features within each organelle.

Conclusion

This study investigated the major trends in organelle gene phylogeny among coralline species. At least 600 million years-old (Doushantuo Formation; Xiao et al. 1998; Xiao et al. 2004; Condon et al. 2005), the Corallinophycidae is a florideophyccean lineage without any report of prominent organelle horizontal gene transfers, including replacement of conserved genes. Therefore, organelle genealogical histories are expected to be consistent. However, a consensus evolutionary history between Sporolithales and Rhodogorgonales using mitochondrial and plastid genome data was difficult to find. There were at least two or three different evolutionary histories apparent in the two organelle genomes, likely caused by ILS. On the basis of the analyses of individual gene trees in coralline species, we found several incongruences in terminal nodes (i.e., species-level), and this might be the case when the ancestors of stem groups (i.e., ordinal-level) diverge into different lineages. Because ILS-derived phylogenetic incongruence is generally understood to be derived from recent rapid radiations, natural hybridization, and introgression (Shaw 2002; Fehrer et al. 2007; Toews and Breidsford 2012; Jarvis et al. 2014; Kumar et al. 2017), we postulate that the individual genes of organelle genomes in coralline red algae underwent a complex evolutionary history independently, but in deep time. Regardless of how it happened, our work demonstrates that care must be taken when analyzing phylogenies based on mitochondrial and plastid markers. If complete nuclear genome data from coralline species with a broad taxon sampling were to become available, these may provide a more detailed understanding of the evolutionary patterns revealed in our study. It is also important to determine if ILS (or other sources of phylogenetic conflict) are widespread among other red algae and therefore poses a potentially significant hurdle to the use of organelle genome-based phylogenies in this phylum.

Supplementary Material

Supplementary data are available at Genome Biology and Evolution online.

Acknowledgments

This research was supported by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20180430; PJT200855), the National Research Foundation of Korea (NRF-2017R1A2B3001923), the Next-generation BioGreen21 Program (PJ01389003) from the Rural Development Administration, Korea, New Zealand MPI Biodiversity Administration.
Research fund (ZBD201407), and NSF DEB-1754504. The authors would like to thank W.E. Schmidt, T. Sauvage, J. Richards, and S. Draisma for collecting some of the samples used in this study.

Literature Cited

Associate editor: John Archibald