Abstract

Previous research on relationships between Big Five traits and how readily a concept comes to mind (chronic accessibility; CA) has produced inconsistent findings, which may be partly due to the use of concepts that are not relevant to participants. As such, this study used academic-related stimuli that would be personally relevant to the 85 first-year university participants. A lexical decision task was used to investigate the relationship between conscientiousness, neuroticism, and extraversion for the CA of academic-approach, academic-avoidance, performance-evaluative, or academic-neutral words. Extraversion had a positive and neuroticism a negative correlation with CA of academic-approach words. Conscientiousness had a positive correlation with CA of academic-neutral words. There was no correlation between neuroticism and CA of academic-avoidance words, however week of the semester was a significant moderator, indicating that the relationship between neuroticism and CA of concepts may be sensitive to situational contexts.

KEYWORDS: chronic accessibility; academic; personality; Big Five; conscientiousness; extraversion; neuroticism; social-cognitive
1. Introduction

In social-cognitive perspectives on personality, the chronic accessibility (CA) of concepts is often suggested as one of the cognitive-affective processes that leads to individual differences in behaviour (Higgins & Scholer, 2008). The accessibility of a concept refers to how easily that concept is retrieved and activated. Temporary accessibility may come from situational primes or temporary goals. With regular activation, that concept may become chronically accessible to an individual, with the accessibility of these concepts existing beyond temporary goals or environmentally-primed concepts (Higgins & Scholer, 2008).

In contrast to the social-cognitive focus on within-person processes, trait-based personality researchers typically focus on differences between people, and use descriptions of traits like the Big Five to predict outcomes (Fleeson, 2012). Recently, researchers have recognised the utility of incorporating trait perspectives on personality with social-cognitive processes such as CA, in order to gain a better understanding of the mechanisms involved in traits and trait manifesting behaviour (Fleeson, 2012).

Several studies have compared Big Five traits with CA of trait-congruent stimuli. Robinson (2007) suggested that although multiple studies had been conducted with colleagues, no evidence was found for a correlation between the CA of positive concepts and extraversion, negative concepts and neuroticism, or hostile concepts and agreeableness. In contrast, Borkenau, Paelecke, and Yu (2010) found that extraversion was associated with the CA of positive concepts, though they still did not find an association between neuroticism and the CA of negative concepts.

Part of the reason for the different results found for extraversion may be due to the tasks used to measure CA. For instance, Borkenau et al. (2010) used a timed lexical decision task (where participants were instructed to respond if the word on the screen was a word or
nonword). In contrast, Tamir, Robinson, and Clore (2002) used a timed categorisation task (where words were flashed on the screen, and the participants were instructed to classify the word as something they would or would not want). It is possible that the lack of direct relationship between extraversion and positive words in Tamir et al.’s (2002) study was due to the categorisation task being a less valid or reliable measure of CA than the lexical decision task. However, this still does not explain the consistent lack of results found for neuroticism.

One possible explanation for the nonsignificant results for neuroticism can be provided by considering the influence of concept relevance. CA of concepts is caused by either repeated contextual activation, or long term beliefs or goals (Higgins & Scholer, 2008). As such, for a concept to become chronically accessible to an individual, it has to be relevant enough for repeated activation, either through experience, or belief- or goal-activation. The negative stimuli used in Borkenau et al.’s study (e.g., tumour, bomb; 2010) may have had little personal relevance to the student participants in their study. In other words, people high in neuroticism may have a greater CA of negative concepts, but only those that are personally-relevant enough for repeated activation. Some evidence for this is provided by Chan, Goodwin, and Harmer (2007), who found that when instructed to think of positive and negative personality-trait stimuli as self-referent descriptors, neuroticism was associated with faster responding to negative compared to positive personality traits in a categorisation task.

Consequently, this study was designed to test whether CA of personally-relevant stimuli is associated with conscientiousness, extraversion, and neuroticism. For first year university students, university-related stimuli should be personally-relevant. To ensure comparability, this study used the lexical decision task from Borkenau et al.’s (2010) study to assess four types of academic stimuli and neutral comparison stimuli: academic-approach
words (e.g., success, brilliant), academic-avoidance words (e.g., fail, idiot), performance-
evaluative words (e.g., assignment, grade), academic-neutral words (e.g., university,
textbook), and matched neutral words. A faster reaction time to the recognition of one
category of stimuli compared to neutral words indicates a greater CA of concepts. As with
previous studies, neuroticism was expected to be correlated with negative stimuli (academic-
avoidance words), and extraversion with positive stimuli (academic-approach words).
Though conscientiousness is the strongest personality predictor of academic performance
(Poropat, 2009), no studies have investigated the relationship between conscientiousness and
CA. As such, although we expected that conscientiousness would be related to the CA of
academic-related stimuli, no category-specific relationships were predicted. Week of
semester was included as a moderator for the predicted relationships in order to assess
potential trait by situation effects.

2. Method

2.1. Participants

Participants were 85 first year undergraduate psychology students, who gained partial
course credit for participation. The age range was 16 to 40 ($M = 19.36$, $SD = 4.10$), and 67
were female. Informed consent was obtained from all participants.

2.2. Measures

2.2.1. Week of semester. Week of the semester in which the participants completed
the experiment was recorded.

2.2.2. Personality. Neuroticism and extraversion were each measured by 10 items of
the IPIP version of the NEO-FFI (Goldberg, 1999). As conscientiousness has a stronger
relationship with academic performance (Poropat, 2009) and in order to investigate potential
differences in conscientiousness facets (orderliness, self-efficacy, dutifulness, achievement
striving, self-discipline, cautiousness), conscientiousness was measured by the 60 conscientiousness items of the IPIP NEO-PI-R (Goldberg, 1999). Internal consistency was .77 for neuroticism, .88 for extraversion, and .93 for conscientiousness. Internal consistency ranged from .71 (dutifulness) to .84 (self-discipline) for the six facets of conscientiousness.

2.2.3. Lexical decision task. Lists of words, descriptions of traits, and thesauruses were used to find candidate word stimuli. Candidate words were paired with neutral words matched on letter length and word frequency using the SUBTLEX-UK database (van Heuven, Mandera, Keuleers, & Brysbaert, 2013). Words were then sorted into the categories of academic-approach, academic-avoidance, performance-evaluative, academic-neutral, and neutral/nonacademic (for the matched neutral words) by 10 postgraduate psychology students. The 10 words with the highest agreement for each academic-word category were retained, along with their matched neutral word, giving a total of 80 word stimuli. As most measures of inter-rater agreement for nominal data have serious deficiencies when there is low variability in the ratings (Gwet, 2008; Heyman, Lorber, Eddy, & West, 2014), Gwet's AC1 was used to estimate inter-rater agreement. Average reliability for final words was .78 for academic-approach words, .59 for academic-avoidance words, .69 for performance-evaluative words, .80 for academic-neutral words, and .89 for the nonacademic words, indicating fair to excellent reliability (Heyman et al., 2014). Each word stimulus was matched to a pseudo-word on word length and number of syllables using Wuggy, a pseudo-word generator (Keuleers & Brysbaert, 2010). This gave 160 stimuli in the critical trials.

The lexical decision task itself closely followed that described by Borkenau et al. (2010). Participants were instructed to respond as quickly and accurately as possible in identifying whether a stimulus was a word by pressing the spacebar, and do nothing if the stimulus was not a word. For each trial, a fixation cross appeared on the screen for 500ms,
after which a stimulus appeared on the centre of the screen for 200ms. A question mark replaced the stimulus for 800ms or until the participant responded, and reaction time was recorded. If an incorrect response was recorded, a red X appeared on the screen for 500ms. This was followed by a 500ms intertrial interval. The task began with 20 practice trials with stimuli not included in the critical trials. After the practice trials, there were two critical trial blocks where each stimulus was presented in a random order once in each block.

2.3. Procedure

The participants completed the lexical decision task individually in a quiet room. After they had completed this task, they completed the self-report measures on a computer.

3. Results

3.1. Lexical decision task scoring

Three participants responded with error rates over 3 SD above the mean (equalling > 29% of trials as errors), and were removed due to noncompliance concerns. Scoring on the lexical decision task followed Borkenau et al.’s (2010) method of individually trimmed means. Any trial with an error was removed (4.63% of word trials). Following this, participants’ 10% fastest and 10% slowest reaction times for each stimulus category (e.g., academic-approach words, academic-approach matched neutral words) were removed. Indices were calculated by subtracting the average reaction time for the target word category (e.g., academic-approach words) from the average reaction time for the matched neutral word category (e.g., academic-approach matched neutral words). A positive CA index indicates faster responding to the target word category than the matched neutral words. Reliabilities were calculated using the Spearman-Brown split-half coefficient for each block. Reliabilities were .27 for academic-approach, .42 for academic-avoidance, .56 for performance-
evaluative, and .40 for academic-neutral words, which are similar to that found in other studies (Borkenau et al., 2010).

3.2. Analysis

One sample t-tests were used to see whether overall, indices differed from zero. The results for academic-approach ($t(81) = 1.61, p = .11$) and academic-avoidance ($t(81) = -.40, p = .68$) were nonsignificant, though those for performance-evaluative ($t(81) = 9.19, p < .001$) and academic-neutral ($t(81) = 9.35, p < .001$) were significant.

As shown in Table 1, conscientiousness and the facets of order and achievement striving were positively correlated with CA of academic-neutral words. Extraversion and the self-efficacy facet of conscientiousness were positively correlated, and neuroticism was negatively correlated with CA of academic-approach words.

Table 1

<table>
<thead>
<tr>
<th>Variable</th>
<th>Academic-approach</th>
<th>Academic-avoidance</th>
<th>Performance-evaluative</th>
<th>Academic-neutral</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conscientiousness</td>
<td>.15</td>
<td>-.08</td>
<td>.00</td>
<td>.26*</td>
</tr>
<tr>
<td>Self-efficacy</td>
<td>.32**</td>
<td>-.08</td>
<td>.02</td>
<td>.20</td>
</tr>
<tr>
<td>Order</td>
<td>-.04</td>
<td>.07</td>
<td>.04</td>
<td>.30**</td>
</tr>
<tr>
<td>Dutifulness</td>
<td>.16</td>
<td>-.02</td>
<td>.03</td>
<td>.08</td>
</tr>
<tr>
<td>Achievement striving</td>
<td>.10</td>
<td>-.14</td>
<td>-.01</td>
<td>.22*</td>
</tr>
<tr>
<td>Self-discipline</td>
<td>.02</td>
<td>-.10</td>
<td>-.11</td>
<td>.17</td>
</tr>
<tr>
<td>Cautiousness</td>
<td>.16</td>
<td>-.09</td>
<td>.06</td>
<td>.17</td>
</tr>
<tr>
<td>Neuroticism</td>
<td>-.31**</td>
<td>-.06</td>
<td>.07</td>
<td>.04</td>
</tr>
<tr>
<td>Extraversion</td>
<td>.25*</td>
<td>.01</td>
<td>-.03</td>
<td>.19</td>
</tr>
<tr>
<td>Week of the semester</td>
<td>-.03</td>
<td>.05</td>
<td>.07</td>
<td>.15</td>
</tr>
</tbody>
</table>

*Note. *$p < .05$. **$p < .01$.

Analyses were conducted using multiple regression to test the moderating effect of week of semester upon predicted trait stimuli-category relationships. Week of semester was not a significant moderator for extraversion and academic-approach words ($\beta = -0.29, t(79) = -0.43, p = .67$). It was a significant moderator for neuroticism and academic avoidance words.
(β = 1.33, t(79) = 2.29, p = .03). As can be seen in the interaction plot (Figure 1) during the beginning of the semester (-1 SD), people high in neuroticism had a reduced CA to academic-avoidance words, although the simple slope was not significant (b = -1.07, t(79) = -1.83, p = .07). This was reversed later in the semester, where people high in neuroticism had a greater CA of academic-avoidance words, though again, the simple slope was not significant (b = 1.31, t(79) = 1.63, p = .11).

Figure 1. Chronic accessibility for academic-avoidance words as a function of neuroticism and week of semester.

4. Discussion

This study sought to investigate whether personality traits were related to CA of personally-relevant stimuli. As expected, extraversion was positively correlated with CA of academic-approach (positive) words, as with Borkenau et al. (2010). The conscientious facet of self-efficacy was also correlated with CA for academic-approach words. Self-efficacy is the belief that one can succeed, and is related to self-esteem (Costa, McCrae, & Dye, 1991),
which explains why self-efficacy is associated with the CA of concepts related to academic accomplishment (e.g., success) or positive academic characteristics (e.g., brilliant). In contrast, neuroticism was negatively correlated with CA of academic-approach words. This is consistent with the idea that people high in neuroticism have biases away from positive stimuli (Chan et al., 2007), not just towards negative stimuli.

Neuroticism was not correlated with CA of academic-avoidance words. However, the results of an interaction between neuroticism and week of the semester was significant, and the plot suggested that during the beginning of the semester, people high in neuroticism have a lower CA of academic-avoidance stimuli, but a higher CA for these stimuli later in the semester. Neuroticism is associated with disengagement coping strategies (Connor-Smith & Flachsbart, 2007), so it may be that these coping strategies serve to lower the accessibility of academic-avoidance stimuli at the start of semester, but become counter-productive as assessment pressures increase toward the end of semester. As such, the relationship between neuroticism and CA of academic-avoidance stimuli appears to be sensitive to situational factors. The observed interaction effect in this study may partly explain the lack of direct association between neuroticism and CA for negative stimuli obtained in other studies. If so, exploration of the relationships between neuroticism and CA will require more complex and subtler research designs.

Conscientiousness, and particularly the facets of order and achievement striving, were correlated with CA of academic-neutral words (e.g., university, textbook). If CA is due to sustained contextually-primed stimuli as well as goals (Higgins & Scholer, 2008), then those who are high in conscientiousness—which is associated with greater involvement and effort in university studies (Poropat, 2016)—will have had greater experience with contextually-primed academic-neutral stimuli. This may be particularly evident for those high on
orderliness, which is associated with planning (Roberts, Lejuez, Krueger, Richards, & Hill, 2014), and achievement striving.

The relationship between conscientiousness and academic-neutral words provides support for the suggestion that the relevance of stimuli are important for CA. Previous studies have largely focused on the relationship between traits and CA of valenced stimuli. However, the academic-neutral stimuli used in this study were categorically neither approach nor avoidance stimuli, indicating a lack of strong valence. Furthermore, these stimuli were of specific relevance to the student participants in this study—it seems unlikely that conscientious but nonstudent participants would exhibit CA for academic-neutral stimuli. As such, it is difficult to explain these results except by the increased relevance (causing repeated activation through experience or goal-activation) of these stimuli to conscientious students. This suggests that the relevance of stimuli is important in CA, though it still cannot explain the lack of direct relationship between neuroticism and negative stimuli.

However, this study did not directly assess stimuli relevance, nor did it include “nonrelevant” stimuli as a comparison. As such, support for the importance of stimuli relevance is indirect, and due to the nonsignificant direct relationship for neuroticism, incomplete. Future studies should directly investigate the impact of stimuli relevance, and actively explore the impact of situational influences on the relationships between traits and cognitive processes.

Goldberg, L. R. (1999). A broad-bandwidth, public-domain, personality inventory measuring the lower-level facets of several five-factor models. In I. Mervielde, I. Deary, F. De Fruyt, & F. Ostendorf (Eds.), *Personality psychology in Europe* (pp. 7-28). Tilburg, The Netherlands: Tilburg University Press.

