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Abstract. Protecting Internet of Things (IoT) network from private
data breach is a grand challenge. Data breach may occur when networks’
statistical information is disclosed due to network scanning or data stored
on the IoT devices is accessed by attackers because of lack of protection
on IoT devices. To protect IoT networks, effective proactive cyber defence
technologies (e.g., Moving Target Defence (MTD) and deception) have
been proposed. They defend against attacks by dynamically changing
attack surface or hiding true network information. However, little work
considered the protection of statistical information of IoT network, such
as the number of VLANs or the number of devices across VLANs. This
type of information may leak the network’s operational information to
attackers (e.g., functional information of VLANs). To address this prob-
lem, we propose a differential privacy (DP)-based defence method to
mitigate its leakage. In this paper, we strategically obfuscate VLANs’
statistical information by integrating DP with MTD and deception tech-
nologies. Software-defined networking technology is leveraged to manage
data flows among devices and support shuffling-based MTD. Two strate-
gies (random and intelligent) are considered for defence deployment. A
greedy algorithm is designed to explore the trade-off between defence cost
and privacy protection level. We theoretically prove that the proposed
method meets the definition of DP, thus offering solid privacy protection
to the operational information of an IoT network. Extensive experimen-
tal results further demonstrate that, for a given defence budget, there
exists a trade-off between protection level and cost. Moreover, the intel-
ligent deployment strategy is more cost-effective than the random one
under the same settings.

Keywords: Differential privacy · Internet of Things · Deception · Mov-
ing target defence · Software defined networking.

1 Introduction

Internet of Things (IoT) is a network of physical objects (e.g., devices, instru-
ments, vehicles, buildings and other items) embedded with electronics, circuits,
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sensors and network connections to collect and exchange data [1]. It allows these
objects to communicate by wired or wireless communications (e.g., Bluetooth,
ZigBee and 5G) and share data across existing network infrastructure [2]. Nowa-
days, IoT networks are growing rapidly and contain around 28 billion objects [3]
that communicate with each other. They bring a lot of benefits to human beings
but also provide opportunities for attackers to collect valuable information and
launch attacks which may severely impact operations and normal functionality
of IoT devices [4] [5]. Thus, effective protection and defence mechanisms are
needed to protect the IoT networks from potential attacks.

In an IoT network, devices are usually grouped into different VLANs accord-
ing to their functions and/or locations [6]. Statistical information, such as the
total or average number of devices per VLAN, or the number of VLANs, may
leak the network’s operational information, or expose potential attack targets.
For example, a Radiology department often has a limited number of medical
imaging devices due to the budget limitation. The medical imaging devices col-
lect data from patients and upload it to the server where doctors access patients’
data for diagnosis purposes. Attackers may be able to deduce the VLAN where
these medical imaging devices are located based on the network statistical in-
formation (e.g., the number of user machines in a VLAN is potentially much
larger than the number of critical devices, such as medical imaging devices or
servers, in a separate VLAN). Once attackers identify a vulnerable Internet-of-
Medical Things (IoMT) device or a vulnerable user machine, they can pivot
toward the server. The consequences are expensive if patients’ private informa-
tion is disclosed. Therefore, it is necessary to minimise the leakage of statistical
information, increasing the difficulty of deducing potential targets by the at-
tackers, preventing them from breaking into the network and launching further
attacks.

However, there is little prior work considering the security issues caused by
the leakage of statistical information. The motivation of our work lies within
the privacy protection of statistical information of IoT networks. We aim at
developing a defence method to obfuscate the statistical information of an IoT
network and mislead attackers. Fig. 1 shows two examples of VLAN obfuscation.
In a healthcare IoT network, we assume there is a vulnerable device ti (in red
square, belonging to a radiologist) on VLAN 3 (i.e., the staff office). It has
direct access to a file server on VLAN 5 which stores medical imaging data from
multiple medical devices on the network. If ti is compromised, the attacker may
pivot and compromise the server.

Intuitively, to prevent the attacker from locating the server through devices
in other VLANs, we can increase the attack cost of identifying a potential target
by hiding true network information. It can be done by increasing the device
diversity, such as deploying decoy t′i (1(b) and 1(c)), or by changing the attack
surface, such as shuffling ti’s IP address to make it appear on VLAN 2 but not on
VLAN 3 (1(d)). When the attackers scan the network, they may not accurately
deduce the operational information of VLANs because of the obfuscated virtual
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(d) ti mapped to t′′i by IP shuffling

Fig. 1. Examples of VLAN obfuscation.

location of ti. Hence, the attack cost is increased and the operational information
of the network is protected to some extent.

However, this kind of simple deception methods do not protect the opera-
tional information well against the attacker with stronger background (i.e., side
channel information). For the scenario considered above, this background knowl-
edge can be derived from the simple fact that the probability of ti on VLAN
3 is much higher than that of the decoy t′i on VLAN 2 (Fig. 1(c)). That said,
by simply counting the number of devices on both VLANs, the attacker can
distinguish real ti and fake t′i or t′′i , and easily workaround the aforementioned
deception methods. From this view, it is necessary to also obfuscate the VLAN’s
statistical information (e.g., the number of devices) to offer protection against
informed attackers.

In this paper, we first use differential privacy (DP) to obfuscate VLAN’s
statistical information. The number of devices per VLAN is strategically changed
under a given privacy budget ϵ. Two defence mechanisms are then applied to
achieve the obfuscation. Finally, we adopt a greedy algorithm to optimise the
deployment of defence choices and find the trade-off between defence cost and
privacy budget. The defence mechanisms used in this work include: (1) deception
technology to deploy decoys into network [7], and (2) IP-shuffling based Moving
Target Defence (MTD) technology to obfuscate the attack surface [8].

The main contributions of this paper are summarised as follows:

– We are the first to integrate DP with software-defined networking (SDN)-
based MTD and deception technologies to solve the security issues caused
by leakage of statistical information of IoT network. Using VLAN informa-
tion as an example, we add the Laplace noise to the number of devices per
VLAN and obtain the obfuscated set of VLANs, based on which, deception
technologies can be further applied by the defender.
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– We design a greedy algorithm to find optimal trade-offs between privacy
budget and defence cost under given defence budgets.

– Extensive experimental results validate the effectiveness and scalability of
the proposed method on different scaled IoT networks.

The rest of the paper is organised as follows. Section 2 introduces related
work. Section 3 presents the proposed method. System model, attack model and
defence model are described in section 4. Experimental results and their analysis
are given in section 5. Section 6 discusses the limitations and future directions.

2 Related Work

MTD technologies: Moving target defence [8–10] is one of the common proac-
tive defence mechanisms that has emerged to deceive potential attacks [11,12]. It
aims at hurdling attacks by constantly changing the attack surface. With MTD,
the complexity, diversity and randomness of systems or networks are increased
to disrupt attackers’ actions during the reconnaissance phase of cyber kill chain.
There are three common MTD techniques: shuffling, redundancy and diversity.
In our case, we use IP shuffling which is a common network shuffling technique
for an increased complexity of the IP address space.

Ge et al. [13] re-configured the IoT network topology to deal with non-
patchable vulnerabilities. By maximising the number of patchable nodes along
the route to the base station, the attack effort is increased while maintaining
the average shortest path length. The work [14] considered hybrid approaches
by combining different defence mechanisms. Decoys are strategically deployed
into the network and a patch management solution is applied to solve unpatch-
able vulnerabilities under a constraint budget. Further study in [15] proposed
an integrated defence technique for intrusion prevention. It explains “when to
move” and “how to move”. The former performs network topology shuffling
with four strategies (i.e., fixed/random/adaptive/hybrid), and the latter shuffles
a decoy IoT network with three strategies (i.e., genetic algorithm/decoy attack
path-based optimisation/random).

The work [16] randomly shuffled communication protocols in an IoT net-
work. It solves problems such as “what to move” by utilising moving parameters
to determine shuffled protocol, “how to move” by using a discrete & uniform
probability distribution to determine the next moving parameter, and “when to
move” by adopting fixed or random time interval. The paper also analyses multi-
criteria to find a trade-off among system performance, business impact and the
success probability of a given attack.

Deception techniques: Deception techniques aims to mislead and deceive
attackers [7,17]. Honeypot [18,19] is one of the commonly exploited technologies
in cyberdeception. It is created as a fake asset and shows attackers misleading
information, luring them into the honeypot environments to divert them. How-
ever, how to create honeypots, how many to deploy, when and where to deploy
are still unsolved problems [12].
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La et al. [19] formulated a Bayesian Game model to reflect the defender’s
imperfect knowledge of the incoming user’s type (e.g., malicious or not). It ad-
dresses the key issues of how the defender reacts different observations on the
attacker and which deception strategies are optimal to both the attacker and
defender. However, It does not take the false positive and false negative into ac-
count to measure the effective results. Tsemogne et al. [20] introduced a zero-sum
one-sided partially observable stochastic game model to investigate cyberdecep-
tion techniques against botnets propagation in IoT networks.

Ye et al. [21] presented a differentially private game-theoretic approach for
cyber deception. They use DP to dynamically change the number of systems
and obfuscate their configurations in three situations: reallocating system con-
figurations, deploying decoys and taking systems offline. However, limitations,
like how to guarantee the number of systems to be taken offline fewer than that
of the current live hosts, are not addressed. Additionally, taking systems offline
is irrational in reality due to due to interrupting normal services from systems.

This paper focuses on solving the security issues caused by the leakage of
statistical information of IoT networks. Our work is also built on top of DP,
but it obfuscates IoT network’s statistical information (e.g., the number of de-
vices) to resist informed attackers through the integration of MTD and deception
technologies.

Data Module Data flow in phase Data flow between phases

IoT network 
generator

Network topology 
and node measures

1

Deployment 
generator

Added decoys or 
shuffled IP addresses 
(i.e., moved devices)

3

Obfuscation 
generator

Updated number of 
devices in each VLAN

2

Optimal  
deployment

Metrics values

4

Fig. 2. Workflow of the proposed approach.

3 Proposed Approach

To effectively manage nodes (devices) and their data flows, we utilise SDN tech-
nology [22]. An SDN controller communicates with SDN switches in the IoT net-
work. Servers, user machines and IoT devices are connected to the SDN switches.
The switches transform data flows to the SDN controller for further processing.
We also leverage the SDN technology to deploy shuffling-based MTD, as well
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as managing the communication between the SDN controller and switches via
virtual-to-real or real-to-virtual IP addresses mapping.

The overall workflow of our proposed approach is shown in Fig. 2. It con-
sists of 4 phases: IoT network model generation, information obfuscation by DP
mechanism, deployment strategy generation using IP shuffling and deception,
and deployment optimisation by finding the trade-off between defence cost and
privacy budget.

In Phase 1, we generate the system model along with node measures based
on the network information. In specific, the IoT network generator takes network
topology as input with node connectivity information. The output is statistical
information of the network (e.g., set of devices in each VLAN and set of VLANs
on a given IoT network) and node measure (e.g., the betweenness centrality
(BC) of each node that captures how much a given node is in-between other
nodes [23]).

In Phase 2, we adopt DP to obfuscate the statistical information of VLANs.
The obfuscation generator takes the statistical information of the network (e.g.,
the number of devices in each VLAN) and the node measures from Phase 1
as input, and adds Laplace noise to the set of devices per VLAN under the DP
framework. The output is the updated number of devices in each VLAN. We
denote the original IoT network as N and the new obfuscated IoT network as
N ′. For each VLAN k, the number of devices is changed from |Nk| to |N ′

k| after
obfuscation. There is a possibility that |N ′

k| < 0 since the Laplace noise is a
random variant. It means that the devices moved out from VLAN k is large
than the devices on VLAN k, which is violated in the real world. Hence, we use
∆N∗

k = |N ′
k| − |Nk| as an optimal set of devices that should be moved out from

or added into VLAN k to solve this problem, aiming at adapting to real-world
scenarios, including guaranteeing the number of devices moved out is less than
that of the current live devices. These to-be-moved devices are also candidates
for IP-shuffling based MTD in Phase 3. Therefore, we call ∆N∗

k is an optimal
set of devices after the improved obfuscation.

In Phase 3, we use the deployment generator to update the network infor-
mation as specified by the updated set of devices for each VLAN from the output
of Phase 2 and the original set of devices per VLAN. The deployment genera-
tor deploys the defence strategies produced by the randomisation module or the
optimisation module in Phase 4. The output is the updated IoT network after
the deployment of defences. We use the MTD technology - IP address shuffling
to change the attack surface and the deception technology - decoy to mislead
attackers. As mentioned earlier, we leverage SDN to implement shuffling-based
MTD. In our proposed approach, the SDN controller is also used to manage
SDN switches. The SDN switches are used to forward packets to the SDN con-
troller for handling the data flow. control packet forwarding. We assume each
device has a real IP address (rIP). The rIP is mapped to one virtual IP address
(vIP) which is selected from a group of randomly generated virtual IP addresses
(vIPs). Only the SDN controller and the device know its rIP, while other devices
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in the IoT network use the mapped vIP to communicate with the device. The
mapping between rIP to vIPs is managed by the SDN controller [24,25].

In Phase 4, we consider two strategies for defence deployment: random and
intelligent strategies. The randomisation module starts by randomly selecting a
VLAN k. Depending on the obfuscation outcome of Phase 2, it either randomly
selects a device for IP shuffling or deploys a decoy on VLAN k. The intelligence
module starts by selecting a VLAN k based on their criticality. Depending on
the obfuscation outcome of Phase 2, it then selects a device for IP shuffling
or deploys a decoy on VLAN k based on the devices’ or decoys’ criticality. In
particular, if the number of devices on VLAN k increases (i.e., ∆N∗

k > 0), the
defender deploys ∆N∗

k number of decoys into VLAN k; If the number decreases
(i.e., ∆N∗

k < 0), the defender moves |∆N∗
k | number of devices from VLAN k to

another VLAN by shuffling the IP addresses of these devices to that VLAN. As
discussed in Phase 3, the SDN controller can shuffle vIP addresses3. We develop
a greedy algorithm (GA) to compute the optimal deployment by exploring the
trade-off between defence cost and privacy protection level. GA aims to minimise
the defence cost under different privacy budgets at each stage. The selection
of VLAN, decoy or device can be determined by their criticality. The higher
criticality the object has, the higher priority it takes.

We consider the security metric as the defender’s cost. It is the total cost
of deploying decoys to the IoT network and moving devices from one VLAN to
another (e.g., shuffling IP addresses). The privacy protection level is determined
by the privacy budget used in Phase 2 (i.e., how much Laplace noise to add for
information obfuscation).

4 System, Attack and Defence Models

This section describes the system model, attack model and defence model of our
proposed approach.

4.1 System Model

We consider the internal network of a smart healthcare network as shown in
Fig. 3. The internal network consists of servers, a SDN controller and SDN
switches, user machines (e.g., computers) and IoT devices. Assume traditional
defence techniques are in place, including intrusion detection systems (IDS) and
anti-virus software. The servers, user machines and IoT devices are connected
to the SDN switches.

4.2 Attack Model

In this smart healthcare network, servers are used to store patients’ medical
records (e.g., medical diagnosis reports and radiological images). If they are

3 IP shuffling does not change the VLAN that a device resides nor affect the com-
munications between the device and other devices; but it gives attackers a different
network view in their reconnaissance phase.
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Fig. 3. Example of Software-Defined healthcare IoT network.

compromised, attackers may steal the data for economic gain [26]. The disclosure
of patients’ data can pose a serious threat to the health and safety of individuals.
Therefore, we assume these servers could be potential attack targets.

Based on the observation of real-world scenarios, we assume the attackers
have the following capabilities.

– Attackers can leverage various scanning tools to collect information about
the target network (e.g., number of devices, network topology and operat-
ing system of a host) and identify weaknesses for exploitation (e.g., known
and zero-day vulnerability). Attackers are able to utilise some firewall/IDS
evasion techniques to avoid blocking and detection.

– Attackers may be able to identify attack targets with less time or cost by
analysing the collected information. For example, the real location of one
device can be deduced by comparing gathered information (e.g., counting
the number of changed devices per VLAN) before an attack is launched on
the device.

– It is highly unlikely for attackers to directly compromise the servers as they
are assumed to be well-protected due to the traditional defence techniques
placed on the network.

– Attackers lack knowledge of existence of decoy system. Once the attackers
realise the device they interact with is a decoy, they terminate the interaction
immediately and attempt to find a new target.

– Attackers can not compromise the SDN controller and SDN switches which
are assumed to be secure.

4.3 Defence Model

The proposed defence model covers two stages: the obfuscation of VLANs through
DP, and the deployment of two defence technologies for obfuscation. Table 1 lists
the notations used in this work.
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Table 1. Notations and definitions.

Notations Definitions

N set of devices in a network

N ′ set of devices in a network after obfuscation

K set of VLANs

Nk set of devices in VLAN k

N ′
k set of devices in VLAN k after obfuscation

∆N∗
k an optimal set of devices moved out from or added into VLAN k after

improved obfuscation

m1(k, j)→ 0, 1 function to move a device from VLAN k to VLAN j with MTD

m2(d, k)→ 0, 1 function to deploy a decoy d into VLAN k with deception

c1(k, j) cost of moving a device from VLAN k to VLAN j when m1(k, j) = 1

c2(d, k) cost of deploying a decoy d into VLAN k when m2(d, k) = 1

Obfuscation of VLANs: Differential privacy is a framework that provides
theoretical guarantee to protect any individual record in a dataset from leaking or
being exploited by all possible informed attackers [27]. DP has been successfully
applied to the network security field [21, 28]. However, existing studies on DP-
based network security solutions still have limitations. In this work, we try to
address the privacy security issues caused by leakage of statistical information of
IoT networks and overcome the limitations we have found in [21] when applying
DP to obfuscate the statistical information of networks.

Briefly speaking, DP operates on two neighbouring datasets D and D′ which
differ by only one record. For a query function f that maps dataset D to
an output value range R, f : D → R, DP randomises this query f such
that its output from D and D′ cannot be distinguished by any attacker. The
maximal difference of the query function f is called sensitivity ∆S (∆S =
maxD,D′ ∥f(D)− f (D′)∥1), which affects the level of noise added during ran-
domisation. The formal definition of DP is given as follows.

Definition 1. (ϵ-Differential Privacy [29]). An algorithm A provides ϵ-
differential privacy for any pair of neighbouring datasets D and D′ if the algo-
rithm A satisfies:

Pr[A(D) ∈ Ω] ≤ exp(ϵ) · Pr [A (D′) ∈ Ω] (1)

where Ω is the output of algorithm A performing on D (or the neighbouring D′),
ϵ is the privacy budget, ranging from 0 to 1 for counting queries. It controls how
much noise or randomness is added to the raw data. The higher the ϵ value, the
lower the noise is; or the lower the ϵ value, the higher the noise is.

There are two most widely used mechanisms to achieve DP (i.e., Laplace and
Exponential). We focus on the Laplace mechanism, which adds Laplace noise to
the true query answer (i.e., the number of devices per VLAN). Denote Lap(b)
the noise sampled from the Laplace distribution with scaling b, we have the
following definition and properties.
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Algorithm 1 Strawman obfuscation approach of VLANs

Input: |N1|, · · · , |Nk|
Output: |N ′

1|, · · · , |N ′
k| and ∆N∗

1 , · · · , ∆N∗
k

1: Calculate the minimum value of set of devices on VLANs amin : |N1|, · · · , |Nk|
2: for k = 1→ K do
3: |N ′

k| ← |Nk|+
⌈
Lap

(
∆·K
ϵ

)⌉
4: if |N ′

k| ≤ 0 then
5: |N ′

k| ← amin/2
6: end if
7: ∆N∗

k ← |N ′
k| − |Nk|

8: end for
9: Obtain |N ′

1|, · · · , |N ′
k|, amin, ∆N∗

1 , · · · , ∆N∗
k .

Definition 2. (The Laplace Mechanism [29]). Given a function f :→ R
over a dataset D, then

f̂(D) = f(D) + Lap

(
∆S

ϵ

)
(2)

satisfies ϵ-DP.

Theorem 1. Sequential composition [29]: Suppose there are k algorithms
A1, A2, · · · , Ak that satisfy ϵ1-DP , ϵ2-DP , · · · , ϵk-DP , respectively, with respect
to the input dataset D. Publishing t = (o1, o2, · · · , ok), which is the output value

of the algorithms performing on D, satisfies (
∑k

i=1 ϵi)-DP .

Theorem 2. Post-processing [29]: Suppose an algorithm A1(·) satisfies ϵ-DP ,
then for any algorithm A2, the composition of A1 and A2, i.e., A2(A1(·)), sat-
isfies ϵ-DP .

Based on DP’s definition and properties, we present a strawman obfuscation
approach for the VLANs in Algorithm 1. In line 3, Laplace noise is added to
each |Nk| to obfuscate the number of devices on VLAN k. In our case, ∆ is the
the maximum change (i.e., shuffling a device’s IP address or deploying a decoy)
made to VLANs. By definition, ∆ = 1.

However, as the Laplace noise is a random variant, there is a possibility that
|N ′

k| < 0, which means the number of devices needs to be moved out of one
VLAN (i.e., by IP address shuffling) may be greater than the number of devices
in that VLAN, which violates reality. Therefore, lines 4-6 are used to limit the
number of devices left in VLANs (after moving devices out) to be one half of
the original minimum number of devices in the VLANs. In this way, the issue of
how to guarantee the number of systems to be taken offline fewer than that of
the current live devices from [21], can be avoided naturally.

On the other hand, another extreme situation, where the total number of
devices to-be-moved is greater than the total number of available decoys (under
a certain budget), may occur. In this case, the extra devices to-be-moved need to
be taken offline to ensure DP. Clearly, in our example application, it is irrational
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Algorithm 2 Improved VLAN obfuscation approach

Input: ∆N∗
1 , · · · , ∆N∗

k

Output: Updated values of ∆N∗
1 , · · · , ∆N∗

k

1: for k = 1→ K do
2: if ∆N∗

k < 0 then
3: moveOut← N∗

k

4: else
5: moveIn← N∗

k

6: end if
7: end for
8: sumOut← abs(sum(moveOut));
9: sumIn← sum(moveIn)
10: if sumOut > sumIn then
11: for i = 0→ len(moveOut) do
12: temp = moveOut[i]

13: moveOut[i] = (moveOut[i]
sumOut

) ∗ sumIn
14: ∆N∗

∆N∗.index(temp) = moveOut[i]
15: end for
16: end if
17: Obtain ∆N∗

1 , · · · , ∆N∗
k .

to take devices offline as this will disrupt services for patients. Therefore, we
design Algorithm 2 to deal with this situation. In line 13, we regard the number
of devices moved per VLAN as being proportional to the total number of fake
assets added.

In this way, our approach not only ensures the satisfaction of DP but also
avoids taking devices offline, which is an irrational defence method to protect
devices from [21].

Proposition 1. Both Algorithm 1 and Algorithm 2 satisfy ϵ-DP .

Deployment of defence mechanisms: After obtaining the outcomes of VLAN
obfuscation, the remaining task is to implement the obfuscation of VLANs to
deceive attackers. As discussed earlier, we use MTD and deception technologies
to achieve the obfuscation. Without loss of generality, we assume the cost of
moving one device out of one VLAN to another VLAN is cheaper than adding
a decoy, so the defender prefers IP-shuffling based MTD to cyber deception.

Deception: The defender utilises deception technology if the number of
devices in VLAN k increases (i.e.,∆N∗

k > 0). The defender deploys∆N∗
k number

of additional devices on VLAN k for deceiving possible attackers. The additional
devices can be decoys or devices that are moved from other VLANs if those
VLANs have a reduced number of devices after obfuscation, or a mix of decoys
and devices from other VLANs.

To minimise the cost while maximising security and preserving privacy, we
need to decide (1) which VLAN should be selected first for deploying decoys and
(2) what decoys should be deployed. In particular, we select a VLAN based on
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its criticality. Take the healthcare network as an example, we consider the total
cost of devices per VLAN as the VLAN’s criticality because critical devices like
servers and medical devices often have a higher price. We consider the cost of
decoy deployment based on the license fees by decoy type [14,30]. A decoy at a
lower price will have a higher priority being deployed into a VLAN.

To increase the chance of decoy interacting with attackers, the decoys should
resemble the devices in the real network [14]. In our case study, we choose real
OS for server decoys (i.e., full OS-based decoy) and emulator software for other
device decoys (i.e., emulated decoy). Full OS-based decoys have higher interac-
tion capability with attackers but will incur a higher cost than the emulated
ones.

Shuffling: The defender resorts to MTD if the number of devices in VLAN
k decreases (i.e., ∆N∗

k < 0). The defender moves |∆N∗
k | number of devices from

VLAN k to another VLAN by shuffling IP addresses of these devices in that
VLAN.

In particular, we select devices based on their criticality. Betwenness cen-
trality (BC) is considered which measures the centrality of a node (device) in a
graph (topology) based on the shortest path [31]. BC can be formulated as

BS(ti) =
∑
ts ̸=td

σsd(ti)

σsd
, (3)

where σsd is the total number of shortest paths from the source nodes ts to the
destination node td. The σsd(ti) is the number of those paths that pass through
the node ti. The node/device with a higher BC plays a more important role in
the network and is more likely to be an attack target. Therefore, in this work, a
device with a higher BC will be shuffled first.

Motivated by the studies on IP address shuffling [24,25], we adopt this MTD
technology in our work. When needed, a device’s rIP can be randomly mapped
to one vIP from a pool of (|K| − 1) vIPs. As the noise introduced by DP is
random, the device of the VLAN under study can be shuffled to any other
(|K| − 1) VLANs. Before shuffling, a new set of (|K| − 1) vIPs for each device
is randomly generated. The communication process between the source device
and destination device under IP shuffling-based MTD (i.e., rIP-to-vIP mapping
and vIP-to-rIP mapping) as bellow.

As we mentioned in Phase 3 in Sec. 3, only the SDN controller and the
device itself know their rIPs while other devices use vIPs to communicate with
each other. When the source device sends a packet to the nearest SDN switch,
the SDN switch transmits the packet to the SDN controller. The SDN controller
receives the packet to map vIP to rIP from the packet header information, and
updates the flow-table entry of all SDN switches (e.g., Open-Flow-Switches).
Each switch uses the flow rules to convert the rIP into the vIP in the packet
header. The SDN switch near the the destination device convert the vIP of
the destination device in a packet header to its rIP. Hence, both the source
device and destination device do not know each other’s rIP and the mapping
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is transparent to an end device with no service disruption since rIPs of devices
remain unchanged [24,25].

Optimal Defence Deployment: Deploying any defence technology can
reduce the security risk of a given IoT network, but it may incur costs as well.
We treat this cost-increasing problem as an optimisation problem. Due to the
discrete nature of our problem formulation, we use greedy algorithm to find the
trade-off between the defence cost and the privacy protection. The objective
function is

argmin
C1(k,j),C2(d,k)

M1(k, j) ∗ C1(k, j) +M2(d, k) ∗ C2(d, k)

s.t.

{
M1(k, j) ∈ {0, 1} ,
M2(d, k) ∈ {0, 1} ,

where M1(k′, k) ∗C1(k′, k) represents the cost of moving devices from VLAN k
to VLAN j, and M2(d, k) ∗ C2(d, k) is the cost of adding decoys d into VLAN
k.

5 Evaluation

5.1 Simulation Setup

Fig. 3 shows an example smart healthcare system where IoT technologies are
heavily adopted [32] [33]. It consists of 4 VLANs, with 4 IoMT devices in VLAN2
(e.g., Ultrasound, X-Ray, MRI and CT Scanner in the Radiology Department
that send images to servers), 10 user machines in VLAN3 (i.e., staff office), and
5 IoMT devices in VLAN4 (e.g., Electroencephalography Monitor and Neuron
Endoscopes sensor in the Neurology Department) and 2 servers in VLAN5 (i.e.,
server room). VLAN5 can be accessed by other three VLANs as IoT devices need
to send patients’ information to the servers for storage or processing. VLAN2
and VLAN4 are connected to VLAN3 for administration purposes.

Based on the above structure, we consider 3 different scaled IoT networks
(i.e., small, medium and large) in the case study. For each network scale, we run
1000 rounds of simulations to evaluate the scalability of our method. In each
round of simulation, the numbers of servers and user machines are fixed, while
the IoT device number varies. For small-scale, we consider 2 servers, 10 user
machines, 9 IoMT devices. The network shown in Fig. 3 is of small-scale. For
medium-scale, we consider 2 servers, 50 user machines, and IoMT device number
ranging from 50 to 100 per VLAN with an increment of 25 in each simulation. For
large-scale, we consider 2 severs, 100 user machines, and the IoMT device number
ranging from 125 to 200 per VLAN with an increment of 25 in each simulation.
To evaluate the adaptability of the method, we also consider 2 servers, 100 user
machines, 400 IoMT devices, and increase the number of VLANs from 4 to 7
with an increment of 1 in each simulation.
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Fig. 4. Defender’s cost under different privacy budgets on different scaled networks

5.2 Deception Cost

We consider the deception costs of two defence mechanisms. Each decoy is pur-
chased individually with an annual license fee by type [34] [35]. The estimated
decoy prices from different manufacturers are shown in Table 2. Assume each
IoT device added to VLAN is of the same type and provided by the same man-
ufacturer. Prices for the deception products are the same as the prices shown
in Table 2. In the example network, if one device is moved from one VLAN to
another, it is switched off first before the move. During the moving period, there
is moving cost incurred as well. For simplicity, we treat the moving cost within
one hour as the cost of one shuffling operation, i.e., 150$ per hour per device.

5.3 Strategies to Deploy Defence Mechanisms

Two strategies are considered when deploying defence mechanisms based on
the obfuscation results: random selection of VLAN, decoy, or device (DP-Ran)
and intelligent selection of VLAN, decoy, or device based on their criticality as
mentioned in Sec. 4.3 (DP-Intel). We set the privacy budget ranging from 0.1
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Table 2. Annual license fees for decoys [34] [35]

Products Types Annual License Fees ($)
Ultrasound Emulation, Windows 8 200

X-Ray Emulation, Windows 8 200

Magnetic Resonance Imaging (MRI) Emulation, Windows 8 200

CT Scanner Emulation, Windows 8 200

Electroencephalographs Monitor Emulation, Windows 8 200

Nerve Monitor Emulation, Windows 8 200

Neuron Endoscopes Emulation, Windows 8 200

Spinal endoscopes Emulation, Windows 8 200

Electromyography Monitor Emulation, Windows 8 200

Computer Emulation, Windows 8 300

Server Full OS, Linux 1500
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Fig. 5. Defender’s cost under privacy budget ϵ = 0.2 on different scaled networks

to 0.3 with an increment of 0.05. Each simulation has 1000 rounds with random
noise added.

Fig. 4(a) shows the results of the small-scale IoT network. It can be seen
that the defence costs under both strategies decrease with the increasing pri-
vacy budget. The intelligent selection strategy has a better defence performance
with less defence cost under the same privacy budget. According to [30], if the
healthcare provider has a defence budget of $25,000.00, the intelligent strategy
with a privacy budget of 0.15-0.2 is the best defence option. By adding a small
noise to the number of devices per VLAN, we obfuscate the attacker, and the
defence cost is well under the budget. That suggests a smaller privacy budget
provides a higher protection level.

Fig. 4(b) and 4(c) show the defender’s costs under different privacy budgets
for medium-scale and large-scale networks. The defence cost decreases with the
increasing privacy budget under DP-Ran and DP-Intel. This is because fewer de-
vices to be moved or fewer decoys to be added into the networks for obfuscation.
We can also see that the defence cost under DP-Intel is lower than that under
DP-Ran with the same privacy budget. It verifies that our approach performs
well on different scaled IoT networks and the defence cost decreases with the
increasing privacy budget.
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In Fig. 4(b), it can be seen that the 2-50-100-DP-Ran has a higher defence
cost than 2-50-75-DP-Ran but a lower cost than 2-50-50-DP-Ran. It is because
the level of noise added to the number of devices per VLAN is random and the
random strategy is used to select devices to be shuffled or decoys to be added.
For the same reason, a similar case with DP-Ran can be seen in Fig. 4(c) where
random noise has an impact on DP-Intel and causes varying defence costs.

Fig. 4(d) shows the defender’s cost under different privacy budgets and a
fixed number of IoT devices in varying VLANs (from 4 to 7). When the privacy
budget increases, the defence cost decreases. The reason is because small noise
is added when the privacy budget is larger and fewer assets are moved or added.
On the other hand, with the increase of VLAN number, the defender’s cost also
increases under the same privacy budget and two selection strategies DP-Ran
and DP-Intel.

Particularly, in Fig. 4, for either DP-Ran or DP-Intel, when the privacy
budget increases, the difference between the defence costs under different sizes
of networks decreases. For example, when ϵ = 0.3, under each strategy, the
difference between defence costs with different network sizes are minimal. It is
because when the privacy budget ϵ is larger, the level of added noise is higher.
It means the number of devices per VLAN can be very different with noise
and without and the network’s statistical information can not be obfuscated.
The attacker can obtain the true operational information of IoT networks by
analysing the collocated statistical information which is non-obfuscated, and
then launch attack on real devices

It can be seen in Fig. 4(a), a good trade-off is achieved between the defence
cost and the privacy budget when the privacy budget is 0.2. We also conduct
experiments with 1000 rounds of simulation and privacy budget being 0.2 to
observe the trend of defence cost. The results are shown in Fig. 5. It is obvious
that the defence costs of DP-Intel are lower than those of DP-Ran, indicating our
approach performs well on protecting the IoT networks under a defence budget.

6 Conclusion

In this work, we are motivated by the attack model where attackers may ex-
ploit the statistical information of IoT networks (e.g., the number of devices per
VLAN), infer the operational information of VLANs and launch attacks. To ad-
dress this problem, we utilise a differential privacy mechanism to obfuscate the
network information by adding Laplace noise to change the number of devices
per VLAN. We then use two defence technologies to achieve the obfuscation.
We evaluate our approach by considering different scaled networks to find the
trade-off between defence cost and privacy budget. The simulation results show
that our approach with intelligent selection strategy has a better performance
compared to the random selection strategy. In our work, as we focus more on
applying differential privacy mechanism to obfuscate VLANs and protect the
network, the greedy strategy used for implementing MTD and deception tech-
nologies is simplified. In our future work, we will consider more sophisticated
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and effective strategies to select VLANs, devices and decoys for deletion or
addition, as well as different MTD techniques for obfuscation. Using different
privacy-preserving solutions, such as (ϵ, δ)-DP and Gaussian DP, is also worth
exploring.
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A Proof of Proposition 1

Proof. In the case of Algorithm 1, for neighbouring datasets Nk and N ′
k, with-

out loss of generality, let A be the step of Algorithm 1 that injects Laplace
noise (i.e., Line 3 of Algorithm 1) and X be a random variable that follows

Lap(( |K|·∆
ϵ )). For any output value z, we have:

Pr[A(Nk) = z]

Pr[A(N ′
k) = z]

≤ exp
ϵ

|K| . (4)

For any count function f , Af(Nk) = f(Nk)+Lap( |K|·∆
ϵ ), it is easy to conclude

Pr[Af(Nk) = z]

Pr[Af(N ′
k)

= z]
=

Pr[f(Nk) +X = z]

Pr[f(N ′
k) +X = z]

=
Pr[X = z − f(Nk)]

Pr[X = z − f(N ′
k)]

=

ϵ
2·|K|·∆ · exp

−ϵ·|z−f(Nk)|
|K|·∆

ϵ
2·|K|·∆ · exp

−ϵ·|z−f(N′
k
)|

|K|·∆

= exp(
−ϵ·|z−f(Nk)|

|K|·∆ −−ϵ·|z−f(N′
k)|

|K|·∆ )

= exp(ϵ·(
|z−f(N′

k)|−|z−f(Nk)|
|K|·∆ ))

≤ exp(
ϵ·|f(N′

k)−f(Nk)|
|K|·∆ ). (5)

Since the sensitivity ∆ is 1 as mentioned before, and by definition of sensitivity,
∆ = maxNk,N ′

k
∥f(N ′

k)− f(Nk)∥1. Hence, Eq. (5) becomes

Pr[Af(Nk) = z]

Pr[Af(N ′
k)

= z]
=

Pr[f(Nk) +X = z]

Pr[f(N ′
k) +X = z]

≤ exp(
ϵ·|f(N′

k)−f(Nk)|
|K|·∆ )

≤ exp(
ϵ

|K| ). (6)

Thus, each step of Algorithm 1 satisfies ϵ
|K| -DP . As there are |K| steps in Algo-

rithm 1, based on Theorem 1, Algorithm 1 satisfies (
∑|K|

i=1
ϵ

|K| )-DP . Therefore,

Algorithm 1 satisfies ϵ-DP .
Without loss of generality, denote Algorithm 1 as A1 and Algorithm 2 as

A2. In the case of Algorithm 2, for neighbouring Nk and N ′
k, let z be the

output value of algorithm A1 and O be the set of output value of algorithm A2.
According to the discussion above, we have proved A1 satisfies ϵ-DP , so we have

Pr[A1(Nk) = z]

Pr[A1(N ′
k) = z]

≤ expϵ. (7)
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For any o ∈ O, we have

Pr[A2 (A1(Nk)) = o] =
∑
o∈O

Pr[A1(Nk) = z]Pr[A2(z) = o]

≤
∑
o∈O

expϵPr[A1(N
′
k) = z]Pr[A2(z) = o]

=
∑
o∈O

expϵPr[A2 (A1(N
′
k)) = o]. (8)

Hence, according to Eq. (8), we have

Pr[A2 (A1(Nk)) = o]

Pr[A2 (A1(N ′
k)) = o]

≤ expϵ, (9)

Therefore, Algorithm 2 also satisfies ϵ-DP based on the Post-processing Theo-
rem 2.


