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Abstract. Protein structure prediction (PSP) is a challenging problem
in Bioinformatics. Given a protein’s amino acid sequence, PSP involves
finding its three dimensional native structure having the minimum free
energy. Unfortunately, the search space is astronomical and the energy
function is not known. Many PSP search algorithms develop their own
proxy energy functions known as scoring functions using predicted con-
tacts between amino acid residue pairs where two residues are said to
be in contact if their distance in the native structure is within a given
threshold. Scoring functions are crucial for search guidance since they
allow evaluation of the generated structures. Unfortunately, existing con-
tact based scoring functions have not been directly compared and which
one among them is the best is not known. In this paper, we evaluate a
number of existing contact based scoring functions within the same PSP
search framework on the same set of benchmark proteins. Moreover, we
also propose a number of contact based scoring function variants. Our
proposed contact based scoring functions help our search algorithm to
significantly outperform existing state-of-the-art PSP search algorithms
that use contact based scoring functions.

Keywords: Protein Structure Prediction, Search-Based Optimisation,
Contact-Based Energy Function

1 Introduction

Protein structure prediction (PSP) is a challenging problem in Bioinformatics.
Proteins comprise amino acid (AA) sequences and fold into three dimensional
structures to perform their functions. Given a protein’s AA sequence, PSP in-
volves finding its native structure that has the minimum free energy. Unfortu-
nately, the search space is astronomical and the energy function is not known.

Energy functions have been developed based on molecular dynamics e.g.
CHARMM [3]. Unfortunately, such energy functions involve all atomic details
and so are computationally very expensive. Rosetta [8] is a popular energy func-
tion but involves 18 different energy components. Consequently, various other
proxy energy functions known as scoring functions have been designed. In this
context, contact based scoring functions have been used by many recent PSP
search algorithms. Two amino acid residues of a protein are in contact if their
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distance in the native structure of the protein is at most 8Å. Machine learning
algorithms are normally used in predicting potential contacts between residue
pairs. Contact based scoring functions are then developed to evaluate protein
structures based on the deviations in the distances between residue pairs that
are supposed to be in contact. Search algorithms then use the scoring functions
to rank generated protein structures or conformations.

Machine learning algorithms such as SPOT-Contact [5], Restriplet [9], and
TripletRes[10] predict contacts among residues. Search algorithms such as Pcons-
fold [17], CONFOLD [1], RBO Aleph [12], Unicon3D [2] and CGLFOLD[11] use
contact based scoring functions. In this context, recent contact based scoring
functions include modified Lorentz potential [12], soft square [1], square well [7,
2], bounded potential [7], and cglfold [11]. However, these scoring functions have
not been directly compared and which one among them is the best is not known.

In this paper, we evaluate the aforementioned five contact based scoring func-
tions within the same PSP search framework on the same single set of bench-
mark proteins. Based on the results, we also propose four contact based scoring
function variants. Our proposed contact based scoring functions help our search
algorithm to significantly outperform existing state-of-the-art PSP search algo-
rithm CGLFOLD [11] that uses a contact based scoring function.

The rest of the papers is organized as follows: Section 2 provide preliminaries
of protein structures and our search framework; Section 3 describes existing
contact based scoring functions as well as our proposed ones; Section 4 provides
our experimental results and analyses; and Section 5 presents our conclusions.

2 Preliminaries

We briefly describe protein structure preliminaries and our search framework.

Protein Structures. Proteins comprise 20 types of AA and the AAs can ap-
pear in any order any number of times. Moreover, AAs all have N , Cα, and C
atoms in their main chains. Two successive AA residues in a protein are joined
by a non-rotatable peptide bond formed between the C atom of the previous
residue and the N atom of the next residue. The bond between N and Cα in
an AA is rotatable and the rotation angle is denoted by ϕ. Similarly, the bond
between Cα and C in an AA is also rotatable and the rotation angle is denoted
by ψ. Both ϕ and ψ can take any value from [−180◦,+180◦]. The rotatable
bonds are essentially responsible for the three dimensional folding of a protien.
Proteins exhibit certain local structures comprising successive residues. These
local structures known as secondary structures are of three major types: helices,
sheets, and coils. Among these, helices and sheets are rigid and normally have
narrow ranges of ϕ and ψ values but coils are very flexible; hence, in this work,
we mainly search for ϕ and ψ angles of the coil reidues. Nevertheless, besides
main chains, AAs have unique side chains (Glycine has no side chain) starting
from Cα and having Cβ as the first atom. Side chains have dihedral angles, too,
but they are out of scope of this work. Nevertheless, in the definition of contacts
between residues, typically distances are measured between the Cβ atoms (Cα

for Glycine) of the two residues so that side chains are counted to some extent.
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Search Framework. We use a constraint based local search (CBLS) frame-
work to evaluate the existing and the proposed contact based energy functions.
The search algorithm is implemented on top of a new python library named
Koala, which draws concepts from a constraint based local search system named
Kangaroo [15]. We briefly describe the steps of our search algorithm below:

1. Generate one initial conformation c using ϕ, ψ angles predicted for each
residue of the protein by a machine learning algorithm.

2. Evaluate the conformation c using a contact based scoring function σ.
3. Select the residue pair ⟨i, j⟩ from c such that residues i and j are supposed

to be in contact (as predicted by a machine learning algorithm) but their
distance is the maximum in c among all such candidate residue pairs.

4. Select a residue k randomly from any coil (not helices and sheets since they
are rigid) in between the selected residues i and j. Changing ϕ and ψ of the
selected residue k might essentially bring residues i and j in contact.

5. Generate a number (e.g. 20) of neighbouring conformations by changing ϕ
and ψ angles of the residue selected residue k. Consider up to ±∆ with
interval δ = 3 for ϕ and ψ values where ∆ is the mean absolute error of the
machine learning algorithm used in Step 1 for the respective ϕ or ψ angle.

6. Evaluate the generated neigbouring conformations using the same contact
based scoring function σ used in Step 2.

7. Accept the neighbouring conformation having the minimum score as the
current conformation for the next iteration.

8. Return the best conformatoin found so far (in terms of scores) if the termi-
nation criterion is satisfied; otherwise, move to Step 3.

3 Scoring Functions

Assume dij is the distance and σij is the score for a residue pair ⟨i, j⟩ in a
conformation c having the score σ =

∑
σij . Also, assume pij be the probability

that residues i and j are in contact in the native conformation.

3.1 Existing scoring functions

Fig. 1 shows five existing contact based scoring functions. These functions are
square well (sw) [7, 2], bounded potential (bp) [7], modified Lorentz potential
(mlp) [12], soft square (ss) [1], cglfold (cf) [11]. The parameter values used in the
functions are as suggested by the respective methods using them.

From the charts of the five scoring functions in Fig. 1, notice that most of
the scoring functions have a dij range with some least penalty value. Any dij
below ≈ 3.8Å is highly penalised to avoid steric clash between residues. Also,
any dij above ≈ 8Å is penalised to avoid not having contact while a contact
is rather expected. The square well function does not penalise for steric clash
(dij ≤ d0 = 3.8) but the other functions do. The modified Lorentz potential
and the soft square functions become flat in large dij values. So these functions
perhaps would not be able to provide effective search guidance when dij values
are large since such values cannot be differentiated. The square well and the
cglfold functions are very similar for large dij values but are different for small dij
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Fig. 1. Five existing contact based scoring functions

values. Moreover, both functions somewhat keep growing in the large dij values
and so could provide some search guidance. The bounded potential function
grows steadily in the large dij values and is expected to provide effective search
guidance as it will be able to distinguish large dij values from each other.

3.2 Proposed Scoring Functions

Considering the qualitative similarity of the existing scoring functions, we choose
the soft square and the bounded potential functions and create their variants.
The variants will be mainly created more based on qualitative considerations
than quantitative ones, particularly changing the steepness of the transition of
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Fig. 2. Four proposed contact based scoring functions

the function from low to high for as the dij grows. The motif behind creating
these variants is to study the effect of the slope of the curve on the progress
of the search towards the region with the least function values. Fig. 2 shows
the four proposed scoring function variants: soft square moderated (ssm), soft
square steepened (sss), bounded potential moderated (bpm), and bounded po-
tential steepened (bps). Also, these functions are somewhat simplified in their
expressions compared to the original versions. The two soft square variants differ
on the values of a and b and in the power of ∆ while the two bounded potential
variants differ on the value of m. From our intuition, we expect the bounded
potential steepened variant to perform better than the other variants.

4 Experiments

We describe the experimental setup, compare the contact based scoring func-
tions, and compare our best results with the results obtained by a recent state-
of-the-art PSP search algorithm that uses a contact based scoring function.



6 Zaman et al.

4.1 Experimental Setup

To obtain the ϕ and ψ values for the initial conformation construction, among
the available backbone angle predictor methods SAP[14], OPUS-TASS [19], and
SPOT-1D [6], we run SPOT-1D, since in our pilot runs, SPOT-1D predicted
values lead to better results. For SPOT-1D, the mean absolute error ∆ is 16◦

for ϕ and 23◦ for ψ. To obtain secondary structure prediction of the residues,
we run SSpro8 [13] and get 8-state predictions but we convert them into three
states such as helices, sheets, and coils. Note that once initial conformation is
obtained, ϕ and ψ angles of the coil residues get changed during search while
the helix and sheet regions remain unchanged.
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Fig. 3. Actual contact map (left), predicted contact map before filtering (middle), and
predicted contact map after filtering (right) for protein 1T1J

To obtain predicted contact for the residue pairs, we run SPOT-Contact [5]. A
contact map is a two dimensional array showing the contact probability for each
residue pair. We filter the contact map discarding contacts with probabilities
below 30% and also the contacts between residues that are within the same
helices or sheets and so are not changed during search. Fig. 3 shows the actual
contact map for one protein 1T1J and the predicted one before and after filtering.

To evaluate the contact based scoring functions, we use 39 proteins that have
42 to 181 residues. Out of them, 15 are α type, 13 are β type, and 11 are α/β
type. These proteins have been obtained from QUARK [18], MODE-K [4], and
MODCSA/CA [16] or SPOT-1D [6]. We have used CD-HIT to check for 25%
sequence similarity of these proteins with the training proteins of the machine
learning algorithms SPOT-1D [6], SSPro8 [13], and SPOT-Contact [5].

4.2 Comparison of Scoring Functions

Table 1 shows the mean of root mean square deviation (RMSD) values for the
39 proteins as obtained by running each of the scoring functions with our search
framework 5 times. Note each run explores 160000 conformations.

As we see the results in Fig. 1, among the existing 5 scoring functions, as
expected before in their descriptions, bp achieves the best results. Among all 9
scoring functions, bps function obtains the best results. Notice that bps obtains
the best mean RMSD in 14 out of 39 proteins and the second best in 12 proteins.
The second best scoring function among all 9 scoring functions is bpm with the
best performance in 10 and the second best performance in 9 proteins.

Since bp, bpm, and bps have no flat region for the undesired dij values,
they do not loose search direction and essentially perform better than other
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Table 1. Top: comparison of mean RMSD values obtained by existing and proposed
scoring functions; Bottom: the numbers of proteins for which scoring functions obtained
mean RMSD values ≤ various threshold levels. The emboldened numbers are the best
ones, while the underlined ones are the second-best ones among the versions.

Type Protein Length sw bp mlp ss cf ssm sss bpm bps
α 5AON 48 4.12 2.91 3.97 4.06 3.56 2.79 3.37 2.32 4.23

5B1A 58 8.66 7.88 10.04 9.03 9.63 7.57 7.85 6.51 6.52
1SXD 91 11.13 8.66 8.81 8.13 8.55 10.98 10.47 8.42 7.76
5B1N 59 5.14 5.41 4.31 4.21 4.51 4.38 4.33 4.41 3.76
5COS 56 3.56 4.26 4.42 3.26 3.92 3.73 4.07 3.00 4.03
5E5Y 61 10.15 9.24 8.04 9.03 9.83 8.21 8.45 8.80 8.10
5FVK 82 5.40 5.26 5.27 5.75 5.96 6.61 8.24 6.09 3.47
5EMX 54 5.94 6.08 5.08 6.07 5.03 5.65 6.03 4.67 5.37
5TDY 42 7.18 8.61 6.81 8.61 9.92 7.71 6.94 7.44 6.34
5HE9 56 6.34 6.44 6.39 6.58 6.29 5.98 6.19 6.06 6.68
2O4T 90 9.38 7.83 10.11 9.50 7.87 9.25 9.11 9.41 9.07
2O42 138 20.67 26.95 13.59 13.92 13.68 15.42 13.89 11.51 13.52
5B5I 67 9.5 10.08 9.22 9.37 8.91 10.18 8.40 9.48 9.63
5DIC 115 10.25 7.19 7.84 9.97 8.41 6.80 9.94 9.18 9.47
5CKL 181 17.83 16.41 16.29 17.73 15.67 15.68 18.57 12.83 14.63

β 1R75 110 9.69 8.09 10.86 11.56 10.09 8.49 7.49 9.70 7.57
1OK0 74 9.56 9.62 7.23 6.67 7.72 7.99 9.08 6.7 6.43
2AXW 134 13.02 13.49 14.94 15.83 11.79 14.20 16.40 12.80 12.22
2BT9 90 8.74 8.83 9.75 10.02 7.92 8.18 8.11 6.23 6.22
2CHH 113 19.34 15.33 21.82 21.33 18.75 17.00 20.59 13.74 14.42
2V33 91 9.58 7.28 13.76 9.34 8.59 10.59 11.82 8.02 6.54
5AEJ 113 17.32 14.22 18.15 14.26 15.54 14.57 14.43 14.36 14.09
5AOT 102 17.68 17.46 19.02 15.16 17.15 17.26 18.35 17.2 17.25
5EZU 67 9.61 7.58 9.46 7.48 8.57 6.65 7.93 7.21 7.48
5FUI 124 12.32 9.08 14.25 13.94 11.89 12.07 14.48 10.13 11.33
5HDW 131 13.35 11.19 13.61 13.05 11.52 11.89 13.21 11.19 10.47
7C28 58 7.74 8.04 8.66 8.20 8.19 6.96 6.72 6.70 6.55
6WES 158 23.18 21.15 22.13 21.72 21.73 21.83 23.80 22.83 22.01

α/β 1CRN 46 5.1 4.47 5.42 4.53 5.03 5.87 4.99 5.08 5.15
1CF7 82 8.40 7.85 8.37 5.51 5.41 4.6 7.38 8.48 4.30
1IS7 84 8.70 7.32 6.85 8.37 8.30 6.5 8.10 8.56 7.43
1KA8 100 12.10 11.97 11.86 10.77 11.31 10.49 11.38 8.00 8.1
1MC2 122 10.46 10.49 11.01 12.33 12.05 12.19 10.01 8.69 9.05
1T1J 125 9.91 7.54 9.84 7.52 8.13 7.83 6.23 6.15 5.74
1Y71 112 8.47 9.68 11.76 9.10 13.54 9.49 10.98 7.11 7.08
2BSE 107 14.31 10.1 14.63 11.04 11.78 11.64 9.96 9.57 9.97
3BJO 100 10.30 9.86 7.53 12.42 9.92 11.47 10.47 8.78 8.72
3CHB 103 12.47 9.06 16.49 12.85 10.61 10.58 11.93 10.43 10.58
6CP8 163 13.67 11.61 13.81 11.84 12.21 12.22 12.28 12.69 11.18
Average RMSD 10.78 9.96 10.79 10.26 10.01 9.84 10.36 9.13 8.78

mean RMSD ≤ 6Å 6 5 6 6 5 7 4 5 8
mean RMSD ≤ 9Å 14 20 16 15 19 19 18 23 23

mean RMSD ≤ 12Å 26 32 26 27 30 29 29 32 32

functions. Moreover, bps is steeper than bpm which is steeper than bp for large
dij values. Arguably, greater slopes essentially push the search more towards the
minimum regions of the functions. Nevertheless, ssm performs better than ss but
sss performs worse than ss. The reason is sss is more flat than ss which is more
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flat than ssm for large dij values. The more flat the function, the more loss of
direction for the search. These are the explanations behind the performances.

To determine the statistical significance of the performance differences of
the scoring functions at 95% confidence level, we perform Friedman test and
get 5.78 × 10−11 as the p value. Then, we perform Nemenyi test and show the
p values in Table 2. Notice that existing functions sw and bp are significantly
different but all other pairs are not significantly different from each other. On the
other hand, the proposed functions are signficantly different from one another.
Among other pairs, bps is significantly different from all other while bpm is not
significantly different from cf. Both sss and ssm show mixed performance.
Table 2. Nemenyi test results for the scoring functions where p ≥ 0.05 are emboldened

bp mlp ss cf ssm sss bpm bps
sw 0.04 0.90 0.62 0.11 0.01 0.53 0.00 0.00
bp 0.20 0.90 0.90 0.09 0.01 0.04 0.04
mlp 0.90 0.39 0.03 0.01 0.00 0.00
ss 0.90 0.09 0.90 0.02 0.00
cf 0.09 0.01 0.22 0.02
ssm 0.01 0.03 0.04
sss 0.02 0.00
bpm 0.00

Among the 9 contact based scoring functions studied, since the bps function
performs the best in RMSD values, we provide its further analysis.

Fig. 4 shows the correlations between the bps scores and the RMSD values
of the conformations generated during search for three proteins 5FVK, 2V33, and
1T1J. The Pearson correlation coefficients for these three proteins are 0.647,
0.454, and 0.661 respectively. These results give the evidence that improving the
bps scores lead us to better conformations in terms of the RMSD values.

5FVK α type 2V33 β type 1T1J α/β type

Fig. 4. Scatter plots of bps contact based scores (x-axis) vs RMSD values (y-axis)

Fig. 5 depicts the mean RMSD values of the intial and final conformations
obtained for all proteins by using the bps function during search. Clearly, the
bps function, improves the quality of the conformations.

Fig. 6 shows samples of the initial and the final conformations obtained for
three proteins when the bps function is used in search.

4.3 Comparison with Existing Methods

We finalize the bps function along with our search framework as our final al-
gorithm named Contact Guided PSP Search (CGPSPS). We then compare its
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Fig. 5. Deviation in mean RMSD values of the initial conformations and the final
conformations returned by the search when using the bps scoring function

5FVK Type α Length 82 2V33 Type β Length 91 1T1J Type α/β Length 125

RMSD Init 15.188 Final 3.377 RMSD Init 18.995 Final 3.602 RMSD Init 14.064 Final 4.982

Fig. 6. Sample final conformations (magenta) obtained by scoring function bps from
initial ones (cyan) w.r.t. native ones (green)

performance with CGLFOLD [11] the most relevant state-of-the-art algorithm
for PSP. We choose CGLFOLD becuase it uses a similar type of contact map
based scoring function like ours. Also, CGLFOLD uses loop sampling and makes
change to the angles in the loop residues; which is quite similar to ours.

We run both CGPSPS and CGLFOLD 5 times on each protein. Each run
explores 160000 conformations before termination. This is the same termination
criterion used in evaluation of CGLFOLD [11]. We take the mean RMSD and
Global Distance Test (GDT) scores over the 5 runs. Note that the smaller the
RMSD value, the better the performance, while the larger the GDT score, the
better the performance. Also, note GDT scores are in a 0-1 scale.

Table 3 depicts that in terms of RMSD values, CGPSPS outperforms CGLFold
in 31 out 39 proteins. CGLFold along with its contact based scoring function,
also uses rosetta energy function. However, CGPSPS using only the contact
based scoring function outperforms it. Table 3 also shows that in terms of mean
GDT values, in 22 out of 39 proteins, CGPSPS performs better than CGLFold.
Considering protein types, CGPSPS is better than CGLFold in 9 in RMSD val-
ues and 4 in GDT values, 12 in RMSD values and 9 in GDT values, and 10
in RMSD value and 9 in GDT values in 11 α/β, 15 α and 13 β type proteins
respectively. CGPSPS obtains the best performance both in RMSD and GDT



10 Zaman et al.

Table 3. Mean RMSD and GDT values obtained by our algorithm and state-of-the-art
CGLFOLD algorithm. The emboldened numbers are the best ones while the underlined
ones are the very close second best ones.

Type Protein Length Mean RMSD Mean GDT
CGPSPS CGLFOLD CGPSPS CGLFOLD

α 5AON 48 4.23 6.41 0.63 0.54
5B1A 58 6.52 17.14 0.49 0.35
1SXD 91 7.76 9.06 0.44 0.40
5B1N 59 3.76 4.43 0.6 0.60
5COS 56 4.03 3.13 0.60 0.72
5E5Y 61 8.10 6.03 0.39 0.41
5FVK 82 3.47 3.57 0.59 0.72
5EMX 54 5.37 5.54 0.56 0.64
5TDY 42 6.34 10 0.50 0.35
5HE9 56 6.68 8.25 0.54 0.59
2O4T 90 9.07 10.68 0.39 0.24
2O42 138 13.52 13.62 0.4 0.27
5B5I 67 9.63 9.86 0.45 0.34
5DIC 115 9.47 3.33 0.44 0.38
5CKL 181 14.63 14.74 0.3 0.19

β 1R75 110 7.57 13.08 0.39 0.18
1OK0 74 6.43 7.85 0.51 0.38
2AXW 134 12.22 15.47 0.25 0.19
2BT9 90 6.22 6.57 0.48 0.47
2CHH 113 14.42 8.57 0.24 0.35
2V33 91 6.54 7.38 0.49 0.36
5AEJ 113 14.09 17.07 0.27 0.23
5AOT 102 17.25 12.23 0.31 0.31
5EZU 67 7.48 7.53 0.41 0.45
5FUI 124 11.33 11.38 0.30 0.23
5HDW 131 10.47 12.01 0.26 0.26
7C28 58 6.55 9.26 0.45 0.29
6WES 158 22.01 19.43 0.12 0.12

α/β 1CRN 46 5.15 4.84 0.60 0.65
1CF7 82 4.3 4.60 0.50 0.60
1IS7 84 7.43 7.50 0.39 0.51
1KA8 100 8.1 8.72 0.29 0.40
1MC2 122 9.05 10.29 0.39 0.47
1T1J 125 5.74 6.47 0.48 0.47
1Y71 112 7.08 7.78 0.42 0.42
2BSE 107 9.97 10.26 0.30 0.34
3BJO 100 8.72 9.02 0.40 0.33
3CHB 103 10.58 8.96 0.28 0.35
6CP8 163 11.18 13.52 0.20 0.15

Mean over all proteins 8.78 9.45 0.41 0.40

values in 4, 9 and 9 proteins, respectively, in total 22 out of 39 proteins. At
the bottom of Table 3, we observe that about 0.77Å average RMSD and 0.01
average GDT values improvement than CGLFOLD. We perform the Wilcoxon
signed rank test with 95% confidence level and found the difference in GDT is
not significant with p value 0.44 but is significant in RMSD with p value 0.02.
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Table 4 shows the number of proteins in which two algorithms obtain mean
RMSD values less than or equal to and mean GDT values greater than certain
threshold values. In most of the protein types, CGPSPS outperforms CGLFold.

Table 4. Numbers of proteins with mean RMSD values ≤ various threshold values.

Algorithm mean RMSD ≤ 6Å mean RMSD ≤ 9Å mean RMSD ≤ 12Å
Name α β α/β all α β α/β all α β α/β all

CGPSPS 5 0 3 8 10 6 7 23 13 8 11 32
CGLFOLD 5 0 2 7 8 5 7 20 11 7 10 28

Our RMSD 3.377 GDT 0.613 Our RMSD 3.602 GDT 0.6036 Our RMSD 4.982 GDT 0.5803

CGLFOLD RMSD 4.576 GDT 0.588 CGLFOLD RMSD 6.481 GDT 0.446 CGLFOLD RMSD 7.862 GDT 0.4146

Fig. 7. Sample best conformations obtained by CGPSPS (cyan) and CGLFOLD (ma-
genta) w.r.t. native conformations (green)

5 Conclusions
Scoring functions are crucial in protein structure prediction. Contacts between
residues in given proteins are predicted by machine learning algorithms. Search
algorithms then design scoring functions using the predicted contacts and com-
pare conformations generated during search using the scoring functions. There
exists a number of contact based scoring functions but they have not been com-
pared within the same search framework on the same set of benchmark proteins.
We evaluate five existing and four proposed contact based scoring functions. One
of our proposed scoring function along with our search framework performs the
best and significantly outperforms a similar state-of-the-art PSP search method
in average root mean square distance and global distance test scores.
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