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Gene based message passing for drug repurposing

Yuxing Wang,1 Zhiyang Li,1 Jiahua Rao,1 Yuedong Yang,1,* and Zhiming Dai1,2,*
SUMMARY

The medicinal effect of a drug acts through a series of genes, and the pathological mechanism of a disease
is also related to geneswith certain biological functions. However, the complex information betweendrug
or disease and a series of genes is neglected by traditional message passing methods. In this study, we
proposed a new framework using two different strategies for gene-drug/disease and drug-disease net-
works, respectively. We employ long short-term memory (LSTM) network to extract the flow of message
from series of genes (gene path) to drug/disease. Incorporating the resulting information of gene paths
into drug-disease network, we utilize graph convolutional network (GCN) to predict drug-disease associ-
ations. Experimental results showed that our method GeneDR (gene-based drug repurposing) makes bet-
ter use of the information in gene paths, and performs better in predicting drug-disease associations.

INTRODUCTION

Drug discovery is time-consuming, costly, and laborious. Discovering a new drug normally takes 13–15 years and costs more than a billion

dollars on average fromdevelopment to clinical use.1 Computationalmethods to identify drug-disease associations have attracted increasing

attention in the pharmaceutical industry. In silico drug repurposing can identify new indications for existing approved drugs and suggest drug

candidates for wet lab validation. Drug repurposing can narrowdown the search space for the existing drugs and is thus an efficient and prom-

ising strategy for traditional drug discovery and development.

As deep learning developed rapidly, neural networks have been applied to drug repurposing, which is to predict the relation between drug

anddisease. Initially, featurebasedmethodswerewidely used, which focus on feature extractionby combiningmultiple biological data related

to drugor disease, such as DeepDR.2 These data can be constructed as a complex network. Feature extractionmethods generally translate the

data to vector representations, whereas the topology of network is usually neglected. Graph neural network (GNN) is frequently applied to

predict drug-disease relation over recent years, in which a drug or one disease is modeled as a node. However, the semantic information be-

tween drugs and diseases is rather complicated, and it cannot be entirely represented by a simple two-layer heterogeneous network. Some

previous studies incorporated gene information into drug-disease network and applied graph convolutional network (GCN)-based model to

performdrug-disease link predictionwithmoderate success. For instance, Yu et al.3 andCoskun et al.4 improvedGCN-baseddrug-disease link

prediction by incorporating drug-gene and disease-gene relations to calculate embeddings for drugs and diseases. Li et al.5 andMeng et al.6

introduced the similarity information to enhance link prediction. Long et al.7 proposed a Pre-Training Graph Neural Networks based frame-

work named PT-GNN to integrate gene relation data for link prediction in biomedical networks. PT-GNN uses a GCN-based encoder to

effectively refine node features by modeling direct dependencies among nodes in the network. Xuan et al.8 proposed GFPred, a method

based on a graph convolutional auto-encoder and a fully connected auto-encoder with an attentionmechanism.GFPred uses a graph convolu-

tional auto-encoder module to calculate topology representations by integrating gene nodes into drug-disease heterogeneous networks.

These GCN-based models adopt the message-passing mechanism to learn node representations that capture both node features and

graph topology information. The representation of a node is updated by its direct neighbors in one iteration. As a result, a k-layers GCN

model would capture the information of the local graph containing k-hop neighbors of the central nodes. The pharmacological mechanism

of a drug or a disease involves a series of gene nodes, which form as gene paths in a heterogeneous graph. The biological functions of the

gene path are critical for drug-disease link prediction and also help to interpret prediction results. GCN-based models use multiple layers to

aggregate distant node information. However, too many layers may result in limited distinguished information among nodes (i.e., over-

smoothing). Some recent studies have made efforts to capture path information. Flam-Shepherd et al.9 proposed a graph neural nets using

path embedding to learn local substructure of the graph. They concatenated nodes and edges presentations in a path as path embedding.

Kawichai et al.10 constructed a network based on disease, drug and gene ontology information, and designed meta-path to calculate rep-

resentations of drug-disease pairs. Zhou et al.11 proposed a meta-path-based computational method called NEDD to predict novel associ-

ations between drugs and diseases from heterogeneous information, using meta paths of different lengths to explicitly capture direct rela-

tionships or high order proximity. Instead of path, subgraph extraction is also a strategy to focus on local topology of nodes. CoSMIG12

extracted subgraphs by employing random walk, and improved message passing method by adding edges into nodes updating.
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Figure 1. The architecture of GeneDR

LSTM-based message passing is performed on extracted gene paths to update the connected drugs and diseases. Subsequently, the updated embeddings are

passed on drug-disease bigraph in which GCN-based message passing is used to perform the drug-disease link prediction.
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Besides, hypergraph construction is another strategy to capture high-order information. Feng et al.13 transformed the graph into hyper-

graph by designing hyperedge connecting multiple nodes. This structure allows message passing between node sets connected by hyper-

edges even though these nodes are not directly connected in the graph. Pang et al.14 propose a drug-disease association prediction

method to extract high-order drug-diseases association information on hypergraph using hypergraph neural network (HGNN). As

mentioned above, the pharmacological mechanism of a drug involves series of genes, since the metabolism process of drug is performed

by combining with proteins which are gene products. The combined proteins subsequently effect their related proteins through biological

processes. In our heterogeneous graph, we simplified them as the edge between gene nodes and drug nodes. The pharmacological

mechanism presents as several paths from a drug node to series gene nodes. The same goes for pathological mechanism of disease.

Therefore, gene paths represent biological functions of their connected drug or disease, which contributes a lot to drug-disease link pre-

diction. Although some previous works have taken topology information or paths into node updating, it becomes problematic for longer

path due to over-smoothing.

To tackle this, we proposed ac framework, GeneDR (Gene-based Drug Repurposing), to performmessage passing along these biological

functional series of genes to drug or disease. In our framework, as shown in Figure 1, the gene paths to drug/disease nodes are performed by

Long Short-TermMemory (LSTM)-based message passing. LSTM is a special kind of recurrent neural network capable of handling long-term

dependencies. Subsequently, the resulting information of gene paths is incorporated into drug-disease network, and GCN based message

passing is used to predict drug-disease links. Our framework allows drug/disease nodes to aggregate information along gene paths. Exper-

iment results showed that our method performed better in drug-disease link prediction.

RESULTS

Experiment settings

We performed 5-cross validation on two DD datasets, the statistics of which are shown in Table 1. Drug-disease pairs in drug-disease dataset

were regarded as positive samples while drug-disease pairs not in drug-disease dataset were randomly chosen as negative samples. The pro-

portion of positive and negative samples is 1:1. The maximal length of gene path was set as 4, and we extracted 100 paths at most for each

drug/disease node during one iteration. The hidden size in LSTM and GCNwas set as 128, and layer number in GCNwas 3. The learning rate

was 0.001. All the codes and data are available at github (https://github.com/Wang-yxing/GeneDR).

Comparison results

We compared our proposed GeneDR with several state-of-the-art methods for link prediction on two datasets. Among them, LAGCN

and NIMCGCN are GCN-based methods, which integrate multiple additional data (e.g., entity similarity network) as the node

feature. HINGRL utilizes drug structure and disease semantic information as additional features of drug and disease nodes, and
2 iScience 26, 107663, September 15, 2023
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Table 1. The statistics of datasets

Dataset Drug Disease Dr-Di Gene Dr-Gene Di-Gene Gene-Gene

Dataset 1 268 598 18,416 4,716 65,732 53,474 216,127

Dataset 2 894 454 2,704 31,627 21,634 296,657 1,586,352

Dr, Drug, Di, Disease.

The left part is the original data from Dataset 1 and 2. The right part is corresponded gene data that we collected from PharmKG and CTD.
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calculates the topology feature after performing random walk on the drug-protein-disease heterogeneous graph. DRWBNCF focus

on integrating neighborhood interaction of drugs and diseases. It uses localized information in similarity network and drug-disease

association network. REDDA collected 5 types of entity and 9 types of networks to construct huge heterogeneous network. It de-

signed topological subnet embedding block to learn node representation. These methods utilize different default data in addition

to link prediction data. To optimize the performance for these methods, we used their default data in our experiment. Note that the

comparison was based on the same drug-disease association. As shown in the Table 2, GeneDR performed the best. The result in-

dicates that GeneDR makes better use of gene information.

Ablation study

We also conducted ablation studies to investigate factors that influence our performance as shown in Table 3. We designed two

variants of GeneDR: GeneDR without GMP (w/o GMP) performs message passing as in Figure 2B; GeneDR without LSTM

(w/o LSTM) uses GCN to aggregate gene message along the path instead of LSTM. GeneDR w/o LSTM performed better

than GeneDR w/o GMP, suggesting that separating message passing of genes to drugs or diseases from message passing

between drugs and diseases contributes to drug-disease link prediction. The two variants were inferior to GeneDR, indicating

that LSTM-based message passing makes better use of gene path information probably by simulating flow of message along the

gene path.

Case study

To demonstrate the practical ability of GeneDR for identifying drug-disease interactions, we conducted case studies by literature

evidences (see Table 4 for some examples, the full list of predicted drug-disease interactions and the related gene paths was pro-

vided in GitHub). Interestingly, we found some predicted drug-disease links represent no therapy but side effect. For instance, pre-

diction results showed that asthma is highly related to indomethacin, diclofenac, and nicotine, which were reported to lead to

asthma.15–17 These results suggest that our framework can predict the related drugs and diseases, but cannot distinguish between

the therapeutic relation and side effect relation, which motivate us to take the up- or downregulation between genes in gene path

into consideration in further work.
Table 2. Comparison results for different methods

Method AUPR AUC F1_score Recall

Dataset 1

NIMCGCN5 0.668 0.181 0.26 0.197

HINGRL18 0.918 0.241 0.283 0.248

LAGCN3 0.809 0.247 0.223 0.356

DRWBNCF6 0.79 0.352 0.416 0.347

REDDA19 0.922 0.444 0.495 0.451

GeneDR 0.935 0.464 0.501 0.476

Dataset 2

NIMCGCN5 0.675 0.238 0.295 0.43

HINGRL18 0.809 0.401 0.439 0.529

LAGCN3 0.848 0.521 0.506 0.564

DRWBNCF6 0.848 0.477 0.490 0.555

REDDA19 0.869 0.548 0.528 0.565

GeneDR 0.883 0.579 0.554 0.583

iScience 26, 107663, September 15, 2023 3



Table 3. Ablation experiment results

Method AUPR AUC F1_score Recall

GeneDR w/o GMPa 0.8431 0.472 0.480 0.552

GeneDR w/o LSTMb 0.856 0.503 0.505 0.562

GeneDR 0.883 0.579 0.554 0.583

aLink prediction on combination of DD dataset and DGD dataset without the gene path extraction (GPE).
bGene path message passing on GCN instead of LSTM.
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Conclusion

We propose a new framework to perform message passing along the gene paths to their connected drugs or diseases. Thus, the gene in-

formation of paths is aggregated to update the embeddings of the drugs and diseases, which is demonstrated to contribute to the link pre-

diction between drug and disease. Furthermore, we believe that our identified gene paths of the drug and disease will be useful to explain the

predicted drug-disease link.

Limitations of the study

As mentioned in Results, we did not introduce relation type between genes in gene paths. Relation types, such as upregulation and

downregulation, are very important information when distinguishing the specific relation between drug and disease. For example, a

disease and a drug are probably related when they are associated to same genes, but the up- or downregulations between them and

genes determine whether the disease is treated by the drug or is a side effect of the drug. In our project, we only focus on whether

there is relation between drug and disease instead of the type of the relation. It is worth considering gene relation type in our

future work.
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Table 4. Same examples of the drug-disease prediction results and literature evidences

Drug Disease Evidence

Carbamazepine Chorea Genel et al.20; Harel et al.21

Furosemide Asthma Pendino et al.22; Inokuchi et al.23

Docetaxel Colorectal Neoplasms O’Brien et al.24; Guo et al.25

Risperidone Epilepsy Holzhausen et al.26;Mula et al.27; Penagarikano

et al.28

Olanzapine Epilepsy Qiu et al.29

Methotrexate Myocarditis Campochiaro et al.30; Li et al.31

Indomethacin Peritonitis Peng et al.32

Tretinoin Urinary Bladder Neoplasms Laaksovirta et al.33; Polat et al.34
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METHOD DETAILS

Data overview and data preprocessing

Drug-disease pair

To be consistent with drug-disease association dataset used by other methods, we chose two drug-disease datasets. Dataset 13 contains 268

drugs, 598 diseases and 18416 relations between diseases and drugs. Dataset 219 contains 894 drugs, 454 diseases and 2704 relations be-

tween diseases and drugs.

Gene-gene pair

To extract gene path, gene-gene relations are collected from our constructed database PharmKG,35 which integrates multi-omics data with

more than 500,000 relations between genes, drugs and diseases. Restricted from gene path length, the genes that are multi-hops away from

any disease or drug node are filtered out in this work.

Disease/drug-gene pair

Disease-gene and drug-gene pairs are also obtained from PharmKG. Note that we only keep the targeted drugs and diseases in Dataset 1 or

2. Besides, the drug and disease that not in PharmKG is completed by CTD,36 which also provides drug or disease related genes collected

from existed experiments and auto literature curation. We only keep the pairs from experiments to assure the data quality. The detailed sta-

tistics is shown in Table 1. The left part is drug-disease datasets (DDdatasets), and right part is drug-gene-disease datasets (DGDdatasets) we

constructed according the diseases and drugs in DD datasets.
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Initial node embedding

The initial node embeddings are obtained by training TransE37 on DGD datasets separately. TransE is a translation based model, which rep-

resents relations as translations in the embedding space. The basic idea of TransE is to learn entity and relation embeddings in triple with the

condition that head entity embedding plus relation embedding approximately equals to tail embedding. Therefore, it can integrate global

information for every node in DGD dataset.

Gene path

Gene paths for each drug and disease are extracted fromDGDdataset by RandomWalk.38 In each path, the start node is drug or disease and

subsequent nodes are genes. The length of paths is set as 4, and we extracted 100 paths at most for each drug/disease.
Problem definition

In a graph G = ðV;EÞ, V is the set of nodes containing gene Vg, disease Vd and drug Vr , while E is the set of edges among nodes. P denotes

the entire set of gene paths, and Pi denotes set of gene paths started with a disease or drug node i followed by a series of gene nodes, where

Pi3P and i˛ fVd ;Vrg.
Traditional message passing

In traditional message passing method, node embedding is updated by the directly connected neighbors during each iteration:

mðlÞ
i = aggregateðlÞ

�n
hðl� 1Þ
j : j ˛ N i

o�
; (Equation 1)
hðlÞ
i = update

�n
hðl� 1Þ
i ;mðlÞ

i

o�
; (Equation 2)

where h
ðlÞ
i is the embedding of the node i in l-th layer,N i is the direct neighbors of node i, hj is the embedding of the direct neighbors.m

ðlÞ
i is

the message aggregated from the neighbors, which is used to update the node embedding.

Figures 2A and 2B shows node embedding in traditional message passing under two circumstances. Figure 2A illustrates the embedding

of a drug/disease node is updated by the surrounded drug/disease nodes during alternate iterations in a drug-disease bigraph. Take the

central disease node in Figure 2A as example, the information of the surrounded drug nodes is aggregated into the central disease node

embedding in the first iteration, and in the next iteration, message passing will spread out to the further nodes. The aggregated nodes

are homogeneous at each iteration in the bigraph, which is in accord with the mechanism of traditional message passing method. However,

the message passing process becomes problematic when gene nodes are added into the graph. As shown in Figure 2B, the central disease

node is surrounded by genes and drugs. When using traditional message passing methods, the messages from gene nodes and drug nodes

are aggregated together at one iteration. Besides, the gene nodes in a path are separatedby several iterations withoutmaking full use of their

information.
Gene based path message passing

Taken gene path into consideration, we revised the message passing method (Figure 2C). Our proposed message passing framework con-

tains two parts, one is gene basedmessage passing which integrated node information along gene paths, the other is drug-diseasemessage

passing, which is the same as Figure 2A. Gene messages are aggregated as below:

mðlÞ
i = SPi akLSTM

ðlÞ
�n

pk ;H
ðl� 1Þ : pk ˛ Pi

o�
; (Equation 3)
hðlÞ
i = update

�n
hðl� 1Þ
i ;mðlÞ

i

o�
; (Equation 4)

wherem
ðlÞ
i is the message aggregated from the set of the paths Pi connected with node i, and ak is the trainable weight of the path pk among

the paths in Pi , pk ˛Pi .

Hðl� 1Þ is the node embeddingmatrix from last layer.We employ LSTM to performmessage passing along the path. The hidden state of the

terminal node in the path is regarded as the message vector aggregating all information of this path. In the path from genes to disease or

drug, the hidden state of the drug or disease node can capture the information of all genes in the path. Since each drug or disease is generally

connected with more than one path, we introduce path weight acted as attention mechanism to integrate the connected paths and to distin-

guish their respective importance.
The architecture of GeneDR

As shown in Algorithm 1 and Figure 1, the initial node embeddings, HTransE , are obtained by training TransE on DGD dataset, which can inte-

grate global information for every node. Gene paths for each drug and disease are also extracted from DGD dataset by RandomWalk. Gene
8 iScience 26, 107663, September 15, 2023
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based message passing (GMP) is then performed along paths to the connected drug and disease nodes through LSTM. The resulting

embeddings, HGMP , are used to initialize drug and disease nodes in the drug-disease bigraph.
Algorithm 1. Overview of GeneDR

Input: DD dataset G1 = ðV1;E1Þ, V1 = fVd ;Vrg;
DGD dataset G2 = ðV2;E2Þ, V2 = fVd ;Vr ;Vgg.

Output: Drug-disease link prediction value vðr;dÞ between drug r ˛Vr and disease d˛Vd . Calculate the node embedding HTransE from G2 by using TransE.

Extract gene paths P for each node in V1 by performing random walk on G2.

for each epoch do

for round = 2 do

HGPEMP)GMPðHTransE;PÞ with Equation 4.

HGCN)GCNðHGPEMP;G1Þ with Equation 2.

end

for each link ðr;dÞ do
vðr;dÞ)predictorðH2

GCNÞ

end

end
The information in drug-disease bigraph is aggregated by GCN-based message passing and is output as H1
GCN. To better use the infor-

mation, i.e., gene path and drug-disease bigraph, HGCN is back to LSTM-based layer to update around the workflow again. Eventually, after

two round, drug and disease embeddings from final HGCN are concatenated and input into a fully connected layer to output the final link

prediction.
QUANTIFICATION AND STATISTICAL ANALYSIS

We performed 5-cross validation on two DD datasets. Drug-disease pairs in drug-disease dataset were regarded as positive samples while

drug-disease pairs not in drug-disease dataset were randomly chosen as negative samples. The proportion of positive and negative samples

is 1:1. We assessed model performance by using common metrics including: AUPR (area under the precision-recall curve), AUC (area under

the curve) score, F1 score, Recall.
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