
Food Volume Estimation by Integrating 3D Image Projection and
Manual Wire Mesh Transformations

Author
Smith, Shamus P, Adam, Marc TP, Manning, Grace, Burrows, Tracy, Collins, Clare, Rollo, Megan
E

Published
2022

Journal Title
IEEE Access

Version
Version of Record (VoR)

DOI

10.1109/ACCESS.2022.3171584

Rights statement
© The Authors 2022. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

Downloaded from
http://hdl.handle.net/10072/419440

Griffith Research Online
https://research-repository.griffith.edu.au

http://dx.doi.org/10.1109/ACCESS.2022.3171584
http://hdl.handle.net/10072/419440
https://research-repository.griffith.edu.au


Received March 10, 2022, accepted April 22, 2022, date of publication May 2, 2022, date of current version May 10, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3171584

Food Volume Estimation by Integrating
3D Image Projection and Manual
Wire Mesh Transformations
SHAMUS P. SMITH 1, (Senior Member, IEEE), MARC T. P. ADAM 1, GRACE MANNING 2,
TRACY BURROWS2, CLARE COLLINS2, AND MEGAN E. ROLLO2
1School of Information and Physical Sciences, The University of Newcastle, Australia, Callaghan, NSW 2308, Australia
2Priority Research Centre for Physical Activity and Nutrition, School of Health Sciences, The University of Newcastle, Australia, Callaghan, NSW 2308, Australia

Corresponding author: Shamus P. Smith (shamus.smith@newcastle.edu.au)

This work was supported, in whole or in part, by the Bill & Melinda Gates Foundation OPP1171389. Under the grant conditions of the
Foundation, a Creative Commons Attribution 4.0 Generic License has already been assigned to the Author Accepted Manuscript version
that might arise from this submission.
This work involved human subjects in its research. Approval of all ethical and experimental procedures and protocols was granted by the
University of Newcastle Human Research Ethics Committee under Application No. HREC #H-2018-0271, and performed in line with the
National Statement on Ethical Conduct in Human Research, 2007.

ABSTRACT 2D images can be used to capture food intake data in nutrition studies. Estimates of food
volume from these images are required for nutrient analysis. Although 3D image capture is possible, it is
not commonplace. Additionally, nutrition studies often require multiple food images taken by non-expert
users, typically collected using mobile phones, due to their convenience. Current 2D image to 3D volume
approaches are restricted by the need for prescribed camera placement, image metadata analysis and/or
significant computational resources. A newmethod is presented combining 2D image capture and automated
3D scene projection with manual placement and resizing of wire mesh objects. 2D images, with a reference
object, are taken on low specification mobile phones. 3D scene projection is calculated by twinning a cuboid
in 3D space to the reference object in the 2D image. A manually selected 3D wire mesh object is then
positioned over the target food item and manually transformed to improve accuracy. The virtual wire mesh
object is then projected into the 3D scene and the volume of the target food item calculated. The whole
process is computationally light and runs in real-time as an app on a standard Apple iPad. Based on a user
study with 60 participants, experimental evaluations of volume estimates over regular shape and ground truth
food items demonstrate that this approach provides acceptable accuracy. We demonstrate that the accuracy
of estimates can be increased by combining multiple independent estimates.

INDEX TERMS Food volume estimation, 3D image projection, food analysis.

I. INTRODUCTION
Photographs, typically as 2D digital images, are a common
way to collect information on dietary intake [6], [9]. For
studies in natural settings, participants often take photographs
before, during or after meals. These photographs represent
food consumption and are then analysed to classify eat-
ing behaviour by, for example, food types and nutritional
intake [1].

However, most nutrient analysis of food requires the
weight of food items, in addition to food item identification,
in order to determine relevant nutritional metrics [14].Weight

The associate editor coordinating the review of this manuscript and

approving it for publication was Shovan Barma .

is determined by food density and volume. Food density is
often determined by food identification and application of
standard food density tables which are only available for
some foods [15]. However, volume calculations from pho-
tographs, as 2D images, is non-trivial without 3D depth infor-
mation [6]. 3D imaging from common image sources, i.e.
mobile phones with multiple front facing cameras to obtain
stereo images, is not yet common place or affordable [17].
Thus, there is ongoing research into developing methods to
generate accurate 3D volume estimates from 2D images [10].

To support food volume estimation, two main approaches
have been applied; with [14], [17] and without [18] reference
objects in images. Reference objects can be explicitly placed
before image capture, for example a card [17], piece of local
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currency or a standard sized object like a Rubik’s cube [14],
or extracted from identified image elements, for example
plates or serving vessels of known dimensions [2]. Reference
objects provide 3D cues to determine image depth, which is
needed to generate 3D volume estimates [6]. Alternatively
approaches without reference objects attempt to (i) iden-
tify image features, for example parallel elements, that can
be used to determine an image vanishing point or (ii) use
properties of the camera placement and environment knowl-
edge [18], [22], i.e. the camera becomes its own reference
object.

Two challenges with approaches using reference objects
are that they can be computationally expensive, for example
involving use of neural networks [14], [17] or requiremultiple
food images [6]. Another significant issue, for approaches
with and without reference objects, is the casual nature of the
2D image capture. In practical use, cameras are not typically
on tripods where orientation is known or positions accurately
captured. Recent work [22] proposed a hybrid approach with
mobile phones grounded on an image plane, i.e. a table,
and camera orientation data presented as machine readable
data in the image capture. However, this approach restricts
camera placement and in many environments where food
intake data would be collected, i.e. in rural locations in the
developing world, there may be no table or stable surface
to ground the camera during eating occasions. Also strict
camera placement requirements might be inconvenient for
the user or the user might just forget to have strict place-
ment for every image capture. Thus there is no way of
being 100% sure that an image was taken on an appropriate
surface.

In the approach presented here, a new method is presented
where only 2D images with no camera or image meta-data
is needed for the 3D food volume estimates. Through a
combination of automated and manual activities, the volume
of food items in 2D images can be generated in a process that
is computationally light and runs in real-time. This offers con-
siderable flexibility in its application with real world image
collection where precise camera view information cannot
be collected, for example when photographs are taken with
low specification cameras/mobile phones or by untrained
users under various lighting and photograph framing
conditions.

This paper has three main contributions:
1) A new semi-automated method combining 2D image

capture and automated 3D scene projection with man-
ual placement and resizing of wire mesh objects to
generate volume estimates of food items.

2) An evaluation of the method on representative food
item images, where individual volume estimates are
collected via a user study (n=60).

3) A demonstration of how combining pair and triple
food volume estimates can improve the accuracy of the
volume estimates depending on the regularity of the
food item shape.

II. BACKGROUND
Portion size estimation has a large and growing body of
research. Here, we overview a selection of particularly rel-
evant related works. Recent reviews in this area can be found
in [1], [5], [11], [12], [15], [21].

Approaches for single view image-based food portion
estimation typically involve the identification of reference
objects in the scene. Common approaches include (i) the
inclusion of the reference object [6], [17], for example a
fiducial, at image generation [7], (ii) use of prior knowledge
of objects in the scene, for example known bowl or plate
sizes [2], [7], or (iii) knowledge of the capture device, e.g.
the digital camera, and environment context [18], [22].

Fang et al. [7] use a fiducial marker to estimate the scale
and pose of objects in a scene and also provide estimates
of camera parameters. Their approach is based on the use
of pre-determined geometric models, namely cylinder and
prism models, to determine height and radius estimates. Prior
knowledge of the container shape is used as geometric con-
textual information. For example, the prism method utilises
the area of the plate in the image. They used their previously
determined criteria of 15% error or less [13] and found that
out of 19 food types, only 3 (lettuce, French dressing and
ketchup) where outside the 15% error range.

Beltran et al. [2] consider the use of configurable wire
mesh overlays on 2D images to estimate food portion sizes.
Eleven wire frames are provided including cuboid, cylinder,
sphere, wedge, ellipse, half spheres (bowl and dome), half
ellipse, section of sphere (cap), tunnel and irregular shape.
After placement, the user can customize each wire frame
to food portions using virtual pressure points to change the
wire frame’s shape. In order to generate reference points, the
diameter and depth of standard plates, bowls and glasses,
as present in the 2D images, were measured and provided to
the portion calculating algorithm.

Beltran et al. [2] also considered rater reliability of portion
estimates across 150 food images with results from two dieti-
tians and three engineers. They found that although dietitians
had high inter-rater reliability for volumes served (r=0.771),
this decreased with smaller portions, i.e. for portions left
after serving/eating (r=0.629). This was also the case for
the engineers but overall the engineers had better scores,
although they note this is likely due to familiarisation with the
approach. Individual food types were not defined but serving
containers were limited, noted as small bowl (n=48), large
bowl (n=42) and plate (n=56).

Puri et al. [18] present a system that given a set of three
images and a verbal description of food items performs object
recognition and 3D reconstruction to estimate food volumes.
3D models of the food items are constructed via a pairwise
classification framework. Camera pose estimation treats the
camera as the reference object. However, the image analysis
requires the use of a remote processing site with server-based
computer vision processing. Thus, not practical for real-time
use or where there is limited internet connectivity.
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TABLE 1. Summary of food volume estimation methods.

FIGURE 1. Simplified overview of VISIDA system.

Table 1 provides a summary of approaches to food volume
estimation, comparing key aspects of each approach. Our
proposed method is included for comparison.

III. PROPOSED METHOD
The work described here is part of a larger system which
aims to provide a platform for the collection of dietary intake
data, including images of food, the analysis of dietary intake
data and the interpretation of dietary intake data. A simplified
view of the Voice-Image-Sensor technologies for Individual
Dietary Assessment (VISIDA) system is shown in Fig. 1. The
basic process is that users collect images and voice record-
ings of food intake data for themselves and others in their
household (as required), before and after food consumption,
via a smartphone app. This data is uploaded into a content

management system (CMS), seen as Step 2 of Fig. 1, where
individual food items are identified andmatched to food com-
position databases (i.e. the food items are ‘‘tagged’’). These
tagged images are then queued for food volume estimation
and supporting this estimation is the approach reported in
this paper. The estimated food item volume is returned to the
CMS and contributes to the ongoing analysis of dietary intake
data. Here, we present a novel approach to the 3D volume
estimation component of this process.

An overview of our approach can be seen in Fig. 2.
In Fig. 2, the corners of a reference card on a captured
2D photograph are automatically identified (the blue dots in
image 1). A 3D cuboid (the blue rectangle in image 2) is
twinned to the reference object and the projection depth angle
into the 3D scene determined (the blue arrow in image 2).
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FIGURE 2. Overview of the food item volume estimation approach.

A user selected wire mesh (in this case, a sphere in image 3)
is then placed on a target food item. When the wire mesh
object is projected into the 3D scene (image 4) it needs to
be rescaled to cover the target food item (image 5). With the
3Dwire mesh at the correct 3D depth and scale, the volume of
the food item it covers can be generated based on the 3D wire
mesh shape.

Two examples of the volume estimation tool in use can be
seen in Fig. 3 and a breakdown of the manual and automated
elements of the approach is presented in Fig. 4. A food image
is provided to the tool, running on an Apple iPad, from the
CMS where the food item of interest has been tagged. The
CMS also provides initial estimations of the fiducial corner
tags with the food image. The identification of the fiducial
card’s corners are automatically determined using the EMGU
(v3.4.1) C# adaptation for OpenCV (v4.2.0). As image qual-
ity and lighting conditions can impact the automatic cor-
ner detections, a manual review of the corner matching is
needed (Step 2a in Fig. 4). If the corners are a poor match
(as indicated by the tool as an error distance from the known
size of the fiducial object), the user can adjust the corner
placement manually (Step 2b). As the dimensions of the real
fiducial object are known, an equivalent 3D virtual version
of the fiducial object is placed at the center of real fiducial
object, on the 2D image, and automatically rotated around X,
Y, and Z axis to optimise the corners of the virtual fiducial
corners to the real fiducial corners (see Algorithm 11). The
corner optimisation attempts to find a best-fit match in one
dimension at a time, i.e. starting by rotating in the X axis. The
rotation algorithm looks ahead in unit rotation increments to
determine the best solution at the current angle and will roll
back its current rotation if the solution is not improved. This
is repeated across the other dimensions, Y and Z. This whole
process is then repeated, with the X, Y and Z axis, until no

1This is simplified pseudo code for the 3D cuboid orientation optimisa-
tion. The full algorithm also includes a decrement step across the Euler angles
to avoid local maxima effects on each individual orientation axis.

FIGURE 3. Volume estimation tool example using a dome wire mesh (left)
and a box wire mesh (right). A rectangular reference object, a fiducial
card, is also included in each captured image.

better solutions are found and the mapping has stabilised.
Thus, the optimised position of the virtual fiducial is a map-
ping to the real fiducial card position and enables 3D image
depth projection in latter steps.

The user then picks a wiremesh object (sphere, dome, bowl
or box) that best matches the food item (step 4) and then
resizes and reshapes (X, Y, Z transformations) manually to
best match the shape of the food object (step 5). Using the
orientation of the virtual fiducial object, the wire mesh object
is projected, as a 3D object, into the food image scene (step 6
and see Algorithm 2). This often results in a change of scale
of the wire mesh object as it moved into the 3D scene. Thus
the user must resize it at this new 3D depth, so that it matches
the food item (repeating steps 5-7). When this is complete the
wire mesh object is at the projected depth of the food item and
its volume can be used to estimate the food item it has covered
(step 8 and see Algorithm 3).

To determine the accuracy of the approach, a user study
was conducted. The aim of this study was to evaluate the
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FIGURE 4. Summary of manual and automated elements of the volume estimation approach.

error rate of the new technique by comparing user trials to
ground truth measures of non-food and real food items. Also
the estimates provided by the users were used to determine
any benefits of having multiple independent estimates, for
example by allowing multiple tool users to asynchronously
estimate the volumes of the same food items.

IV. EVALUATION
A. PARTICIPANTS
Participants were recruited at the University of Newcastle,
Australia until 60 volunteers (22 female) completed a series
of volume estimation tasks. The participants (n=60) had a
mean age of 25.8 years (SD=7.1). All participants either
owned or regularly used a touch-based device (for exam-
ple iPhone, iPad or Samsung Galaxy Phone/Tablet). The
study was approved by the University of Newcastle Human
Research Ethics Committee (HREC #H-2018-0271).

B. HARDWARE
The approach was implemented as an iOS app and deployed
on a 9.7’ iPad. The iPad touch screen provided the interface
for the manual movement of on-screen objects, for example
the wire mesh objects. Standard two-finger pitch and zoom
gestures were used to size and scale the wire mesh objects.
The app also had a number of on-screen buttons to support
the different phases of the approach (see Fig. 3). The user can
also double tap the screen to hide/show the on-screen buttons
as needed.

C. VOLUME ESTIMATION TASK
Participants used the volume estimation app following steps
3-8 of the process flow in Fig. 4. The corner detection was
automated for all the examples in this study as we were
primarily interested in the manual processes, specifically the
selection, positioning and deformation of the wire mesh 3D
model in steps 4-7 and how this impacted the final volume

FIGURE 5. The five images used for the training trials (ground truth
volume in brackets, cm3).

accuracy. Participants completed 10 training and 16 test vol-
ume estimation trials where participants used the volume
estimation technique to determine the volume of regular
non-food objects and real food items in 2D images. During
each training trial, after a first attempt, the participants were
provided with verbal feedback on the correct volume of the
target object and allowed a second try. This allowed the
participants to practise with the iPad tool and gain experience
with using it on 2D images. The training objects were pre-
sented as progressively more complex objects, namely styro-
foam sphere, styrofoam bowl, styrofoam dome and two plas-
tic food containers, with the latter two trials requiring both
re-sizing and deformation of the virtual object (see Fig. 5).
Styrofoam objects were used as their ground truth volumes
were available.

After the training trials, 16 test trials were conducted with
no feedback given to the participants (see Fig. 6). Participants
could self-select the wire mesh shape to use from a choice of
sphere, dome, bowl and cube where each default wire mesh
was both resizable and deformable in all three dimensions
(X, Y and Z). The ground truth volumes of the target objects
was calculated by direct measurement, i.e. for the styro-
foam and plastic box items, or via water displacement [4],
[22] with a measuring jug measured as mL, for the food
items.

VOLUME 10, 2022 48371



S. P. Smith et al.: Food Volume Estimation by Integrating 3D Image Projection and Manual Wire Mesh Transformations

Algorithm 1 Twinning 3D Cuboid to Reference Object
Input:
(1) 2D screen positions of the fiducial card’s four corner tags
(2) Euler angles of 3D cuboid
(3) Increment value, set to 0.01
Output:
3D orientation of 3D cuboid twinned to the orientation of the 2D fiducial card in the image
Initialize:
(1) Boolean variables (currentOrientation[.x, .y, .z]) for increments across x, y and z Euler angles to false.
(2) Distance variables (currentDistance, previousDistance) between fiducial corners and 2D screen projection of 3D cuboid.

while currentOrientation[.x, .y, .z] = false do F Loop until all the Euler angles across x, y and z are stable
Increment currentOrientation.x
while [LOOP.x] currentDistance >= previousDistance do

increment currentOrientation.x F Find best x Euler angle
end while
if LOOP.x triggered then

currentOrientation.x = false F Still optimising the x Euler angle so need to loop again
else

currentOrientation.x = true F Best x Euler angle found for this orientation, ready to exit main loop
end if
Increment currentOrientation.y
while [LOOP.y] currentDistance >= previousDistance do

increment currentOrientation.y F Find best y Euler angle
end while
if LOOP.y triggered then

currentOrientation.y = false F Still optimising the y Euler angle so need to loop again
else

currentOrientation.y = true F Best y Euler angle found for this orientation, ready to exit main loop
end if
Increment currentOrientation.z
while [LOOP.z] currentDistance >= previousDistance do

increment currentOrientation.z F Find best z Euler angle
end while
if LOOP.z triggered then

currentOrientation.z = false F Still optimising the z Euler angle so need to loop again
else

currentOrientation.z = true F Best z Euler angle found for this orientation, ready to exit main loop
end if

end while

Copy final 3D cuboid Euler angles to wire mesh objects (Sphere, Dome, Bowl and Box) F Found the best orientation

D. PROCEDURE
Each session, of training and testing, had an average session
time of 16 minutes 43 seconds (SD=21 minutes 2 seconds),
and were held individually. Firstly, the research team col-
lected signed consent forms. Secondly, the participants were
given a short tutorial on the use of the new volume estimation
technique as implemented on the iPad. The participants then
completed the 26 volume estimation trials. Each trial had
a target object highlighted with a red or white dot (white
dots were used when the target food item was colored red
or orange). Only one volume estimate was completed during

each trial. Some images had multiple food objects and these
were duplicated across the trials with the red or white
dot indicating which object was the focus of the current
trial.

Finally, participants completed a demographic question-
naire on gender, age, university degree or discipline area they
were studying and use of touch-based devices. All partici-
pants received a $5 coffee voucher in appreciation of their
participation time. Participants on eligible university courses
were also given course credit as part of an assessment on
research awareness activities.
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Algorithm 2 Determine 3D Scene Projection of Food Item
Input:
(1) Twinned cuboid 3D corners
(2) 3D wire mesh placed over food item
Output:
(1) 3D wire mesh covering food item projected into 3D scene based on plane of twinned 3D cuboid

projectTarget = 2D screen projection of base of the 3D wire mesh
Determine plane of twinned cuboid from 3D corners
Find center point of twinned cuboid
projectPoint = 2D screen projection of 3D point.
Set projectPoint to cubloid center point
while projectPoint < projectTarget do

Move projectPoint along 3D plane of cuboid by 3D unit increment
projectPoint = 2D screen projection of 3D point

end while
Translate 3D wire mesh position to projectTarget F wire mesh covering food item now at 3D depth of image

Algorithm 3 Volume Calculation of 3D Wire Mesh
Input:
(1) 3D wire mesh placed over food item
Output:
(1) Volume of 3D wire mesh (theVolume)

Determine real/virtual ratio by known real word reference object with scale of twinned 3D cuboid
if wire mesh = box then F This could be 3D rectangle so need to consider each axis

boxWidth = ratio ∗ geometry.boundingBox.width ∗ wiremesh.scale.x
boxHeight = ratio ∗ geometry.boundingBox.height ∗ wiremesh.scale.y
boxLength = ratio ∗ geometry.boundingBox.length ∗ wiremesh.scale.z
boxCubed = boxWidth ∗ boxHeight ∗ boxLength
theVolume = boxCubed

else if wire mesh = sphere then F This could be an ellipoid so need to consider each axis
sphereRadiusX = ratio ∗ geometry.boundingSphere.radius ∗ wiremesh.scale.x
sphereRadiusY = ratio ∗ geometry.boundingSphere.radius ∗ wiremesh.scale.y
sphereRadiusZ = ratio ∗ geometry.boundingSphere.radius ∗ wiremesh.scale.z
sphereCubed = sphereRadiusX ∗ sphereRadiusY ∗ sphereRadiusZ
theVolume = (4/3) ∗ PI ∗ sphereCubed

else if wire mesh = dome then
domeRadiusX = ratio ∗ geometry.boundingDome.radius ∗ wiremesh.scale.x
domeRadiusY = ratio ∗ geometry.boundingDome.radius ∗ wiremesh.scale.y
domeRadiusZ = ratio ∗ geometry.boundingDome.radius ∗ wiremesh.scale.z
theVolume = ((PI ∗domeRadiusX ∗domeRadiusZ )/(3∗domeRadiusY ∗domeRadiusY ))∗domeRadiusY ∗domeRadiusY ∗

((3 ∗ domeRadiusY )− domeRadiusY )
else if wire mesh = bowl then

bowlRadiusX = ratio ∗ geometry.boundingBowl.radius ∗ wiremesh.scale.x
bowlRadiusY = ratio ∗ geometry.boundingBowl.radius ∗ wiremesh.scale.y
bowlRadiusZ = ratio ∗ geometry.boundingBowl.radius ∗ wiremesh.scale.z
bowlCubed = bowlRadiusX ∗ bowlRadiusY ∗ bowlRadiusZ
theVolume = ((4/3) ∗ PI ∗ bowlCubed)/2 F A bowl as 1/2 sphere

end if

E. ANALYSIS
In evaluating the approach, we were interested in two primary
measures, namely the volume estimation deviation from the

target object’s ground truth (GT) volume and the reliability
of the volume judgements. The deviation was calculated
by generating the absolute value (ABS) of the percentage
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FIGURE 6. Ten of the testing images (Non-food testing objects are not
shown). Food objects were a mix of food types and serving vessels
(ground truth volume in brackets, cm3).

deviation for each volume estimate as an absolute percentage
deviation (APD):

APD = ABS((
Estimate_vol.− GT_vol.

GT_vol.
) ∗ 100) (1)

Food volume estimation judgements are typically not done
only once. Given the wide variation of human-based esti-
mates [8], [23], it is common to obtain multiple estimates of
food portion sizes and implicitly the volume of food items.
As the current approach is a mixed method with automated
and manual components, there is likely to be variation in
the manual contributions. The current implementation also
fits well into an overall system where crowd sourcing [23]
could be used to aid scalability. Thus food items for volume
estimation could be distributed to multiple app users and the
results averaged in an attempt to smooth out any errors from
manual components.

With a large number of food items to obtain estimates of,
getting two, three or more estimates impacts further analysis
of the food items, i.e. determining density and nutritional
value. Thus there are two sub-questions. Firstly are there
improvements in the volume estimates if more than one
independent estimation is obtained (i.e. via crowd sourc-
ing) and secondly, are there particular food types or shapes
where averaging multiple independent estimates make these
improvements are more prominent. Determining both these
issues will highlight any return on investment on requesting
multiple estimates and waiting time for multiple estimates to
return.

In our study, we collected 60 estimates across 26 food
items. Combinations of estimates were calculated by the
number of ways to choose a sample of r unordered outcomes
from a set of n possibilities:

C(n, r) =
(
n
r

)
=

n!
(r !(n− r)!)

(2)

We have explored the relations between single estimates
(C(60, 1) = 60), all pairings (C(60, 2) = 1770) and all
triples (C(60, 3) = 32, 220) for all 26 food item estimates.

FIGURE 7. Results of the first estimate with the training images with
single, pair and triple estimate combinations. Percentage error with 1 SD
error bars.

FIGURE 8. Results of the second estimate, after volume feedback, with
the training images with single, pair and triple estimate combinations.
Percentage error with 1 SD error bars.

Code to generate the combinations and calculate each aver-
aged volume estimate was written in MATLAB (version 9.7,
The MathWorks Inc.).

V. RESULTS
A. TRAINING: NON-FOOD ITEMS
The results of the training estimates are shown in
Figs. 7 and 8. When comparing the single estimates (n=60),
it can been seen that the percentage error has been reduced
in the second training trial for all volume estimates. This
is to be expected as the participants were given feedback
on the true volume after their first attempt. However, this
is indicative that the participants are competent in the use
of the iPad app for generating accuracy volume estimates
as the second estimates are improved. This is particularly
evident in the box objects, which required deformation of the
virtual wire mesh box, where there is consistent improvement
between the first and second estimates across both examples.
This shows that the training was sufficient before the testing
trials.

In terms of combining the estimates, both the single to
paired estimates and paired to triple estimates show increased
improvements and with smaller error bars. This improvement
in accuracy was evident across all the testing trials.
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FIGURE 9. Results of the testing trials for non-food objects over mean
absolute percentage deviation and percentage error.

FIGURE 10. Results of the testing trials for single food items (1 food item
per image) over mean absolute percentage deviation and percentage
error.

B. TESTING: NON-FOOD ITEMS
Fig. 9 shows the mean absolute percentage error from ground
truth volume for the non-food objects under the testing con-
ditions. Across this object set with single estimates, the worst
error was 20.4% (Sphere) and the best was 10.7% (Bowl). For
the multiple estimates the mean improvement was minimal,
but for each increasing amount of estimates, the standard
deviation and error range was reduced.

C. TESTING: SINGLE FOOD ITEMS
Fig. 10 shows the mean absolute percentage error from
ground truth volume for food items where there was only
one food item per image, under the testing conditions. Across
this object set with single estimates, the worst error was
56.1% (Raw chicken on plate) and best was 34.2% (Soup),
i.e. the more regular shaped food item gained more accurate
estimates.

FIGURE 11. Results of the testing trials with multiple food objects on one
plate. Each food item was considered individually.

FIGURE 12. Results of testing trials with multiple food objects served
discretely. Each food item was considered individually.

For the multiple estimates the mean improvement was
trending towards improved, i.e. smaller, means with the best
results in the triple estimate averages. Also the standard
deviation and error range was reduced for each food item.

D. TESTING: MULTIPLE FOOD ITEMS
Fig. 11 shows the mean absolute percentage error from
ground truth volume for multiple food objects on one plate.
Across this object set with single estimates, the worst error
was 32.6% (Carrots) and best was 23.7% (Cabbage). The
multiple estimates had a reducing trend with increasing esti-
mates. Also, the standard deviation and error range was
reduced for each food item.

Fig. 12 shows the mean absolute percentage error from
ground truth volume for multiple food objects served dis-
cretely. Across this object set with single estimates, the worst
error was 55.7% (Rice on plate) and the best was 20.3%
(Apple), which was expected given the more regular shape of
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the apple. The multiple estimates had a reducing trend with
increasing number of estimates for the irregular food items,
namely the ‘‘Rice on plate’’ and ‘‘Chicken stir fry on plate’’,
but less so for the ‘‘Apple’’ food item. The standard deviation
and error range was reduced for each food item.

VI. DISCUSSION
The results of the current study present a method where
the average error rates were in the 10-20% range for
regular-shaped objects and the 10-60% range for irregular
food items. Although it is difficult to directly compare this
with other studies given different food item images and com-
putational approaches that have been used previously, the
results here are promising, particularly whenmultiple volume
estimates from independent users are averaged. Also, the
approach requires no prior knowledge of estimation shapes.
It provides a number of common but representative proxy
3D objects, and only requires limited preparation in image
capture. Further, use of the tool was surprisingly good by
the participants who had no formal training with the tool,
and who were from a range of discipline backgrounds. Many
image based studies in a previous systematic review [15]
identified that dietitians, who are highly trained in dietary
assessment and portion size estimation, are not typically
used to capture portion images. Thus the results of the cur-
rent study provide promising insight for potentially broader
use [10] and potential for real-world usage.

In terms of the potential for crowd sourcing multiple esti-
mates to improve the reliability of the manual component of
the approach, the user study provides evidence that both the
median and error rates can be reduced with cross averaged
pairings and triples. The generation of these combined esti-
mate averages is trivial and the only real overhead is the gen-
eration of multiple estimates. However, with an asynchronous
approach, these estimates can be collected concurrently and
in the context of our larger system, distributed from a CMS to
individual users on iPads. One question would be the return
on investment, in time, in gaining the multiple estimates.
From this study, we have seen that irregular food items
gain more benefit from multiple independent estimates. One
contributing factor to this it that irregular food items may
have variable gaps, for example between two pieces of carrot,
and this adds to estimation errors.2 The multiple independent
estimates can smooth out this gap error as the wire mesh
placements under or overestimate the true volume.

For more regular shaped food items, paired estimates are
sufficient. For example, in Fig. 12, the ‘‘Rice on plate’’ and
‘‘Chicken stir fry on plate’’ have improved accuracy and
reducing error bars from paired to triple estimates. However,
for the ‘‘Apple’’ item it would be sufficient to only have
paired estimates with the sphere wire mesh shape. A similar

2For food items with natural gaps, for example rice or pasta, if there is an
associated measures database there may be measures that relate to volume
with a weight equivalent. For other items, the coverage of the food by the
3D wire mesh is determined by the analyst/tool user. Therefore multiple
estimates are desirable for irregular food items.

pattern can be seen in the ‘‘Soup’’ food item in Fig. 10 where
there is a good match between the regular shaped food item,
i.e. soup in a bowl, and the bowl wire mesh shape.

An important aspect of the present work is that it was
designed as a practical and computationally light approach
that runs on a standard iPad in real-time. Based on a large
user base (n=60), it exhibits high ecological fidelity [16]. The
study by Fang et al. [7] did not focus on processing times and
the required level of computation, which limits comparability
to the present study. Beltran et al’s [2] use of engineers
who helped to develop the procedure influenced the results
with Beltran et al. noting the dietitians had not mastered
the manipulation of the wire mesh to closely conform to the
outer boundary of the food image whereas the engineers who
helped create the wire imaging system did.

The current model would also be appropriate to be used
with other active capture systems in image based dietary
assessment. Active capture methods involve the user in col-
lecting images, for example taking the image and placing the
fiducial marker in the image frame. However, it is acknowl-
edged that this portion size estimation tool is only one aspect
to dietary assessment process and for accurate real world
nutrient estimation would rely on accurate food identification
and up to date nutrient database information [15].

Given the results found in the current study, this approach
shows the ability of the current system to be used by users
with minimal training. The training used in this study com-
prised of only a small number of trials and transitioned well
from fixed known volume objects to real foods. Interestingly
some of the best estimates were found for apples and this
might likely reflect the training that was conducted using
spheres as these shapes have a high resemblance. Given this
finding, adding additional training objects that resemble real
foods might be good practise.

There was not much variation in the error estimation across
the vegetables that were tested. This was expected as the
vegetables were all chopped and assembled in a similar way.
Raw chicken on the plate was also associated with larger
errors in estimation compared to other estimations of real
food. Mixed dishes or items served on shared plate present
a complexity in dietary assessment as there are additional
factors to consider in addition to image depth, such as the size
of the overall serving vessel. This issue was highlighted in a
recent review where dietary assessment from shared plates
was considered [3].

VII. CONCLUSION
In the analysis of dietary intake, images of food items play
a critical part of data collection. Determining the volume of
these food items is necessary in order for accurate nutritional
analysis. This paper has described a new semi-automated
method combining 2D image capture and automated 3D
scene projection with manual placement and resizing of wire
mesh objects to generate volume estimates of food items.
Through a combination of automated and manual activities,
the volumes of food items in 2D images can be generated in a
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process that is computationally light and runs in real-time.
Also we have considered the use of multiple food volume
estimates and showed that accuracy can be increased by
combining multiple independent estimates.

However, the approach presented is not without limita-
tions. There can be errors in both the automated and man-
ual elements and, as a pipeline approach, any inaccuracies
accumulate and increase the final error [20]. Thus, reducing
any error is desirable. Also with increasing availability of
wearable sensors (see [19]) there are opportunities for hybrid
approaches combining direct (based on physical properties of
food) and indirect (based on food intake activity) measures
to reduce overall error. Future work will focus on improving
the accuracy of the automated aspects of the approach, for
example the accurate identification of corner markers that is
critical to accurate 3D projection, and determining the impact
of increased training [12] for improvements in the manual
aspects, i.e. the fitting and sizing of the wire mesh objects.
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