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ABSTRACT 

The behaviour of electrons in nanostructures such as quantum wells is of interest for the 

design of new electronic and electro-optic devices, and also for exploration of basic 

many-body physics. This thesis develops and tests improved methods for describing 

such electronic behaviour. 

The system used for this work was the parabolic quantum well (PQW), an important 

special system which has recently attracted much experimental and theoretical attention. 

We firstly report self-consistent nonlinear groundstate solutions of the Poisson equation 

together with the Thomas-Fermi (TF) hydrostatic equations. In contrast to most previous 

solutions, all the electron density profiles were inhomogeneous and continuous. We also 

added a von Weizsacker term with and without the exchangelexchange-correlation to 

the above treatment, using a novel numerical approach allowing for wider electron gases 

than previously possible. 

We also report for the first time the effects of spatially varying effective mass and 

dielectric function in theories of this type. 

To investigate infiared response of these systems, we apply new hydrodynamic theories 

recently proposed by Dobson. By using this type of theory, we simultaneously satisfy 

the Harmonic Potential Theorem (extended generalized Kohn theorem) and obtain the 

correct 2D plasmon dispersion, as well as obtaining the correct spacing of standing 

plasmons. Other inhomogeneous hydrodynamic theories do not achieve this. 

We also showed analytically an exact solution for a plasmon mode at the Kohn 

frequency in addition to one found in the Harmonic Potential Theorem. An open 

hydrodynamic theory was then developed based on this type of mode. Numerical 

application of Kohn Frequency Theorem theory was shown and the results were 

compared with other existing hydrodynamic theories. 
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Introduction 

Many-electron systems have been the subject of considerable interest in the last four 

decades. The understanding of such a system has been enhanced by the use of Density 

Functional theory (DFT) which was originally introduced by Hohenberg, Kohn, and 

In essence, this theory states that the properties of a stationary, nonrelativistic 

many-electron system can be represented exactly in terms of the groundstate electron 

number density n(r) alone, i.e. if n(r) is known other properties, such as vibrational 

frequencies, and some electronic transition processes of a physical system can be 

calculated. The central quantityn(r) can be obtained by several theories, some of which 

are discussed in this thesis. An advantage of current approximation to DFT, over more 

accurate many-body theories in which one has to construct many-electron 

wavefunctions, is that it allows the calculation for a very big system such as 

electrons in a solid. 

The simplest model suitable for testing DFT is that of je l l i~rn~.~~:  This is a neutral 

medium in which an electron gas moves fieely through a uniform positively-charged 

background which replaces the discrete lattice of positive ions. The only function of this 

simple geometry is to maintain charge neutrality. The jellium model is particularly 

applicable to the so-called "simple" metals (the alkalis) whose conduction band arises 

only from s and p shells. Because of its geometrical simplicity much progress can be 

made on the many-electron problem such as testing new theories for exchange- 

correlation energf96y71. Furthermore, it is possible to reintroduce into a uniform 

background the discreteness of the ionic charge via perturbation theory. Previously, 

numerical calculations have predicted a number of interesting many-electron effects, 
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many of which have not been observed, or been hard to test experimentally, because the 

jellium is an over-idealised model for metals in which the discrete lattice is present. 

Recently, experimentalists have created a novel structure which is much more 

analogous to a positively charged slab of jellium, without strongly scattering ionic 

centres. This is the Wide Parabolic Quantum Well (PQW) which has been grown in the 

GaAs l Ga,-, AZ, As semiconductor system by the advanced technique of Molecular 

Beam Epitaxy (MBE)['-'~]. The PQW system may also be defined as one-dimensional in 

the z direction. The AZ composition is grown layer by layer in the z-direction. Here z is 

the distance measured in the direction of growth and perpendicular to the epitaxial 

layers so that the external conduction band-edge potential is a quadratic function of z 

Here K is the curvature of the well and relates to positive jellium background with a 

three-dimensional charge density 

n+ (z) = en,, for all z, 

and relative dielectric function E by 

Any number of electrons can be released into this normally empty well by spatially 

remote doping to form a high- mobility electron gas. 

It is important for one to keep in mind that there is a similar system known as a 

charge-neutral metallic slab of finite thickness L which has the positive background 

density 

n+(z)=n,0(~/2-121). 

In this case the system has an external potential which is quadratic for l z l ( ~  1 2 ,  and 

linear for 14) L / 2 .  The electrons are to be filled to neutralise the underlying 
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background. In contrast, the bare potential of a PQW continues to grow quadratically 

outside the region occupied by electrons, thus forming a non- neutral system. ~ & e r  

extensive discussions on the differences between these two systems are referred to 

~ ~ f i 5 . 6 . 7 1  

Numerous investigations, both theoretical and experimental, have been done on PQWs 

in the past such as magnetotransport, infrared optical absorption, photolurninescence, 

excitation spectroscopy. 

With few exceptions, analytical solutions for many-electron systems are not readily 

available and one has to rely on developing numerical methods, for different 

approximate theories, to obtain the results. One such theory is known as the Time- 

Dependent Local Density Approximation (TDLDA)['"'] often used for quanta1 systems. 

It approximates many-electron behaviour by summing over independent-electron 

motions in an effective one-electron potential. TDLDA has been solved for many cases 

of simple geometry, and for a PQW it confirms[6y71 the exact Kohn mode for q, = 0 ,  the 

2D plasmon for q -+ 0, the centre-of-mass mode as well as standing bulk plasmons for I 

411 
$0. Here the plasmon is defined as the quantum of collective plasma 

 oscillation^[^'^. The Kohn mode is defined in the Generalised Kohn  heo or ern^^^^ that, for 

zero B-field and the excitation by a uniform electric field, there must be a sharp 

resonance in a harmonically confined system at frequency equal to the plasma frequency 

112 
w, = (4m2n+ l an) . However, TDLDA is very cumbersome to solve for less simple 

geometries and there are problems to include both inhomogeneous effective mass 

rn * ( z )  and dielectric function &(I)  in the calculation[23241. These effects arise from 

their dependence on the alloy composition of system used to experimentally realise the 

chosen parabolic potential. If the Kohn mode is to be exploited technologically these 

effects are important since they cause the deviation fiom ideal Kohn-mode behaviour. 
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One therefore needs simpler theories to guide the search and hydrodynamics is an 

attractive option. 

Zn addition to replacing the positive ions by a uniform jellium, hydrodynamics 

concerns the equilibrium and motion of electron gases by treating them as a continuous 

fluid. Hydrodynamics is strictly derivable only for the limit of slow spatial (q  + 0) and 

time (o + 0 )  variations. Hydrostatics has been often used to denote the branch of 

theory concerning the equilibrium case, and hydrodynamics has been reserved for 

dynamic motion. However such a terminological distinction is becoming less critical, so 

throughout this thesis we will use the latter term. 

Dynamic motion of an electron gas can be described by two methods: the first is 

Lagrange's method which treats an electron gas as a system of an infinite number of 

particles, each of them behaves as a function of time. The second is Euler's method 

which treats the values of the velocity, density, current, and pressure of an electron gas 

at arbitrary times and positions. For the degenerate electron gas the use of Euler's 

method is often justified by linearising the static Thomas-Fermi (TF) equation and its 

related theories of the inhomogeneous electron gas into a heuristic time-dependent 

situation. 

It has been shown recently by ~ o b s o n ~ ~ * ]  that, if commonly-used linearised 

hydrodynamics is applied to the inhomogeneous situation of a PQW it will lead to a 

violation of Harmonic Potential Theorem. In addition, most calculations using 

hydrodynamics have assumed the equilibrium density to be uniform up to a sharp 

b ~ u n & ~ ~ ' .  Accordingly, the "hard wall" boundary condition at the electron gas edge 

has usually been applied. However, it has been shown by both experiment and 

theoretical work that the inhomogeneous equilibrium descriptions of the electron gas 

edge are crucial in determining the dispersion of surface plasmons and the hard wall 

boundary condition is not appropriate for the case of perfect P Q W I ~ ~ ] .  When the TF 



equation is linearised to first-order one obtains the predicted long-wavelength bulk 

1 2  plasmon dispersion o2 = w i  + p2$ with static pressure coefficient P2 = -VF while 
3 

the corresponding linearised Random Phase Approximation (RPA) theory for the long- 

3 
wavelength, high-fkequency prediction gives P 2  = -v: . By contrast, one has to use the 

5 

1 
static value p2 = -v: value to obtain the exact Kohn mode, instead of high-frequency 

3 

value. Dobson further proposed a solution to this dilemma by separating the density 

perturbation 6n into two parts: one represents the harmonic displacement of the 

electron gas without being compressed by the motion, and the other represents 

dynamically compressed motion. The former part is used with the static pressure 

1 
coefficient P2(m -+ 0) =-v:, while the latter is used with the high- frequency 

3 

3 2 coefficient P2 (W 3 -) = -vF . 
5 

In this thesis, we investigate the consequences of hydrodynamic theories on PQWs for 

both static and dynamic situations. The outline of the remaining chapters is as follows: 

In Chapter 2, we review some previous applications of the nonlinear TF theory and 

describe its effects on the electronic groundstate. A self-consistent solution is obtained 

for the first time with explicit description of edge inhomogeneity. Then we solve the 

new hydrodynamics equation, proposed by Ref 1251, for the nonuniform gas to obtain the 

dispersion relations for all the plasmon modes in Chapter 3. 

Being able to treat edge inhomogeneity allows us to include the effects of spatially 

varying effective mass m * (2) , and dielectric function ~ ( z )  in the TF equation and new 

hydrodynamic equation. The investigation and results are presented in Chapter 4 for the 

first time. 
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The nonlinear self-consistent solution for the equations of Poisson with a von 

Weizsacker correction is presented in Chapter 5. This is done with and withoAt the 

additional inclusion of exchange1 exchange-correlation potential. With the benefit of 

information &om Chapter 2, our calculations show further interesting results for 

groundstate quantities in addition to reported publications of Zaremba and TSO[~~],  and 

~ h a n ~ ~ ~ ] .  

When the writing of this thesis was in progress, it was found that a modified 

hydrodynamics we were using satisfies the Harmonic Potential Theorem (HPT)~'] but 

can violate Newton's Third 1aw[~~7~~l .  This was easily modified to satisfy both of these 

conditions (Newton's Third law and the H P T ) ~ ~ ~ ~ .  We report initial numerical tests on 

this most recent hydrodynamics in Chapter 6.  

In Chapter 7, we show that, in addition to the Harmonic Potential Theorem exact 

result, there are also other exact results which constitute what we term the Kohn 

Frequency Theorem. This theorem states that an exact solution at the Kohn frequency is 

indeed very open and includes one feature of the Harmonic Potential Theorem solution 

as a special case. Initial numerical test for the case q = 0 is reported. I 

Extensive theoretical and numerical investigation on the Kohn Frequency Theorem 

hydrodynamics (KFT) is performed in Chapter 8. The exact Kohn frequency solution is 

confirmed not only analytically but also numerically. Several plasmon dispersions 

resulted &om this theory is compared and presented in this chapter. 

Finally, in Chapter 9 we summarise the main findings of this thesis and propose 

directions for future research. 

In our calculations, we use Hartree* units, a.u.* , for which e = m = E = ft = 1 a.u.* . 

Thus the unit of energy 1 ax.* = m*e4 / fi2&' = 1 lmeV, and the unit of length 
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taking into account the nonlinear effect which is the original idea of the TF theory to 

further improve the results. These authors remark that the TF theory allows the handling 

of nonlinear effects and the treatment of a noninteger number of electrons which are 

difficult or impossible by any wavefunction method and the intrinsic linearity of the 

Fourier transform. Recently, Martorell and concurrently obtained numerical 

solutions of the electron density of 2DEG in GaAs/AlxGal,As heterostructures by both 

microscopic theory and the TF theory. Comparable results were shown, with the 

emphasis on the advantage of less numerical effort spent on the TF theory. Furthermore, 

analytical expressions that related the 2DEG density to the physical parameters of the 

device could also be obtained from the linearised approximation. Especially, ~ieb["] has 

shown analytically by rigorous mathematics that the TF theory is identical to the exact 

quantum theory, based on the Schrodinger equation, in the large-Z (nuclear-charge) limit 

of atoms with fixed nuclei. 

The resultant deficiencies reflect not only on the TF theory, but on the methods to deal 

with particular problems: one can find some factors investigated in the past: It was 

found by Ying, Smith and ~ o h n [ ' ~ ]  that, for a neutral jellium slab, self-consistent 

calculations of the TF theory produced zero dipole moment and zero work function, 

contrasting to opposite results that were obtained by ~ e w n s [ ' ~ ~ ' ~ * ' ~ ]  fiom non-self- 

consistent calculations. Zero dipole moment and zero work function are not found in 

any physically realisable system, and these authors further noted that nonselfconsistent 

calculations with an assumption of infinitely high potential barrier at the surface is 

unrealistic. 

Some difficulties with the TF theory are highly specific to particular problems. The case 

of a parabolic quantum well is substantially different to the case of a neutral jellium 

slab, where the TF theory predicts quite unphysical features at the edge of the electron 

gas, along with a zero work function. They arise because the binding of electrons is 
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marginal and the density of electrons is required to neutralise positive background 

charge. To remedy these shortcomings, exchange/exchange-correlation has to be 

included, along with the gradient terms. For the case of a PQW one can neglect the 

inclusion of these effects since the system is nonneutral and the effective potential 

continues to rise outside the electron-occupied region, so that the binding of the electron 

gas is very robust and the discussion of a work function is meaningless. Of course, it 

does no harm to include these physical terms in the calculation. However, for the 

purpose of treating the problem in increasingly sophisticated order, the inclusion of 

these terns will be deferred until Chapter 5. 

There are also other factors that can be taken into consideration: inhomogeneous 

effective mass rn * (2) and dielectric function ~ ( z )  . Although these effects have been 

assumed['61 to be only at about 10% level for wide GaAZAs parabolic wells, they have 

the potential to spoil the perfect adherence to the Harmonic Potential Theorem. They 

arise fiom the same physics that allowed MBE growth of a chosen parabolic effective 

potential and thus are not removable. A simple understanding of this theory problem 

was a major initial motivation for developing the present chapter. 

In this Chapter we use the TF theory to obtain static physical quantities self- 

consistently. The next Section 2.2 is subdivided into two Subsections: 2.2.1 involves the 

TF description of the electronic groundstate and numerical methods. 2.2.2 gives the 

nontrivial, inhomogeneous profiles and discussion. 

2.2 The selfconsistent inhomogeneous groundstate 

2.2.1 Mathematical derivations and numerical methods 

The equations of TF theory, designed particularly for the calculation of groundstate 

density, relate the density n(r) to the effective potential V(r) and chemical potential 



&F(n(r)) + V ( r )  = P . 

Here the Fermi energy is 

f i 2  f i 2  sF (n(r ) )  = - kF2 ( r )  5 - [ 3 1 ~ ~ n ( r ) ] ~ ' ~ .  
2m 2m 

The constant e , conventionally chosen to be positive, is the electron charge; m ,  A ,  and 

k F ( r )  are electron effective mass, Planck's constant and Fermi wave number 

respectively. The electrostatic potential consists of the Hartree potential and the external 

potential and satisfies Poisson's equation 

v 2 @ ( r )  = 4@n(r)  - n+ ( r ) ]  (2.2.3) 

1 
where n+ ( r )  = - V v "'l ( r )  is the effective positive background charge density. For 

4ne2 

the case of a PQW, the electronic system is confined in the z-direction and 

translationally invariant in the other directions. Thus in this particular situation we can 

write the TF equation and Poisson's equation in one-dimensional form as 

~ , n ~ " ( z )  + V ( z )  = ~ , n ~ ' ~ ( z )  - e@(z) = 0 

and 

A 
Here C, = - (37r ' ) 2'3 , and all energies are chosen to be measured from p by setting 

2m 

p=o. 

Eqns (2.2.4) and (2.2.5) have to be solved self-consistently subject to the conditions: 

d @  ( i ) - (z = 0) = 0 due to the symmetry of a PQW. 
dz 

( ii ) The integral of the electron density in the z direction equals the areal 

electron density N ,  which is experimentally controllable and is usualy parametrised by 

an effective nominal width L 



Here z, determines the position of the edge of the electron gas so that n(z , )  = 0. Later 

on, we will prove that this condition is equivalent to choosing a correct initial value of 

$, ( defined as @(z = 0)  ). 

( iii ) The electron density vanishes continuously at the edge so that, in dynamic 

calculations for plasmon dispersions, one is able to follow through the selvage region to 

the outer extremity of the static density distribution. 

For this simplest case, one can introduce a dimensionless position variable 

where q,, is the Thomas- Fermi screening wave number, q,, = cop, / v,, . Here 

fi 113 
up, = ,/-, and v,, = -(3z2n+) are the "bulk'plasma frequency and Fermi 

m 

velocity determined by the positive background density n+ . Then we can write (2.2.4) 

and (2.2.5) respectively in dimensionless form 

d2u -- d52 - 2(u3i2 - I), 

and 

Eqns (2.2.9) and (2.2.10) need to be solved self-consistently only once for a given 

electron areal density and the solutions for any values of interelectron spacing, r,, can 

be obtained by scaling back using Eqns (2.2.8) and (2.2.10). However, our 

investigations will not close here, but continue further in Chapter 5 with TF-related 

theories whose scaling scheme is not readily available. For the benefits of later chapter 
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and facilitating the convenience of comparisons, we mostly adhere to the forms of 

(2.2.4) and (2.2.5) for mathematical derivations and discussions. 

The numerical solutions of (2.2.4) and (2.2.5) are implemented b y  four different 

techniques whose aims are to check the results and to test the stability of computer 

codes for later use and further development. Before describing each particular 

algorithm, we need a brief digression to emphasise that these two coupled equations 

yield an exactly analytical solution 

@(z) = C,n2I3 (2) = C,n,2/3 

which may be thought of being equivalent to a rigidly bounded neutral slab. This 

constant density extends throughout all space to infinity - unless one arbitrarily places 

"hard- wall" conditions to confine the electrons - and always neutralises the underlying 

positive background. Even though this constant is not a correct solution for a PQW, 

recognising it will help us to follow the right numerical direction. Let us now go back to 

derive the equations for numerical computation, noting that we need to solve only for 

one side of the wells. Then the other half is obtained by mirror symmetry. 

Method I 

Combining (2.2.4) and (2.2.5) into one single equation we have 

d2$J d 1 d 4  
After rewriting - as -[- ( - ) 2  ] , we can integrate Eqn (2.2.12) with respect to $ 

dz2 d$ 2 dz 

to get 

Here C is an integration constant that can be found by applying the natural PQW 

d@(z = 0) 
boundary condition, 

dz 
= 0, as specified in (2.2.6). Thus 



while the quantity & = $(z = 0) measures the electrostatic potential at the centre, 

z = 0, of the well. 

Taking square root on both sides of (2.2.13), after substituting the integration constant 

C by (2.2.14), and then inverting, we can integrate again with respect to $ . This gives 

the position z as a function, z($) ,  of the electrostatic potential $ 

where $ is specified by the variable n  as in Eqn (2.2.4). 

To obtain insight into analytical properties, Eqn (2.2.15) is written in a simplified form: 

The plot of the function, 

is shown in Figure 2.2.1 with fi being defined as a particular point $' where F(ot) is 

minimum, i.e. 

Therefore, 

6 (n+ ) = ~ ~ n f ~ ~ .  



Figure 2.2.1 : Plot of Equation (2.2.17)). 

We now investigate whether there can be a solution with Qb, = h(n+) by replacing the 

upper limit of the integration in Eqn (2.2.16) by , 

Then by using Taylor expansion, we find for the case $' near 4 

The first term on right hand side of (2.2.21) is zero by definition of QLL as shown in Eqn 
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Thus the i n t e a l  (2.2.22) is divergent at the upper limit when @'+ 4.  This is not 

surprising since the value of q$ found in (2.2.19) is the constant solution that we have 

surmised previously in (2.2.1 1). Thus if we set cP, = 4 we obtain to an infinitely wide 

electron gas (i.e. z, + -). Physically, this result shows that the well can be filled as 

much as desired. 

In order to make (2.2.15) numerically more stable, the (independent) variable is 

changed to q' by defining - q" = @'-& where @m can be chosen in the range up to , 

then 

diy = -2q' dq' 

The overall equation, used for computation, is written in a form 

We should note that at q'= 0, both numerator and denominator of Eqn (2.2.23) are 

zero. In this case we use a Taylor expansion to first order for (2.2.23): 

f -dh-Mz)  da' 

Numerical integration of (2.2.23) and (2.2.24) can easily be solved using Simpson 3/8 

method. Initially, a value of the interelectron spacing, r, , is assigned in order to obtain 

predetermined positive background charge density, n+. Then the value of 4 is 

calculated using Eqn (2.2.19) to provide the maximum value that may be chosen 

since the choice of & (4 yields finite value of 2,. Note that there is no need to 
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implement numerically the symmetry condition as shown in Eqn (2.2.6) since from the 

procedure of deriving the Eqns (2.2.23) and (2.2.24) this condition is automatically 

satisfied. However, condition (2.2.7) requires further discussion. As the solution is 

obtained in the form of z as a function of $, z($), and hence z (n)  , the discretised 

points on the z-axis are not equally spaced. Thus extra computer codes must be used to 

interpolate these discrete points to make the integration of (2.2.7) possible. The, 

solutions obtained can be inverted to give the electrostatic potential profile $(z) and 

hence the density profile n(z) . 

Methods 11 & III 

Rewrite (2.2.12) as two first-order differential equation 

and 

Then solve (2.2.25) and (2.2.26) by the fourth-order Runge-Kutta method or a 

combination of the Runge-Kutta method for the first few points that are enough, 

depending on the chosen accuracy order, to activate the Adams-Basforth-Moulton 

predictor-corrector method. The present numerical algorithm will prove useful in 

Methods I and 11 in Chapter 4, for groundstate calculations including spatially varying 

effective mass and dielectric function. 

Method IV 

Poisson's equation is reexpressed in integral form by the use of a Green function that has 

to satisfy boundary conditions ( 2.2.6 ) and (2.2.7 ) 



0 

We now discretise this formula, using integration weights for the integral so that 

(2.2.27) becomes 

Eqn (2.2.28) has to be solved selfconsistently by coupling with the TF equation (2.2.4) 

also written in discretised form 

C,n:l3 - e+I = 0 .  

Here 

h = z l ( N  - 1) : equally discretised spacing, where N is the number of given discrete 

points, 

wJ : integration weights corresponding to points J , 

I, J : discrete numbers starting with 1 ( I, J = 1,2,3,4,. -. ), where I, J = 1 denotes 

z = 0, I ,  J = 2 denotes z = h , I ,  J = 3 denotes z = 2h, and so on. 

Specifically, the numerical algorithm used to implement (2.2.28) and (2.2.29) is as 

follows: 

( i ) Choose an initial estimate &, the number of discrete points, and discrete 

spacing h , for z-axis to specifL the maximum distance that the numerical shooting 

scheme goes up to. Then n, (= n(z = 0)) can be evaluated algebraically using (2.2.29). 

( ii ) The value of +(z = h)  can now be evaluated as follows. 

- Knowing that we want to obtain numerical value for q!J at point I = 2 and points 

J = l ,2 .  Thus we can substitute n, (r nJ=,) and integration weight wJ=, , using 

trapezoidal rule since there are only two points at this stage, into the summation term of 

(2.2.28) and evaluate GI=, . Here one should note that there is no need to substitute wJ=, 
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and nJ=, since wJ=, (nJ=, - n+) is multiplied with ( I  - J) = (2 - 2) = 0 according to 

(2.2.28). This is an interesting property that will be used for further development of a 

more complicated theory such as TF von Weizsacker in Chapter 5. When the numerical 

value of $J(z = h) E is available, n(z = h) = nl=, can easily be obtained from Eqn 

(2.2.29). 

- The procedure is repeated for a point at z = 2h which corresponds to I = 3 and 

J = 1,2,3 where we only need the available values of nJ=, and nJ=, . As we now have 

three points, Simpson 1/3 integration weights should be used for higher-order accuracy. 

For z 2 3h which corresponds to I 2 4 and J = 1,2,3, -.- I the procedure is the same 

as the above description. However, Simpson 3/8 integration weights should be used and 

any excess points should be treated by cubic fit to the last four points. 

- The repetition continues until $J(z = z,) equals zero (or close to zero). If this 

case fails the calculation goes back to Step (i) that we may adjust the input parameters, 

such as &, , using the immediately previous input parameters as a guide. 

( iii ) Integrate the electron density over the limits z = 0 to z, to find out whether 

a value of the predetermined half of the areal density is obtained due to condition 

(2.2.7). If this fails the procedure goes back to step ( i ). 

Actually we can also combine (2.2.28) and (2.2.29) into a single equation 

then if we substitute n(z) = u(z)~ it will be easy to recognise that this is a quadratic 

equation 

2 ax + c = o ,  

where 

a = C, 



The development of this method is especially for use in subsequent chapters in this 

thesis. 

2.2.2 Results and discussion 

For this particular problem, Method I gives the best way to write automatically 

controlled computer codes, whilst the other methods depend largely on manual control 

to determine the position of the electron gas edge. However, Method I does not provide 

further use or development for later calculations in subsequent chapters of this thesis. 

The comparisons among Methods I1 + IV are deferred to be shown in Chapter 4 

during the discussion of groundstate calculation on the TF theory with the inclusion of 

spatially effective mass and dielectric function. All of the four methods are very 

numerically stable, and give indistinguishable results for the groundstate densities as 

shown in Figures 2.2.2 and 2.2.3. Note that in Figure 2.2.2 we intentionally leave z to 

be not equally spaced for Method I, whereas the z-spacing of the other method is equal. 

We have already checked and found that after interpolation to equalise the z-spacing, the 

density profiles are the same as those of Figure 2.2.3. 



Figure 2.2.2: Comparison of density profiles for rs=3 a.u:, and L=l8 a.u: between Method I (integral 
equation. isolated circles) and Method I1 (fourthorder RK method, isolated squares). 

Figure 2.2.3: Comparison of density profiles for r,=3 am:. and L=l8 a.u: among three numerical methods of 
calculation (Methods Il-IV) show indistinguishable results. 



Figure 2.2.4: Potential profiles for rs=2.07 a.u.*, and various electron gas widths 
L=1.3, 5.0, 20.0,28.0,40.0, and 50.0 a.u:. 

4.W-01 

Figure 2.2.5: Density profiles for rs=2.07 a.u.', and various electron gas widths L= 1.3, 
5.0,20.0, 28.0,40.0, and 50.0a.u:. 

2.80E-02, 



Figure 2.2.6: comparison of density profiles between microscopic theory (solid curve) 
and the TF theory (dashed curve) for rs=3 a.u:, and L=18 a.u.*. 

Figures 2.2.4 and 2.2.5 show the potential and density profiles respectively for a range 

of electron gas widths. It can be observed that for a narrow electron gas, the density at 

the central region never approaches that of the positive background. For a sufficiently 

wide electron gas, the density is essentially uniform and approximately equal to the 

positive background in the middle region, then decreases smoothly at a finite distance 

z = L / 2,  and finally falls off steeply to zero at the edges. The uniformly flat-topped 

behaviour without Friedel oscillations is expected in nonlinear TF theory, in contrast to 

self-consistent iterated calculations based on microscopic theory (see eg. ~obson~'~~"]) ,  

shown in Figure 2.2.6. The number of electrons increases quite dramatically with a 

minor increase of initial potential @, which raises a concerns for the accuracy of 

numerics. In this situation the accuracy can be proved by using Taylor expansion of Eqn 

(2.2.15) of Method I to second order to describe the mathematical nature of F($' ) near 



where 

Therefore, after some mathematics, we can approximate Eqn (2.2.15) to second order as 

0 
du' 

0 

where 

and Q is a very small number close to zero. 

The exact solution of the above equation is arcsine which goes very sharply near the 

origin, i.e. nearq' = 0. The second proof lies in Eqns (2.2.28) and (2.2.29) of Method 

N: If we choose &, very slightly below 4 then (2.2.29) gives nJ=, to be very slightly 

less than n+ . Thus the difference nJ=, - n+ is negative and very close to zero, and so is 

the value of the summation of (2.2.28). This gives $J=2 to be very slightly below @m, 

and thus very slightly less than and so is nJZ2 comparing to n, and nJ=, . 

Subsequently the difference nJ=, - n+ is again negative very close to zero, and so is the 

summation of (2.2.28). This process continues until we obtain a sampling density n,=, 

which yields the difference nJ=j - n+ to be substantially large, i.e. the contribution of 

this difference to the summation of (2.2.28) is significant, then n,,,,, will be 

significantly smaller than nJ=, . Thus the electron density reduces more quickly until the 
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summation term of (2.2.28) cancels out 4, to give zero density at the edge. This also 

illustrates why the innermost curve in Figure 2.2.5 consists entirely of edges since on the 

selection of 4w far below @, the value of summation in (2.2.28) becomes immediately 

significant. It is interesting to know when we choose $, = G2 the electron density 

n, = n+ for all J which is a constant solution we have mentioned above. For 4,) 4, 

we find n,=, ) n+ , then the summation in (2.2.28) will add a positive value to $w so that 

~ s 2  ) n+ . This process continues to give a divergent solution. It is interesting to remark 

here there will not be oscillations in the nonlinear TF theory according to the discussion 

given fiom this method. These types of divergent solutions have also been checked by 

Methods IT and III. Note that we are not able to obtain numerically constant or divergent 

solutions using Eqn (2.2.14) of Method I since for the former solution the denominator 

of the integrand is zero, and for the latter the value under square root sign is negative. 

Clearly for any methods of mathematical manipulation the convergent solution only 

comes fiom the correct choice of & to be less than & which corresponds to the 

constant solution. 

In a PQW, the potential rises quadratically outside the region occupied by the electron 

gas and forces the TF electron density to fall rapidly at its edges and vanish completely 

outside the critical point where n(z)  = 0.  On first inspection, potential profiles and 

density profiles appear to show similar behaviour at the edges. This appearance is 

deceptive, however, and this leads to the need of further investigation for the details at 

the edges. Returning to Eqn (2.2.16), we fmd, when 4' is just above zero, that 

as $'+ 0, - F(&) is finite and positive and F($') -+ 0,  i.e. 

= a + ve finite constant. 



Therefore, z - zc $ 

- ,mGi as $ + 0 ,  where zc is defined as the point where 

n(z) = 0 and z on the right, i.e. $ goes linearly with z at the edges of confinement 

region when lzl< zc . For 121 > z, , $ goes quadratically with z . The quadratic behaviour, 

outside electron density confinement region, arises fiom positive background external 

potential. 

As a result, we get 

Therefore, near zc ( z  < or - zc) we have 

Thus both the density n(z) and its gradient dn(z) l dz vanishes at the edges. This result 

will be important later in the dynamic calculations for plasmons. 

In order to compare the edge electron density profiles for PQW electron gases of 

different widths, i.e. for different q&, values in our case here, all density profile graphs 

were moved sideways so that the point z = L / 2 was shifted to the new point z = 0, i.e. 

z goes to z ' s  z - L / 2 .  The plotted results are shown in Figure 2.2.7. This figure 

exhibits some finer details of the solution already shown in Figure 2.2.5. It can be seen 

fiom this figure that all the edge densities coincide. Thus electron density behaves in the 

same manner at all the edges which is different fiom the results of microscopic theory. 

There is an exception for a case where the electron gas is so thin that the edge profile 

exhibits disruption. Figure 2.2.7 also shows an agreement with our above analyses that 

both n(z) and dn(z)l dz become vanishing at the critical point of the edge. Thus, 

although the electron density is strictly zero for lzl ) zc , both n(z)  and dn(z) l dz are 

continuous at 121 = zc 



Figure 2.2.7: Comparison of the electron density edge for rs=2.07 a.U.'. and various electron gas 
widths L-1.3. 5.0. 20.0,28.0.40.0. and 50.0 a.u.'. The smallest electron aas width. L=1.3 a.u:. is 

Finally, we include Table 2.2.1 to support our above analyses that the initial input for 

&,, is strictly less than C,nif3. Thus it can be concluded that the self-consistent solution 

of TF theory ensuring explicit edge inhomogeneity is no more than searching for the 

right value of $w. This value can be infinitesimally smaller than ~,n:'~ to give the 

largest value of the electron gas width. In this case the electron density is infinitesimally 

smaller than positive background density in the middle region of a PQW. 




























































































































































































































































































































































