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Assessment and comparison of five satellite precipitation products in 

Australia 

Quality satellite-derived precipitation products (SPPs) are needed for water 

resources inventories and management, particularly in poorly gauged regions 

around the world. The latest version of five SPPs were assessed against SILO 

(Scientific Information for Land Owners) gauge-based gridded precipitation 

dataset in Australia over a 5-year period from October 2014 to September 2019. 

The evaluation was carried out using a 0.50° grid at daily, seasonal, and annual 

temporal scales. The assessed SPPs were the Integrated Multi-satellitE Retrievals 

for GPM (Global Precipitation Measurement) (IMERG), TRMM (Tropical 

Rainfall Measuring Mission) Multi-satellite Precipitation Analysis (TMPA), 

Climate Prediction Centre (CPC) Morphing technique (CMORPH), Precipitation 

Estimation from Remotely Sensed Information using Artificial Neural Networks 

(PERSIANN), and PERSIANN-CDR (Climate Data Record). PERSIANN does 

not include any ground-based observations for bias-correction, while the other 

four products are bias-corrected against gauge-based data. Bias ratio and 

correlation coefficient for the five SPPs showed that the overall performance of 

IMERG and TMPA was better than that of CMORPH, PERSIANN, and 

PERSIANN-CDR for Australia. Seasonal analysis showed that IMERG had the 

better skill in winter. Overall, IMERG appeared to be the best SPP for Australia. 

However, TMPA also performed reasonably well, considering the climatological 

calibration implemented recently in the precipitation processing algorithm. The 

structural similarity index (SSI), a map comparison technique using a moving 

window-based approach, was used to compare similarities between a pair of 

gridded precipitation maps in terms of local mean, variance, and covariance. All 

the SPPs showed discrepancies in the spatial structure of the mean annual 
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precipitation, predominantly over some high precipitation areas in Australia. 

These local scale differences were not detectable in conventional cell by cell 

comparison or simply by visual inspection. Therefore, SSI could be an effective 

method to evaluate satellite precipitation estimation algorithm.           

Keywords: Satellite precipitation products, GPM, TRMM, Australia, Structural 

Similarity Index 

1. Introduction 

Australia experiences a highly variable precipitation regime both in space and time, as 

the country has diverse climatic zones from the equatorial and tropical areas of the 

north, through the deserts of the western and central interior, to the temperate regions in 

the south. Precipitation over this driest inhabited continent on Earth plays a significant 

and critical role in dryland agriculture, groundwater recharge, domestic water supply, 

and healthy ecosystem functioning (Prosser 2011). Apart from these benefits, Australia 

is also prone to precipitation induced extreme hydroclimatic events, including floods, 

droughts, and occasional landslides (Sewell et al. 2016). 

Reliable information on the amount, spatial distribution, and temporal variation 

of precipitation is essential for modelling of various environmental processes and for 

the development of water related resource and hazard management policies. In 

Australia, rain gauge stations are mostly concentrated in the populated coastal regions 

(Li and Shao 2010, Chappell et al. 2013). A significant portion of the Australian 

continent has very few or even no rain gauges, particularly in drier inlands (Chen et al. 

2013). Further, rain gauge records are not always complete in space and time (Jeffrey et 

al. 2001). Inconsistencies and biases may occur due to different types of gauges, 
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methods of data recording, data processing and quality control for potentially erroneous 

values, and time of data recording among states and territories. 

Whilst weather radars are capable of providing precipitation information with 

finer spatial and temporal scales, they mostly cover coastal areas in Australia and their 

vertical coverage is limited to below 3048 m above mean sea level (Bureau of 

Meteorology 2020). Radar precipitation products are also exposed to uncertainties 

because of inaccurate radar reflectivity-rain rate (Z-R) relationships according to the 

type of precipitation, beam blockages by complex terrain, signal attenuation, and bright 

band effects (Maggioni et al. 2016, Mei et al. 2014). 

During the past two decades, the application of satellite-derived precipitation 

products (SPPs) has received notable attention for use in sparsely gauged and ungauged 

regions around the globe. SPPs have been adopted for various hydrometeorological 

applications, such as streamflow simulation (Xue et al. 2013), real-time flood 

forecasting (Li et al. 2015), drought monitoring (Vernimmen et al. 2012), landslide 

modelling (Rossi et al. 2017, Brunetti et al. 2018) as well as utilization in disease 

control framework (Schuster et al. 2011). 

 While numerous studies have been carried out around the world, only a limited 

number have focused on the evaluation of SPPs over Australia. Pipunic et al. (2015) 

investigated Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation 

Analysis (TMPA) real-time products 3B42-RT version 7 (Huffman et al. 2007) against 

rain gauge observations for 1024 satellite pixels, nearly 9% of the land surface across 

mainland Australia. Most of the satellite pixels were located in the south-western, 

south-eastern, and eastern temperate climate zones of Australia. A very limited number 

of pixels were selected in the tropical and arid climate zones simply due to the sparse 

rain gauge network in these regions. Ebert et al. (2007) examined the 3B42-RT, Climate 
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Prediction Centre (CPC) Morphing technique (CMORPH) (Joyce et al. 2004), and 

Precipitation Estimation from Remotely Sensed Information using Artificial Neural 

Networks (PERSIANN) (Sorooshian et al. 2000) precipitation products against gauge-

based interpolation estimates at the daily time scale. The study validated the older 

version of the products for a 5-year period from 2002 to 2006. Chen et al. (2013) 

evaluated gauge-adjusted TMPA data sets (3B42) with respect to gauge-based gridded 

reference estimates to capture tropical landfalls from 96 tropical cyclones passing over 

Australia during 1998-2011. Peña-Arancibia et al. (2013) also performed evaluation of 

3B42 version 6, CMORPH, and PERSIANN precipitation estimates against gridded rain 

gauge data at a coarse spatial resolution (i.e. 1° × 1° latitude/longitude) over the south-

western, south-eastern, eastern, and north-eastern parts of Australia. Pipunic et al. 

(2013) focused on a large arid basin (i.e. Lake Eyre basin) in Australia and validated 

3B42 version 7, CMORPH, and PERSIANN using in-situ rain gauge data at only 24 

locations. 

In summary, previous studies have either focused on a particular region of 

interest and/or validated a limited number of SPPs. None of the studies has evaluated 

SPP algorithms across the different climate regimes of Australia. In addition, no attempt 

has been made to evaluate the latest SPP, derived from the Global Precipitation 

Measurement (GPM) mission, over Australia. The GPM mission first released data in 

March 2014 and has been shown to provide markedly improved precipitation estimates 

(Hou et al. 2014). Several studies from elsewhere in the world have reported that 

precipitation products of GPM show superior performance compared to TRMM 

precipitation products (Tan and Santo 2018, Tang et al. 2016, Xu et al. 2017). 

In this study, Integrated Multi-satellitE Retrievals for GPM (IMERG) (Huffman 

et al. 2020, Huffman et al. 2019) with four other popular SPPs were selected to include 
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different types of satellite sensors i.e. infrared (IR) and passive microwave (PMW) as 

well as gauge-adjusted and non-adjusted products. This will facilitate quantification of 

the influence of these factors on SPP skill. Moreover, this study will uncover the 

strengths and limitations of the SPPs across diverse climate regions of Australia as the 

skill of these data sets varies in relation to precipitation type, climate, and topography 

(Pipunic et al. 2015). To explore the widest applicability and usage of the SPPs, the 

present analysis is carried out at daily, seasonal, and annual time scales.  

For the first time, a novel spatial map comparison method, namely the structural 

similarity index (SSI), was applied to quantify the spatial distribution of the different 

SPPs in comparison with the gauge-based SILO (Scientific Information for Land 

Owners) dataset (Jeffrey et al. 2001). The SSI metric was originally developed to 

quantify the distortion of a compressed image from a reference image (Wang et al. 

2004). More recently, SSI has been adapted for comparison of spatial ecological data 

(Wiederholt et al. 2019, Jones et al. 2016). However, SSI has not yet been applied for 

comparing spatial distribution of precipitation at different time scales. This SSI metric 

can identify local differences in the mean, variance, and spatial structure between two 

maps using a local neighbourhood-based approach.  

The aim of the present study is to compare and evaluate the skill of five SPPs 

over the diverse climate zones of Australia against the daily gauge-based SILO dataset 

over a period of 5 years from October 2014 to September 2019. The specific objectives 

of this study include: (a) to assess the accuracy of the selected satellite precipitation 

products in terms of the bias and temporal correlation using cell by cell comparison, (b) 

to apply structural similarity index as a quality indicator in the context of comparing 

spatial distribution of the mean annual and seasonal precipitation, and (c) to rank the 

SPPs according to a multiple criteria set for application in Australia. 



Page 7 of 45 
 

2. Study area and data 

2.1. Study area 

With an area of about 7.692 million km2, Australia is the sixth largest country in the 

world, extending from 9° S-44° S and 112° E-154° E (see Figure 1(a)). Precipitation in 

Australia is influenced by large scale atmospheric and oceanic drivers (Risbey et al. 

2009) and varies significantly across the country both spatially and temporally (King et 

al. 2014). The mean annual precipitation varies from less than 100 mm in central 

Australia to over 4000 mm in the wet tropics (Nicholls et al. 1997, Sivakumar et al. 

2014). The driest part of Australia extends over the west coast of Western Australia 

(WA), north-eastern and central regions of South Australia (SA), and parts of 

Queensland (QLD), Northern territory (NT), and New South Wales (NSW) (Figure 

1(a)). The northern part of the country (i.e. north-eastern WA, northern half of NT, and 

northern and north-eastern QLD) receives precipitation mostly during summer months 

from October through April. Monsoon depressions and tropical cyclones mainly bring 

precipitation over this region (King et al. 2014). The tropical east coast of QLD 

experiences the highest precipitation as the mountains are close to the coast (Figure 

1(a)). South-western WA, south-eastern Australia, and western Tasmania (TAS) receive 

precipitation during the cooler months from April to November (Maher and Sherwood 

2014). East coast lows also bring precipitation along the coast of NSW and Victoria 

(VIC) primarily in winter (King et al. 2014). The mountainous region of western TAS 

receives the highest precipitation during this season (Figure 1(a)). The mean annual 

precipitation ranges from over 2500 mm in the western coast of TAS to approximately 

600 mm along the eastern coast (Grose et al. 2013).  
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Figure 1(b) shows six major precipitation zones of Australia based on 

precipitation amount in two contrasting seasons i.e. summer (November to April) and 

winter (May to October). Summer dominant zone has wet summer season and dry 

winter season. Conversely, winter dominant region receives precipitation in winter 

season and experiences dry summer season. Almost equal amount of precipitation is 

observed over the uniform zone both in summer and winter seasons while arid zone 

experiences low precipitation throughout the year.          

2.2. SILO reference dataset 

SILO, produced by the Queensland Department of Environment and Science, provides 

gridded precipitation data at 0.05° × 0.05° (latitude/longitude) spatial and daily 

temporal resolution across Australia since 1889 (Jeffrey et al. 2001). This precipitation 

product is derived via spatial interpolation of in-situ rain gauge measurements. SILO is 

updated when new records arrive, since precipitation observations are still provided in 

paper form for many locations throughout the country. The rain gauge observations are 

subject to routine error checking which ensures optimal quality of the interpolated 

precipitation estimates achievable based on the available in-situ observations. SILO 

dataset is produced using gauge precipitation data recorded according to local time at 

the place of observation. The precipitation total for a date is the amount of precipitation 

accumulated over a 24-h period from 9 am of the previous day (Jones et al. 2009).   

2.3. SPPs 

Each SPP has its own estimation algorithm that differs from others with respect to 

sensors of observation, technique of merging input datasets, and spatial and temporal 

scales of output data. A brief description of each product is given below, and some basic 
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spatiotemporal metadata of the selected SPPs is summarised in Table 1. 

2.3.1. IMERG 

The surface precipitation rate is derived from the Goddard Profiling (GPROF) algorithm 

and Precipitation Retrieval and Profiling Scheme (PRPS) using precipitation related 

PMW observations (Huffman et al. 2020, Huffman et al. 2019). These PMW estimates 

are gridded at 0.10° spatial and half-hourly time scale. The gridded PMW estimates are 

then intercalibrated using the Ku-band Combined Radar and Radiometer (CORRA) 

product as the reference. To overcome the limited sampling of PMW sensors, the CPC 

morphing technique is integrated in the IMERG algorithm to include IR estimates. The 

morphing algorithm was first introduced as the key component of CMORPH product 

(Joyce et al. 2004) and was further improved by incorporating a Kalman filter-based 

interpolation scheme to increase the accuracy of the product (Joyce and Xie 2011). IR 

precipitation data is estimated using IR brightness temperature from the PERSIANN 

Cloud Classification System (CCS) algorithm (Hong et al. 2004). In IMERG up through 

version 05 (V05), the morphing algorithm is implemented as follows: (1) motion 

vectors are computed from PMW-calibrated IR data, (2) PMW estimates are morphed 

using the motion vectors where enough PMW estimates are available, and (3) IR data is 

integrated with the propagated precipitation estimates via CMORPH-Kalman filter 

approach where PMW data are too sparse. From IMERG V06, numerical model 

variable i.e. total precipitable water vapour (TQV) from Modern Era-Retrospective 

Analysis for Research and Applications, Version 2 (MERRA-2) is used to derive 

motion vectors for final product (Tan et al. 2019). The merged PMW-IR satellite only 

precipitation products are bias-corrected against monthly gridded gauge-based datasets 

from Global Precipitation Climatology Centre (GPCC) to produce research grade 
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IMERG precipitation data. IMERG V06B Final run dataset (hereafter only IMERG) 

was downloaded from the website at https://disc.gsfc.nasa.gov/SSW/ for evaluation 

over the current study area.   

2.3.2. TMPA 

Before October 2014, research-quality TMPA products are computed in four steps: (1) 

the PMW precipitation estimates from different satellite sensors are intercalibrated and 

combined. First, all PMW sensors data are calibrated to TRMM Microwave Imager 

(TMI) and then adjusted to TRMM Combined Instrument (TCI) using TCI-TMI 

relationship (Huffman et al. 2010). The TCI-TMI calibration is established for each 

calendar month while TMI calibrations for different PMW sensors vary depending upon 

the individual sensor. Then, TCI estimate is selected in the 3-h time window for each 

0.25° grid box if available. If not, TCI-adjusted sensors data are used. (2) PMW 

calibrated IR precipitation estimates are created. The PMW-IR calibration coefficients 

are calculated for each calendar month and are applied to each 3-h 0.25° IR grid box for 

that month (Huffman et al. 2010). (3) PMW and PMW calibrated IR precipitation 

products are combined in a way that PMW estimates are taken as it is when and where 

available and PMW-adjusted IR estimates are selected when PMW data are absent. (4) 

Finally, the multi-satellite PMW-IR merged 3-hourly precipitation estimates are 

summed over a calendar month (MS) and are combined with monthly gridded rain 

gauge data to produce monthly research-grade product 3B43 (SG). Now, the ratios of 

(monthly) SG/MS are computed for each 0.25° grid box and are applied to each 3-h 

precipitation field of the month, producing 3-hourly research quality product 3B42. 

TCI data are not available due to the ultimate decommissioning of the TRMM 

Precipitation Radar (PR) after 7 October 2014 (Braun et al. 2014). To continue the 
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production of research grade TMPA data, climatological calibration is adopted in the 

same way as the real time (RT) version of TMPA i.e. 3B42-RT from October 2014. 

Since, TCI and rain gauge datasets are not available in real time, two-stage 

climatological calibration is employed to create 3B42-RT (Huffman et al. 2010). 14 

years of data (1998-2011) is used to develop monthly (a) TCI-TMI relationship for 

providing TCI correction (described above in Step 1) and (b) 3B43-TCI adjustment for 

incorporating the mean of gauge data at the large scale (Huffman et al. 2010). It is 

noteworthy that 3B42-RT is not adjusted against monthly gauge data which is carried 

out for research grade products (described above in Step 4). However, climatologically 

calibrated 3B42 still includes gauge analysis as the precipitation product is produced 

about two months after the end of each month. This inclusion of gauge data overrides 

the 3B43-TCI adjustment described above in stage (b) of climatological calibration. The 

climatologically calibrated 3B42 dataset (hereafter only TMPA) is used in the present 

study. Consequently, to ensure homogeneity of the TMPA products, the present analysis 

commences in October 2014.    

2.3.3. CMORPH 

The latest version of CMORPH precipitation data with 1-h temporal and 0.25° spatial 

resolution were collected from the link: https://www.ncei.noaa.gov/data/cmorph-high-

resolution-global-precipitation-estimates/access/. The CMORPH precipitation 

estimation algorithm integrates precipitation related data from various PMW sensors 

aboard low-Earth-orbiting (LEO) satellites. The PMW precipitation products of each 

sensor are calibrated against those from TMI (Xie et al. 2017). As TMI is switched off 

on 8 April 2015, climatological calibration is adopted after April 2015 for each month, 

for each 10° latitude band, and for land and ocean separately (Xie et al. 2017). The 



Page 12 of 45 
 

TMI-adjusted PMW estimates from all sensors are combined taking only the one with 

the highest quality for each grid box. The daily snow cover map provided by the 

National Environmental Satellite, Data, and Information Service (NESDIS) is utilized to 

ensure the quality of the grid boxes covered by snow. In the meantime, motion vectors 

of precipitating clouds are derived from various geostationary-Earth-orbiting (GEO) 

satellites IR images (Joyce et al. 2004). Using motion vectors, the algorithm propagates 

combined PMW precipitation features from their respective measurement times to the 

target analysis time both in forward and backward directions. The raw CMORPH 

precipitation amounts are computed in space and time between two consecutive PMW 

observations by applying a time-weighted mean of the forward and backward 

propagated precipitation estimates. Hence, raw CMORPH determines the precipitation 

magnitudes using superior quality PMW estimates and employs the finer spatial and 

temporal resolution IR data indirectly. Finally, CPC daily gauge data is used to remove 

bias in the raw CMORPH data over land (Xie et al. 2017). 

2.3.4. PERSIANN 

PERSIANN precipitation products primarily relate IR observations of cloud-top 

brightness temperature (Tb) images with precipitation rates using a neural network 

technique (Hsu et al. 1997). Due to the high degree of uncertainty of the statistical 

relationships, the neural network model parameters are calibrated with PMW 

observations and are updated regularly as new precipitation estimates become available 

(Sorooshian et al. 2000). The current PERSIANN precipitation products with 0.25° × 

0.25° latitude/longitude spatial and hourly temporal resolution were downloaded from 

the location at http://chrsdata.eng.uci.edu/.  
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2.3.5. PERSIANN-CDR 

PERSIANN-CDR (Climate Data Record) algorithm is developed to create a consistent, 

long term, and high resolution SPP for climate studies. The product uses the historical 

archive of IR brightness temperature data from Gridded Satellite (GridSat-B1) in the 

International Satellite Cloud Climatology Project (ISCCP) (Ashouri et al. 2015). The 

PERSIANN algorithm is applied to the IR data to estimate 3-hourly precipitation rate at 

0.25° spatial resolution (Hsu et al. 1997, Sorooshian et al. 2000). The nonlinear 

regression parameters of neural network model are trained and kept fixed during rain-

rate estimation from IR data. The resulting precipitation products are resampled to 2.5° 

spatial and monthly time resolution and are bias-adjusted with Global Precipitation 

Climatology Project (GPCP) version 2.2 data (Adler et al. 2003). Lastly, the 3-hourly 

bias adjusted precipitation estimates are accumulated to produce daily PERSIANN-

CDR data. It is worth mentioning here that PERSIANN-CDR algorithm does not 

incorporate any PMW data apart from monthly GPCP data in an indirect fashion 

(Ashouri et al. 2015). Due to its relatively long record length (1983-present), 

PERSIANN-CDR is a unique dataset compared to other contemporary SPPs. This 

dataset is particularly valuable for regions where ground-based precipitation 

observations are inadequate or absent for long-term precipitation climatology studies 

(e.g., to study trends and observed changes in the mean as well as the extreme 

precipitation events to develop reliable polices for water resources management). 

3. SPP-SILO comparative analysis 

3.1. Spatiotemporal discretisation 

The daily accumulation time window of the SILO reference data which extends from 9 
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am to 9 am local time (i.e. 23:00:00 to 23:00:00 UTC (Coordinated Universal Time)) is 

used for the analysis as it is consistent with all SPPs except for TMPA and PERSIANN-

CDR. The daily accumulation for TMPA runs from 22:30:00 to 22:30:00 UTC. For 

PERSIANN-CDR, the daily precipitation accumulation is between 00:00:00 and 

24:00:00 UTC. Since, the analysis is performed at daily (24-h) time scale, it is assumed 

that the 0.5 h and 1.0 h offset times for TMPA and PERSIANN-CDR respectively, will 

not affect the results significantly. The comparative analysis was conducted over the 

time slice from October 2014-September 2019 to ensure the time homogeneity of the 

TMPA product whose processing algorithm underwent significant change in October 

2014 (see section 2.3.2).  

The IMERG and SILO products are available at 0.10° and 0.05° spatial 

resolutions respectively, while all other SPPs have identical spatial resolution of 0.25°. 

For the comparison, all SPPs and SILO dataset were spatially averaged on to a 0.50° × 

0.50° analysis grid. To remap IMERG at 0.25° scale, it is necessary to apply an 

interpolation technique. The present analysis considered 0.50° scale to avoid the effect 

of interpolation on precipitation estimates. 

3.2. Conventional skill metrics  

To assess the skills of the SPPs, bias ratio (BR) and correlation coefficient (CC) are 

computed at each grid location across the country for the study period.  

• BR indicates the ratio of SPP to the SILO value. The perfect score of BR is 1 

while overestimation and underestimation will lead to values greater than 1 and 

less than 1, respectively.  

• CC is applied to quantify the linear relationship between SPPs and SILO 

dataset. CC score varies between -1 and +1. CC value of +1 represents that 



Page 15 of 45 
 

SPPs have perfect positive correlation with SILO whereas -1 denotes perfect 

negative correlation. If CC value is 0, there is no linear relationship between 

SPP and SILO. BR and CC are expressed as follows: 

BR =
∑ 𝑃𝑃S𝑖𝑖
𝑁𝑁
𝑖𝑖=1

∑ 𝑃𝑃G𝑖𝑖
𝑁𝑁
𝑖𝑖=1

 (1) 

CC =
∑ (𝑃𝑃S − 𝑃𝑃S���)(𝑃𝑃G − 𝑃𝑃G���)𝑁𝑁
𝑖𝑖=1

�∑ (𝑃𝑃S − 𝑃𝑃S���)2𝑁𝑁
𝑖𝑖=1 �∑ (𝑃𝑃G − 𝑃𝑃G���)2𝑁𝑁

𝑖𝑖=1

 (2) 

where 𝑃𝑃S(= 𝑃𝑃S𝑖𝑖) is the SPP value for the 𝑖𝑖th day, 𝑃𝑃G(= 𝑃𝑃G𝑖𝑖) is the SILO 

precipitation value for the 𝑖𝑖th day, and 𝑁𝑁 is the number of daily precipitation event at 

each pixel location. 𝑃𝑃S��� and 𝑃𝑃G��� show the mean SPP and SILO precipitation amount, 

respectively for the 𝑁𝑁 number of daily events over each grid box.  

All Australia mean and standard deviation (STD) of BR and CC are also 

computed for each SPP. Mean and STD of BR are calculated using 𝑍𝑍 where 𝑍𝑍 is 

estimated as follows: 

𝑍𝑍 = � BR, BR ≥ 1
1 BR⁄ , BR < 1 (3) 

The lower the Z value and the higher the CC value, the better the skill of the 

SPP.  For the standard deviation, the lower the STD value, the smaller the spread among 

all grid boxes, the better the skill of the SPP because of spatial consistency. 

3.3. SSI 

As discussed previously, the SSI was initially developed for image analysis and has 

been applied to investigate spatial patterns in the field of ecology (Jones et al. 2016, 
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Wiederholt et al. 2019). This method to compare the precipitation maps at seasonal and 

annual time scales was applied to SPPs for the first time based on the literature. The 

method compares the value of each cell between SPP and SILO and considers the 

values of the neighbouring cells at the same time. For each cell, a locally moving 

window is used to include n numbers of neighbouring cells. An equal amount of weight 

�𝑤𝑤𝑗𝑗� is given to each of the neighbouring cells so that ∑ 𝑤𝑤𝑗𝑗 = 1𝑛𝑛
𝑗𝑗=1 . The size of the 

window is user-defined and has the lower limit of 3 × 3 cells which was adopted in this 

study, in order to provide information on more local differences between SPP and 

SILO. For two matrices representing gridded maps, the similarity in the mean (SIM), 

the variance (SIV), and the pattern or covariance (SIP) were estimated using the 

following equations (Jones et al. 2016, Wiederholt et al. 2019): 

SIM(𝑆𝑆,𝐺𝐺) =  
2𝜇𝜇𝑠𝑠𝜇𝜇𝑔𝑔 + 𝑐𝑐1
𝜇𝜇𝑠𝑠2 + 𝜇𝜇𝑔𝑔2 + 𝑐𝑐1

 (4) 

SIV(𝑆𝑆,𝐺𝐺) =  
2𝜎𝜎𝑠𝑠𝜎𝜎𝑔𝑔 + 𝑐𝑐2
𝜎𝜎𝑠𝑠2 + 𝜎𝜎𝑔𝑔2 + 𝑐𝑐2

 (5) 

SIP(𝑆𝑆,𝐺𝐺) =  
𝜎𝜎𝑠𝑠𝑔𝑔 + 𝑐𝑐3
𝜎𝜎𝑠𝑠𝜎𝜎𝑔𝑔 + 𝑐𝑐3

 (6) 

In the above equations, subscripts 𝑠𝑠 and 𝑔𝑔 represent values for maps 𝑆𝑆 (SPP) and 

𝐺𝐺 (SILO), respectively. Three constants 𝑐𝑐1, 𝑐𝑐2, and 𝑐𝑐3 were used to ensure numerical 

stability of these equations when the denominator value of the equations is close to zero. 

The values of these constants were calculated using the range (𝑅𝑅) of the values of the 

maps being compared and two constants, 𝑘𝑘1 = 0.01 and 𝑘𝑘2 = 0.03. Thus, 𝑐𝑐1 = (𝑘𝑘1𝑅𝑅)2, 

𝑐𝑐2 = (𝑘𝑘2𝑅𝑅)2, and 𝑐𝑐3 = 𝑐𝑐2
2

. Meanwhile, 𝜇𝜇𝑠𝑠 (𝜇𝜇𝑔𝑔), 𝜎𝜎𝑠𝑠2 (𝜎𝜎𝑔𝑔2), and 𝜎𝜎𝑠𝑠𝑔𝑔 show the local (3 × 3) 

estimates of the mean, variance, and covariance respectively, computed for each cell of 

the two maps S and G. These parameters are defined as follows (Jones et al. 2016): 



Page 17 of 45 
 

𝜇𝜇𝑠𝑠 =  � 𝑤𝑤𝑗𝑗𝑝𝑝𝑠𝑠𝑗𝑗
𝑛𝑛

𝑗𝑗=1
 (7) 

𝜎𝜎𝑠𝑠2 =  � 𝑤𝑤𝑗𝑗 �𝑝𝑝𝑠𝑠𝑗𝑗 − 𝜇𝜇𝑠𝑠�
2𝑛𝑛

𝑗𝑗=1
 (8) 

𝜎𝜎𝑠𝑠𝑔𝑔 = � 𝑤𝑤𝑗𝑗 �𝑝𝑝𝑠𝑠𝑗𝑗 − 𝜇𝜇𝑠𝑠�
𝑛𝑛

𝑗𝑗=1
�𝑝𝑝𝑔𝑔𝑗𝑗 − 𝜇𝜇𝑔𝑔� (9) 

where 𝑝𝑝𝑠𝑠𝑗𝑗  and 𝑝𝑝𝑔𝑔𝑗𝑗 indicate the precipitation values for the 𝑗𝑗th cell in the local 

window of the maps S and G, respectively. The weight for the 9 cells in the local 

window, 𝑤𝑤𝑗𝑗 = 1 9⁄ . The SSI is the product of the three components (i.e. similarity in 

the mean, variance, and covariance) and was estimated using the following equation: 

SSI (𝑆𝑆,𝐺𝐺) = [SIM(𝑆𝑆,𝐺𝐺)]𝛼𝛼. [SIV(𝑆𝑆,𝐺𝐺)]𝛽𝛽 . [SIP(𝑆𝑆,𝐺𝐺)]𝛾𝛾 (10) 

where 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are used to provide weights for the individual components 

and can be any value greater than zero (i.e. 𝛼𝛼 > 0, 𝛽𝛽 > 0, and 𝛾𝛾 > 0). In the current 

analysis, default values of these three parameters were used i.e. 𝛼𝛼 = 1, 𝛽𝛽 = 1, and 𝛾𝛾 =

1. Equation (10) conforms to the following criteria (Jones et al. 2016): 

(a) Symmetry: SSI (𝑆𝑆,𝐺𝐺) = SSI (𝐺𝐺, 𝑆𝑆); 

(b) Boundedness: −1 ≤ SSI (𝑆𝑆,𝐺𝐺) ≤ 1; and  

(c) Unique maximum: SSI (𝑆𝑆,𝐺𝐺) = 1, if 𝑆𝑆 = 𝐺𝐺. 

It is worth noting that SIM, SIV, and SIP are all evaluated locally. Thus, values 

of these similarity indices can be presented as maps as well, and the areal extent of the 

similarity maps is reduced somewhat compared to the original precipitation maps 

depending on the window size, i.e. 3 × 3 for this study. The similarity indices examined 

here have the following ranges (Jones et al. 2016, Wiederholt et al. 2019):  

SSI varies from -1 (complete dissimilarity between two maps) to +1 (complete 

similarity between two maps). SIM ranges between 0 (most dissimilar in the mean) and 

+1 (most similar in the mean). SIV also ranges from 0 (most dissimilar in spatial 
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variability) to +1 (most similar in spatial variability). SIP varies between -1 (negative 

correlation i.e. low values of one map correspond to high values in the other) and +1 

(positive correlation i.e. low or high values occur in the same area for both maps). SIP 

value of 0 indicates that there is no correlation between the two maps i.e. the 

distribution of the cell values is independent of one another. 

4. Results and discussion 

4.1. Spatial distribution of BR 

Figure 2 shows the spatial distribution of BR in the SPPs with respect to SILO dataset 

over Australia. All these five SPPs overestimate daily precipitation values (BR > 1.20) 

mostly over the arid zone, while PERSIANN also exhibits overestimation over the 

northern and north-western regions in summer dominant zone. The overestimation by 

IMERG, TMPA, CMORPH, PERSIANN, and PERSIANN-CDR consist of 28%, 20%, 

25%, 27%, and 30% of analysis grid pixels, respectively. Sub-cloud evaporation, 

precipitation suppression by desert dusts, and surface misclassification by PMW sensors 

may be the key factors in overestimation of precipitation over the semi-arid and arid 

regions by the SPPs (Dinku et al. 2010a). Further, Dinku et al. (2010b) have reported 

that PERSIANN shows pronounced overestimation for the daily precipitation totals 

over tropical regions of Colombia.  

In contrast, PERSIANN indicates serious underestimation (BR < 0.60) along the 

western, south-western, south-eastern, and eastern coasts and over TAS (Figure 2). 

TMPA, CMORPH, and PERSIANN-CDR also underestimate precipitation values for 

several analysis grid pixels over mountainous tropical east coast of QLD and 

mountainous western TAS whereas the underestimation is less extensive for IMERG. 

For PERSIANN, around 32% of the analysis grid boxes are below 0.80, while the 
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corresponding figures for IMERG, TMPA, CMORPH, and PERSIANN-CDR are only 

2%, 5%, 13%, and 4%, respectively. The underestimation along the coasts and over 

mountainous regions may be associated with warm orographic rain processes (Islam 

2018). 

 All-Australia mean and STD of BR of the SPPs are also shown in Figure 2. 

TMPA shows the lowest (1.15) all-Australia mean BR, while PERSIANN denotes the 

highest (1.47). Among the five SPPs, PERSIANN is the only product that does not 

incorporate any gauge-based bias correction in the precipitation estimation process. The 

implementation of gauge-based correction notably reduces the overestimation in the 

IMERG, TMPA, CMORPH, and PERSIANN-CDR datasets. It might be assumed that 

the extreme overestimation in PERSIANN in central and north-western Australia is 

compensated by severe underestimation mostly in coastal regions during the 

computation of all-Australia mean BR. That is why the Z value based on Equation (3) 

was used to compute all-Australia mean and STD of BR of the SPPs for the purpose of 

ranking and assessment.  

Histograms of BR for the five SPPs are presented in Figure 3 to show the 

variation in BR values over Australia. For all the SPPs, the majority of grid boxes (81% 

- 98%) have BR values in the range between 0.50 and 1.50. A small number of pixels is 

found beyond this range of BR for most of the SPPs, except for PERSIANN for which 

19% of grid cells have BR values greater than 1.50 or less than 0.50. This is 

substantially higher than those for the other products. The frequency distribution of BR 

shows an interesting feature for IMERG and PERSIANN-CDR. For these two products, 

the larger proportion of analysis grid boxes (83% and 76%, respectively) has BR greater 

than one. However, TMPA has the highest number of pixels (48%) with BR in the range 
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0.90 to 1.10. These results are in good agreement with the findings based on Figure 2 

for the study period. 

4.2. CC 

The spatial distribution of the correlation coefficient (CC) between the five SPPs and 

the gauge-based SILO dataset is shown in Figure 4. IMERG shows the largest positive 

correlation across the country except over some regions of WA and SA, followed by 

TMPA, CMORPH, and PERSIANN-CDR, whereas PERSIANN exhibits the poorest 

skill. IMERG, TMPA, CMORPH, PERSIANN, and PERSIANN-CDR have CC scores 

above 0.60 for nearly 93%, 75%, 68%, 19%, and 50% of analysis grid pixels, 

respectively. TMPA has lower CC values along the southern coast and over western 

TAS in winter precipitation zone. PERSIANN and PERSIANN-CDR show relatively 

better performance over the northern Australia in tropical summer precipitation regimes, 

while both products perform poorly over the southern Australia in winter precipitation 

regimes. This is particularly true for IR based products. However, gauge-based 

corrections in the PERSIANN-CDR product contribute to the improvement over IR-

only PERSIANN product.  

In tropical summer region, the precipitation systems are mostly convective 

(Ebert et al. 2007). In case of heavy convective precipitation events, both PMW and IR 

sensors have strong correlation with precipitation (Moazami et al. 2013). Moreover, IR 

sensors correlate cloud brightness temperature with surface precipitation rate without 

considering the amount of water available in the cloud. This could lead to the poor 

performance of PERSIANN in the tropical climate when little water is available in the 

cloud (Moazami et al. 2013). In comparison, majority of the precipitation in winter is 

stratiform associated with synoptic systems i.e. frontal systems and cut-off lows. Both 
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PMW and IR sensors have problems with detecting precipitation from these non-

convective clouds in winter (Ebert et al. 2007). Further, the snow cover, specially over 

mountainous areas, are misidentified as rain by PMW sensors (Ebert et al. 2007). 

Figure 5 presents the histograms of CC values for the five SPPs. IMERG clearly 

performs better than the other products over Australia, followed by TMPA, CMORPH, 

and PERSIANN-CDR, while PERSIANN shows the lowest correlation with ground-

based SILO product by comparison. For IMERG, a large number of grid pixels (more 

than 37%) has a CC value greater than 0.80, while all the pixels of PERSIANN (100%) 

have a CC value less than 0.80. 

4.3. SSI 

SIM, SIV, SIP, and SSI scores for the mean annual precipitation of the five SPPs 

relative to the SILO data for the study period are shown in Figures 6 and 7. SIM panels 

of IMERG, TMPA, CMORPH, and PERSIANN-CDR and SIV panels of IMERG and 

TMPA are not shown here as these metrics do not show much variation for these 

products (i.e. most of the pixel values of these panels are close to +1). For all the 

products, except PERSIANN, the local means of the SPPs are comparable with the local 

means of SILO across the country (SIM close to +1). PERSIANN shows some 

discrepancy over south-western WA and western TAS (see Figure 6(a)). As seen in 

Figure 6(c), larger differences in local variance are evident for PERSIANN as compared 

to SILO (SIV close to 0). CMORPH and PERSIANN-CDR also exhibit dissimilarities 

in variance over specific regions (see Figure 6(b) and 6(d)) whereas the differences are 

lower for IMERG and TMPA (not shown here). Although, PERSIANN-CDR has 

similar local means in comparison with SILO over the western TAS (SIM close to +1, 

not shown here), it displays larger differences in local variance over this region (see 
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Figure 6(d)). The reason behind this discrepancy is that SILO shows extremely high 

mean annual precipitation (> 1500 mm), while the mean annual precipitation of 

PERSIANN-CDR is close to being uniformly distributed (around 1400 mm). For 

CMORPH, some isolated grid pixels have higher variations over the arid region (see 

Figure 6(b)). CMORPH-based mean annual precipitation amounts were quite high for 

these pixels (> 200 mm) whereas SILO exhibits almost an identical mean annual 

precipitation of 150 mm. The areas with SIP scores close to +1 indicate the local 

regions where spatial structure between SILO and the SPP is similar (see Figure 6(e)-

(i)). It depicts that pixels with relatively high and low variance are in the same locations 

of the two maps being compared. Pixels with SIP close to -1 are areas where local 

spatial structure is dissimilar, pointing to the different spatial pattern in each underlying 

map. Comparing Figure 6(e)-(i), IMERG and TMPA look better than the other three 

products. CMORPH shows relatively lower SIP values throughout the country. 

PERSIANN and PERSIANN-CDR have very dissimilar spatial structure (-1 < SIP < 0) 

particularly over the Snowy mountains in south-eastern region of Australia and TAS. 

Figure 7 presents the SSI of the five SPPs, which is the product of the three 

metrics SIM, SIV, and SIP. Except for PERSIANN, SIV and SIP are the main 

components contributing to the dissimilarities in spatial structure between SPP and 

SILO over Australia, while SIM is an additional component for PERSIANN. The SSI 

scores indicate that satellite precipitation estimation algorithms are not fully able to 

capture the underlying processes that underpin the spatial patterns of the mean annual 

precipitation over some regions of Australia. For the products, the means of SSI are also 

shown for Australia, ranging from 0.81 for PERSIANN to 0.92 for IMERG, indicating 

high level of similarity in terms of the spatial structure between the five SPPs and SILO 

with respect to the mean annual precipitation. 
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4.4. Ranking of SPPs  

Table 2 presents the ranking of the SPPs based on a number of skill indicators. Rank 1 

indicates the best performing product whereas rank 5 that with the poorest skill. 

Comparing the total ranking points, IMERG stands out as having the best statistics 

while PERSIANN is the worst. TMPA is nearly as good as IMERG and the 

performance of CMORPH is comparable with PERSIANN-CDR. CMORPH, 

PERSIANN, and PERSIANN-CDR will not be considered further in this analysis 

because of their relatively poor performance. 

4.5. Seasonal SPP skills 

4.5.1. BR 

In order to investigate the seasonal performance, skill indicators were computed for 

summer (November-April) and winter (May-October) season over Australia. Figure 8 

shows the bias ratio of IMERG and TMPA as compared to SILO in summer and winter 

for the 5-year study period. IMERG and TMPA have reasonably good skills in 

estimating the amount of precipitation across the country over summer months, even 

though both products exhibit overestimation in the dry region. Further, overestimation 

of precipitation with IMERG is more pronounced than TMPA in winter precipitation 

zones in summer half of the year, e.g. the southwestern region of Australia. Interestingly 

for both products, the overestimation becomes more prominent over summer dominant 

tropical region during cold season. Precipitation occurs infrequently in winter in the 

tropical northern Australia, and it is associated with either midlatitude frontal systems or 

orographic uplifting of moist air along the northeast coast. Ebert et al. (2007) have 

reported that both PMW and IR sensors are unable to capture the tropical wintertime 
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precipitation. TMPA also underestimates the precipitation values in winter throughout 

the country, with severe underestimation over western TAS. This underestimation may 

be attributed to the climatological calibration implemented in the TMPA processing 

algorithm from October 2014 onward. The second reason is that the nominal coverage 

of TMI and PR of TRMM satellite was 38° N-S (Yong et al. 2013). The calibration 

beyond this latitude band is simply taken as it is just Equatorward of 40° for both 

hemispheres due to the absence of TCI data to use as the reference (Huffman et al. 

2010). In general, the climatological calibration improves TMPA precipitation estimates 

in summer, while poorer performances were observed for high latitudes, predominantly 

in winter. This finding was consistent with the result obtained by Yong et al. (2013). 

4.5.2. CC 

Figure 9 shows the performances of IMERG and TMPA to capture the temporal 

behaviour of observed summer and winter precipitation. In terms of CC, IMERG 

outperformed TMPA across the country in summer. However, the CC values for both 

SPPs were much lower over some parts of arid region. IMERG indicates improved 

performance to detect winter precipitation with little discrepancy in the summer 

dominant tropical region. Conversely, the performance of TMPA was relatively poor 

during cold season, although it performed better in eastern Australia. The improved 

performance of IMERG compared to its predecessor TMPA was associated with the 

most advanced sensors i.e. GPM Microwave Imager (GMI) and Dual-frequency 

Precipitation Radar (DPR). These sensors have excellent capability in detecting very 

light as well as heavy precipitation events (Hou et al. 2014). 
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4.5.3. SSI 

SSI metric to show the similarity in the spatial pattern of the mean seasonal 

precipitation based on IMERG and TMPA in comparison with the mean seasonal SILO 

data is presented in Figure 10. SIM, SIV, and SIP panels of IMERG and TMPA are not 

presented here as these metrics do not show much variation (i.e. most of the pixel values 

are close to +1). The performance of IMERG during winter appears to be better than 

TMPA. For the two products, differences in the spatial structure of the mean seasonal 

precipitation are found essentially in the northern Australia in summer, while these 

differences are common in the southern Australia in winter. Moreover, IMERG and 

TMPA show greater dissimilarities along the southern coast and in TAS, respectively in 

summer, whereas both products show poor performance over mountainous east coast of 

QLD in winter. For TMPA, some isolated areas also have lower SSI values in arid zone 

in winter.                       

5. Conclusions 

In this study, the latest version of five SPPs i.e. IMERG, TMPA, CMORPH, 

PERSIANN, and PERSIANN-CDR were evaluated against gauge-based gridded SILO 

dataset in Australia for the period from October 2014 to September 2019. The analysis 

was performed at daily, seasonal, and annual time scales. Bias ratio and linear 

correlation coefficient for Australia showed that IMERG and TMPA performed better 

than CMORPH, PERSIANN, and PERSIANN-CDR when compared with ground-based 

SILO data. According to the seasonal statistics, IMERG indicated relatively better 

performance in winter, although the BR and CC values were not so good over the 

summer dominant tropical region during this season. On the other hand, TMPA showed 

poorer skill in winter. Overall, IMERG stood out as the best product for Australia. The 
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performance of TMPA was also promising, considering the climatological calibration 

applied in the precipitation estimation algorithm from October 2014 due to the absence 

of TCI data. When all data were included in the analysis, the BR values of TMPA were 

better than those of IMERG. Further, TMPA had an advantage of IMERG in terms of 

seasonal BR in summer.  

The SSI metric was applied for the first time to compare a pair of gridded mean 

annual precipitation maps. An advantage of the SSI method is that SIM, SIV, and SIP 

were calculated to show similarities between the two underlying maps which could not 

be seen simply through visual inspection. The SSI map was computed by multiplying 

the SIM, SIV, and SIP maps, and the mean of the estimated SSI values for the map 

could be used as a simple but effective skill indicator. The SSI scores showed that all 

the SPPs had dissimilarities with ground-based SILO product in terms of the spatial 

pattern of the mean annual precipitation, particularly over some high precipitation 

regions. SIM, SIV, and SIP metrics revealed the local scale differences in the mean, 

variance, and covariance between the pair of maps being compared whereas these 

differences were not visible in conventional map comparison technique, for instance, 

cell by cell comparison applied in this study to estimate BR and CC. 

IR-only PERSIANN had the poorest skills around Australia, which was evident 

from the extremely high and low BR and lower CC values. For instance, BR was greater 

than 1.50 or less than 0.50 for almost 19% of the land surface in Australia. PERSIANN 

also had CC values less than 0.60 for approximate 81% of the land surface. However, 

bias-corrected PERSIANN-CDR showed better performance in the tropics where most 

precipitation occurs in summer. Despite the serious under- and overestimation in places, 

CMORPH indicated reasonable daily precipitation detection skills. The results pointed 
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to the fact that the current bias adjustment techniques of PERSIANN-CDR and 

CMORPH did not effectively reduce the biases of these two products in Australia.                 
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Table 1: Summary of the satellite precipitation products and the SILO reference dataset 

used in this study. 

Products Spatial resolution 

(degree) 

Time resolution 

(h) 

Sensor type Gauge-adjusted 

IMERG 0.10 0.5 PMW and IR Yes 

TMPA 0.25 3 PMW and IR Yes 

CMORPH 0.25 1 PMW Yes 

PERSIANN 0.25 1 IR No 

PERSIANN-CDR 0.25 24 IR Yes 

SILO 0.05 24 -- -- 

 

Table 2:  Ranking of the five satellite-based precipitation products according to 

different quality indicators. Rank of 1 is the best; the lowest in terms of the bias ratio 

(BR), the highest in terms of the correlation coefficient (CC) and structural similarity 

index (SSI), and the lowest in terms of the standard deviation (STD) for both BR and 

CC. 

Products BR CC SSI Total 

Mean STD† Mean STD† 

IMERG 2 1 1 1 1 6 

TMPA 1 2 2 2 2 9 

PERSIANN-CDR 3 3 4 3 3 16 

CMORPH 4 4 3 4 4 19 

PERSIANN 5 5 5 5 5 25 

†Third decimal place of STD values is used to rank the products if second decimal place has 

equal numbers. 
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Figure 1. (a) Mean annual precipitation (mm) for the period from October 2014 to 

September 2019 derived from SILO dataset and (b) major precipitation zones of 

Australia based on the median (50th percentile) annual precipitation and seasonal 

incidence. The seasonal incidence is determined from the ratio of the median 

precipitation values in November to April over that in May to October (source: Bureau 

of Meteorology).  
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Figure 2. Spatial distribution of the bias ratio for (a) IMERG, (b) TMPA, (c) CMORPH, 

(d) PERSIANN, and (e) PERSIANN-CDR products relative to gauge-based SILO data 

for the period from October 2014 to September 2019. The mean and standard deviation 

of the bias ratio are also shown for each product. 
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Figure 3. Histograms of the bias ratio derived from IMERG, TMPA, CMORPH, 

PERSIANN, and PERSIANN-CDR products for Australia for the period from October 

2014 to September 2019. 
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Figure 4. Spatial distribution of the correlation coefficient for the daily precipitation 

between gauge-based SILO data and (a) IMERG, (b) TMPA, (c) CMORPH, (d) 

PERSIANN, and (e) PERSIANN-CDR products for the period from October 2014 to 

September 2019. The mean and standard deviation of the correlation coefficient are also 

shown for each product. 
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Figure 5. Histograms of the correlation coefficient for the daily precipitation between 

gauge-based SILO data and IMERG, TMPA, CMORPH, PERSIANN, and PERSIANN-

CDR products for Australia for the period from October 2014 to September 2019. 
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Figure 6. Similarity in the mean annual precipitation between SILO data and the five 

satellite precipitation products in terms of the mean (SIM) for (a) PERSIANN, the 

variance (SIV) for (b) CMORPH, (c) PERSIANN, and (d) PERSIANN-CDR, and the 

pattern of spatial covariance (SIP) for (e) IMERG, (f) TMPA, (g) CMORPH, (h) 

PERSIANN, and (i) PERSIANN-CDR. Top colorbar is provided for Figure 6(a)-(d), 

while the bottom one corresponds to Figure 6(e)-(i).  
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Figure 7. Similarity in the mean annual precipitation between SILO data and the five 

satellite precipitation products in terms of the structural similarity index (SSI) score for 

(a) IMERG, (b) TMPA, (c) CMORPH, (d) PERSIANN, and (e) PERSIANN-CDR. The 

mean SSI score is also shown for each of the five products. 



Page 42 of 45 
 

 

Figure 8. Seasonal distribution of the bias ratio for IMERG and TMPA precipitation 

products relative to gauge-based SILO data for the period from October 2014 to 

September 2019. The mean and standard deviation of the bias ratio are also shown for 

the two products. 
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Figure 9. Seasonal distribution of the correlation coefficient for the daily precipitation 

between gauge-based SILO data and IMERG and TMPA products for Australia for the 

period from October 2014 to September 2019. The mean and standard deviation (STD) 

of the correlation coefficient are also shown for the two products. 
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Figure 10. Similarity in the mean seasonal precipitation between SILO data and IMERG 

and TMPA in terms of the structural similarity index (SSI) score for the period from 

October 2014 to September 2019. The mean SSI score is also shown for the two 

products. 
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Highlights 

1. Satellite-based precipitation products evaluated for Australia. 

2. Structural Similarity Index applied for the first time to compare the spatial distribution 

of precipitation. 

3. GPM-based IMERG stands out as the best for Australia out of the five products 

evaluated. 

4. TRMM-based TMPA performs reasonably well, considering its climatological 

calibration. 
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