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Abstract—While the fine-grained visual categorization (FGVC)
problems have been greatly developed in the past years, the Ultra-
fine-grained visual categorization (Ultra-FGVC) problems have
been understudied. FGVC aims at classifying objects from the
same species (very similar categories), while the Ultra-FGVC
targets at more challenging problems of classifying images at
an ultra-fine granularity where even human experts may fail to
identify the visual difference. The challenges for Ultra-FGVC
mainly comes from two aspects: one is that the Ultra-FGVC
often arises overfitting problems due to the lack of training
samples; and another lies in that the inter-class variance among
images is much smaller than normal FGVC tasks, which makes
it difficult to learn discriminative features for each class. To
solve these challenges, a mask-guided feature extraction and
feature augmentation method is proposed in this paper to extract
discriminative and informative regions of images which are then
used to augment the original feature map. The advantage of
the proposed method is that the feature detection and extraction
model only requires a small amount of target region samples
with bounding boxes for training, then it can automatically
locate the target area for a large number of images in the
dataset at a high detection accuracy. Experimental results on
two public datasets and ten state-of-the-art benchmark methods
consistently demonstrate the effectiveness of the proposed method
both visually and quantitatively.

Key Words: Ultra-fine-grained visual categorization, feature
augmentation, attention

I. INTRODUCTION

Fine-grained visual categorization (FGVC) has received
widespread attention and also gained great success in recent
years, owing to the increasing popularity of deep learning
methods and its powerful feature extraction ability. Unlike the
classic classification tasks which usually identify objects that
belong to different species like cars [[1I], birds [2]], and aircrafts
[3], the FGVC is widely recognized due to its advantages in
classifying objects in the same or closely related species, for
example (e.g,) different types of birds [4]. The challenge of
FGVC tasks lies in how to distinguish different categories with
high intra-class and small inter-class variance [3, 6} [7]. To
overcome this problem, various methods have been developed
in the past years, especially the deep-learning-based methods,
which dedicate to develop various convolutional neural net-
works (CNN) frameworks, have been successfully applied for
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Fig. 1: Comparison between samples from normal fine-grained
visual categorization task (aircraft) and ultra-fine-grained vi-
sual categorization task (leaf). The aircrafts/leaves in images
all belong to different families (cultivars). It is clear that the
Ultra-FGVC dataset has a much smaller inter-class variance
compare to the FGVC dataset.

increasing the feature representation abilities of the model and
learning more discriminative and informative features for the
FGVC tasks [4, [8] [9].

However, FGVC methods often heavily rely on large-scale
datasets for training, it is prone to fail when the training
data is insufficient. Moreover, FGVC methods also tend to



produce inferior performance when the inter-class variance
among images is small. Yu et.al [[10] regarded these problems
as Ultra-FGVC problems and first proposed the concept for
Ultra-FGVC. The Ultra-FGVC tasks are more challenging than
the FGVC tasks since the inter-class invariance of the former
is much smaller than the latter, namely the difference between
different classes is too subtle to identify, even human experts
may fail to identify their visual differences [L1]. Please refer
to Fig. [1| for the comparison of the FGVC task (aircraft)
and Ultra-FGVC task (leaf). Besides, the Ultra-FGVC tasks
often have smaller sample amounts for training with which
most FGVC models will encounter overfitting problems. In
this paper, a mask-guided feature extraction and augmentation
framework is proposed to solve these problems.

The proposed method mainly consists of two modules:
feature detection module and feature augmentation module.
An overview of the proposed framework is given in Fig. [
In the feature detection module, to help the model quickly
identify the most discriminative features from the training
samples, we propose to take advantage of more annotations
to guide the model training and obtain the detailed differ-
ences between categories. Specifically, it utilizes mask-guided
attention features focusing on the discriminative regions to
help the training process. During this process, YOLOvVS [12],
a state-of-the-art object detection model, is used to extract
the regions which contain the most discriminative features of
the objects. Since the objects in the Ultra-FGVC dataset are
similar, YOLOVS5 has superior ability in locating the desired
regions under this circumstance with just a few supervised
inputs. In the feature augmentation module, the feature map
is generated based on original images and masked images of
the selected regions. The selected regions generated by the
feature detection module are used as ground truths of attention
maps generation and enhance the original image. The attention
mechanism has been widely used to search for informative
regions in images [13} 14} 15} |16]]. However, most of them are
used in the unsupervised learning tasks, which may not make
full use of the ground truth information, resulting in incorrectly
identifying the discriminative regions in Ultra-FGVC tasks. By
contrast, the proposed work takes full advantage of the ground
truth information learned from the feature detection module
and forces the model to focus on the informative parts of the
object rather than other general or non-related features.

The contributions of our work are summarized as follows:

o A feature detection module is developed to locate the in-
formative parts of the objects and then generate different
levels of feature maps for the classification model.

o A feature augmentation module is developed to augment
the original data based on the attention maps learned from
the extracted features in the feature detection module.

o The feature attention mechanism makes important
progress to address the Ultra-FGVC problems and can
be easily extended to general Ultra-FGVC tasks.

The remainder of this paper is organized as follows: Related
works and Motivations are introduced in Section II. The

proposed method is presented in Section III. The datasets, im-
plementation details, experimental results, and ablation studies
are given in Section IV. Conclusions are drawn in Section V.

II. RELATED WORKS AND MOTIVATIONS
A. Ultra-fine-grained visual classification

Recently, some studies are conducted based on ultra-fine-
grained visual classification tasks [10} [11} [15, [17] due to its
great potential for solving real-world problems by identifying
objects with small inter-class variance. For example, there
still remain challenges for the existing methods to distinguish
different sub-class of plant cultivars which has great inter-class
variances, even human experts can hardly identify different
cultivars from their outward appearances. Larese et.al [18]
first explored an Ultra-FGVC task using a soy leaf dataset that
consists of 422 leaf images. They applied different machine
learning methods (random forest, support vector machine, and
penalized discriminant analysis) to classify leaves by using
their vein-trait details and obtained promising results even
compared with human experts. However, their dataset is not
released to the public and it only contains three different
cultivars of leaves, which is relatively simple to classify and
cannot prove the robustness of their methods. What’s more,
they only extracted the vein-trait details for classification while
other discriminative information was ignored including the leaf
contours, colours, sizes, etc, which limited the classification
performance. Recently, to solve these problems, Yu et.al [10]
released a dataset and developed a MaskCOV method to
address the Ultra-FGVC tasks on classifying cultivars of
leaves. Specifically, they made full use of image (patch)
level covariance features by splitting the images into equality
sections and randomly masking or shuffling them to form new
features which can help the network ignore the irrelevant parts
in images and better focus on discriminative details. Thus,
the performance of the MaskCOV method on these Ultra-
FGVC datasets significantly outperforms that of the normal
CNN methods like VGG-16 [19] and ResNet-50 [20]. In
addition, both the explorations of Ultra-FGVC on leaf datasets
mentioned above conclude that the main challenging of Ultra-
FGVC comes from the limited number of samples for training,
which means the model may encounter overfitting problems
and cannot locate the most discriminative regions. Two re-
search works mentioned above all used feature augmentation
techniques to reduce the overfitting problem and achieved
impressive classification improvements on Ultra-FGVC tasks.
Thus, advancing feature augmentation methods are feasible
solutions to address the Ultra-FGVC tasks. In the meantime,
the lack of Ultra-FGVC datasets is another important factor
that limits people to conduct more research works in this field.

B. Mask attention feature map

Attention network has already demonstrated its great suc-
cess in a variety of detection tasks. Sun et.al [21]] applied
mask attention mechanism on the features extracted by their
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Fig. 2: The Overview of the proposed network for Ultra-FGVC tasks. There are two main sections in this network. The first
section is the feature detection module which is used to detect and extract features of the regions of interest. Then it creates
mask images and generates attention feature maps as ground truth. The second section is the feature augmentation module.
It is used to aggregate all the attention maps to augment original features. The feature maps generated in the first section
supervise the attention map generation and update the 1 x 1 convolution layer.

one-squeeze multi-excitation module to enforce different cor-
relation parts in the image are trained. Song et.al [22] pro-
posed a masked-guided attention method to assist person re-
identification task. It was achieved by generating binary masks
of people in the image to get rid of the image background clut-
ters. Xie et.al [23] applied a mask-guided attention network to
detect occluded pedestrians. In this method, the pedestrians are
detected by the Faster R-CNN detector and extracted as feature
maps to support the VGG-16 classification network. Wang
et.al [15]] adopted mask attention network on leaf dataset.
Their method generated leaf vein structures as extra mask
annotations to augment the vein features of leaf images, which
improve the accuracy of Ultra-FGVC on leaf datasets by
approximately 2% compared with the baseline models. What’s
more notable is that there are relatively fewer studies based on
the mask attention mechanism applying to Ultra-FGVC tasks
in comparison with normal classification tasks. This gap is
addressed by implementing a mask attention module to allow
the model to focus on some target areas in the image. At the
same time, the features from the original images can also be
preserved.

C. Motivation

The proposed mask attention module is inspired by [22]
which demonstrated an effective way to combine the feature
attention maps with the original data so that the important
features can be emphasized when passing through the training
network. However, they used fully convolutional networks
(FCN) [24] to locate desired areas in images and extracted the
whole object (person) for generating mask images, which can
not be adopted on Ultra-FGVC tasks. Instead of using FCN to
extract target regions, our feature extraction method is more
advance because it can identify different discriminative areas

in the object and force the classification network learning from
those regions.

Besides, from the information provided in Fig. 1 and Fig.[2]
it is clear that the details of veins and outline structures in the
leaf image are important to identify different leaf cultivars in
the same species [25] 26| [27]. However, the existing methods
in [10] and [15] ignored the whole contour structure of the
leaf, to solve this problem, we propose to focus on both leaf
and vein structures and treat them as discriminative parts.
Considering that providing extra annotations for the samples
will enhance the discriminative part features [14} [15 [17],
this work further explores the advantages of making using
extra annotations details of leaf structures and outlines brought
to the current backbone model. The annotations are used to
create mask images as attention features with which the model
can focus on useful regions and extract more discriminative
information.

IIT. METHODS

The whole structure of the model can be divided into two
parts as shown in Fig. 2] The first part is to obtain the regions
with informative features. Original images are masked and
only discriminative parts will be saved as extra annotations.
They are used as ground truth to guide the attention maps
generation. The ground truth images are used to guide the
classification network and provide extra loss information so
that the overfitting problem can be eased. In the following,
we first introduce the feature detection module and then the
feature augmentation module.



A. Feature detection module

To obtain part-level features from the images, additional
bounding boxes are used to mark the desire regions and
train the feature detection model. Many strategies [28] have
been proposed to detect similar objects (features) in images
including YOLOvVS [12] and Fast R-CNN [29]. The complete
training process of the feature detection module consists of
the following two steps.

Step 1: Since for Ultra-FGVC tasks, the target objects
always have small inter-class variations, we first manually
mark out the target regions with which the detection model
can easily learn the structure within the specified regions even
with limited samples provided. Thus a small number of images
with boundary boxes can produce promising feature detection
results. The datasets used in this paper are different cultivars
of cotton and soy leaves. Fig. [3] demonstrates the results of
four sample leaf images features extracted by the proposed
feature detection module. Details of the leaf datasets will be
introduced in Section IV. The feature detection accuracy is
measured by the mean Average Precision (mAP) with the
pre-defined Intersection over Union (IoU) value [30] being
calculated by:

Interaction area
IoU= ————— (1
Union area

where IoU is set to 0.5 when determining the mAP in this
work.

Step 2: The second step involves using the training model to
find out the desired parts for all images in the same dataset. It’s
an efficient and labor saving way to quickly obtain informative
parts from a large number of images. The masked images are
converted from RGB images to binary format with only one
channel. Instead of resizing the mask image to the same size
as the original image, a ground truth feature map is extracted
by average pooling and normalization to get rid of the noise
during conversion. The final attention map can be obtained by
training the subsequent classification task based on the ground
truth map.

B. Feature augmentation module and classification

As can been seen from Fig. 2] the classification network
can run independently from the feature detection module. The
ground truth is only used to guide attention maps generation
in the training process. Given an image Z € RE*HXW,
its feature maps from the backbone network is denoted by
Mimg € RIXCXHXW "The attention feature maps are ob-
tained by first performing maximum pooling and average
pooling to the original feature maps separately. The mean
map Mean € RPVHXW and maximum map M, €
RVIXHXW from M, can be calculated by:

C
1 c
Mmean = 6 ; Mimg’ (2)

M ae = argmax{M;, . c., 3)

where M, represents the feature map in the c-th channel
of Mg, and C is the number of the image channels. Then
M pean and M, ., are aggregated into the final attention
map M ., which contains detailed features of the selected
regions. The ground truth generated from the detection module
are then used to train the final attention map and update
the parameters of the convolution layer. The M¢., can be
calculated by:

M e = Softmax(convy x 1 (Minaz| Mimean)) )

As shown in Fig. P the proposed network produces two
different attention maps focusing on different levels of features
on leaf vein M, and M, respectively during training.
Then both of them are used as attention maps to augment with
the original map in a different proportion. The final feature
map can be calculated by:

ffinal = aMimg + BMvein X Mimg + ’yMcon X Mimg
4)

a+B+y=1 (6)

where «, 3, and ~y control the tradeoff among different levels
of features. The proportion can be adjusted according to the
contribution of different regions. In this paper, the parameters
are empirically set to « = 0.3, § = 0.5, and v = 0.2 for all
our experiments.

C. Proposed loss function

The Cross-Entropy Loss L. is used as the loss for clas-
sification in this paper. Additionally, the loss between ground
truth features and the generated mask image are denoted as
L,ein and L.,,. These two losses aim to guide the model to
generate better feature maps and reduce overfitting. The Mean
Square Loss function L, is used to find the loss between
ground truth features M, and feature maps M., generated
from the classification network. It can be obtained by:

H-1 1

) -
T 2o Do MG = ML)

z=1 y=1

Lmse =

where x, y represent the pixel location, and H, W indicate
the height and width of the feature maps respectively. Then
we obtain the following overall loss L:

L= 6£vein + )\‘Ccon + /L‘C'ce (8)
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Fig. 3: Vein and contour regions extracted by the feature detection module from six different leaf samples. The left side of
the image shows cotton leaves and the right side belongs to soy leaves.

where the parameters &, A, and p control the tradeoff among
different types of loss, in this paper, these parameters are
empirically set to § = 0.1, A = 0.1, and p = 1, respectively.

IV. EXPERIMENTAL RESULTS

In this section, we carry out experiments on publicly
available databases, including CottonCultivar and Soy-
CultivarLocal [31]], for the Ultra-FGVC tasks, which serve
both to demonstrate the efficacy of the proposed mask-guided
feature extraction and augmentation framework and to verify
the theoretical viewpoints mentioned in the previous sections.
Experiments for mask detection, classifications, and ablation
studies are successively implemented to evaluate the effec-
tiveness of the proposed framework, comparing performance
across various evaluation measurements, and comparing with
ten recent benchmark methods including AlexNet [32], VGG-
16 [19]], MobileNetV2 [33], InceptionV3 [34]], ResNet-50 [20],
NTS-NET [33], DCL [9], fast-MPN-COV [36]], B-CNN [37]],
and MaskCOV [10].

A. Datasets

Two public leaf datasets are used in this experiment. The
training and testing sets are split with a ratio of 1:1 for model
evaluation.

1) CottonCultivar: The CottonCultivar dataset con-
tains 80 cultivars of cotton leaf images with 6 samples per
category. So there are 80 x 6 = 480 images in total. For the vein
and contour feature detection tasks, 30 images are annotated
manually of target regions using bounding boxes to train the

detection model. The training set for the classification task
has 720 images including 240 original images from different
categories and their 240 vein and contour masked counterparts.
The rest 240 images are used as the testing set.

2) SoyCultivarLocal: There are 200 categories in the Soy-
CultivarLocal dataset with each category containing six
soy leaf sample images. 70 images are used for the feature
detection task, while 1800 images are used for training the
classification task and another 600 images are used for testing.

B. Implementation Details

All the experimental results are implemented based on the
PyTorch framework with stochastic gradient descent (SGD)
being the optimizer. YOLOVS is used as the backbone for
feature detection with the size of the input image being 480 x
480 and the same other experiment settings as [12]].

Regarding the classification model, ResNet-50 is employed
as the backbone network and pre-trained on the ImageNet
[38]] dataset with almost the same parameter settings of the
work in [9] except for SGD momentum of 0.938 and initial
learning rate of 0.003 with a decrease factor of 10 every 100
epochs. In the training process, the masked images extracted
by the feature detection module are used as the ground truth
to help the model generate correct feature maps from the
original images. The input images are resized to 512 x 512 and
randomly cropped to 448 x448. On top of that, the images may
also be randomly horizontal flipped with 0.5 probability. In the
testing stage, the images are resized to 448 x 448 directly.



C. Mask Detection Results

The performance of feature detection is measured by the
mAP value. The accuracy of the detection process is listed
in Table [I] from which we can clearly see that the model
can correctly identify most of the target regions from the leaf
images and provide correct ground truth information for the
classification task. The feature detection results can be clearly
seen from Fig.

TABLE I: Feature region detection accuracy.

CottonCultivar
0.963

SoyCultivarLocal
0.995

mAP 0.5

D. Classification Performance

To evaluate the performance of the classification network
with extra augmented feature information, this paper compares
the classification result with ten state-of-the-art methods fol-
lowing the work of [10]. Five of those belong to normal CNN
methods, including AlexNet [32], VGG-16 [19], MobileNetV?2
[33]], InceptionV3 [34], and ResNet-50 [20]. The other five are
designed for FGVC or Ultra-FGVC methods: NTS-NET [35]],
DCL [9], fast-MPN-COV [36], B-CNN [37], and MaskCOV
[LO]. The accuracy details of different methods are shown in
Table [l from which we can see that the proposed method has
better prediction accuracy than any of these methods.

For the CottonCultivar dataset, the highest accuracy of the
proposed method achieves 62.08%, which is over 3.33% ~
39.16% higher than that of other methods. With regards to the
SoyCultivarLocal dataset, the highest accuracy from the pro-
posed method is 49.67% with over 3.50% ~ 30.17% increase
than the other methods, which demonstrates the effectiveness
of the proposed method.

TABLE II: The classification accuracies from different meth-
ods on the CottonCultivar and SoyCultivarLocal datasets. The
results of benchmark methods are from a published paper [10].
The results of the proposed method are highlighted in bold and
the best accuracy among the rest methods is marked in italics.

Top 1 Accuracy (%)

Method Backbone
CottonCultivar. SoyCultivarLocal.

Alexnet Alexnet 22.92 19.50
VGG-16 VGG-16 50.83 39.33
ResNet-50 ResNet-50 52.50 38.83
InceptionV3 GoogleNet 37.50 23.00
MobileNetV2 MobileNet 49.58 34.67
Improved B-CNN  VGG-16 45.00 3333
NTS-NET ResNet-50 51.67 42.67
fast-MPN-COV ResNet-50 50.00 38.17
DCL ResNet-50 53.75 45.33
MaskCOV ResNet-50 58.75 46.17
Proposed Method ResNet-50 62.08 49.67

E. Ablation studies

An ablation study of the method is made to further investi-
gate the effectiveness of the proposed method on both datasets
in terms of classification accuracy. Since the proposed method
takes advantage of two different types of features: vein feature
and contour structure, the ablation studies are performed by
successively using merely vein feature, contour structure, and
the combination of both of them. The performance on the
backbone ResNet-50 is used as the baseline. Table shows
the quantitative results of the study.

1) Backbone+vein feature: As mentioned before, the pro-
posed method utilizes the vein and contour details for data
augmentation. The first ablation study investigates the per-
formance of only applying vein feature map M ,;, on the
classification network. Compared with the performance with
the normal ResNet-50 model, the proposed method has a
significant improvement in the accuracy from 53.75% to
58.33% on the CottonCultivar dataset, which demonstrates
that the information in the vein regions can help to identify
different cultivars among leaves.

TABLE III: Ablation studies based on different combinations
of attention feature maps on CottonCultivar and SoyCultivar-
Local datasets.

Top 1 Accuracy (%)

Method

CottonCultivar. SoyCultivarLocal.
ResNet-50 53.75 45.33
ResNet-50 + M yein 58.33 46.16
ResNet-50 + Mcon 60.60 47.83
ResNet-50 + Myein + Meon 62.08 49.67

2) Backbone+contour structure: The second ablation study
use contour structure M., as augmentation details to train
the model. The accuracy increases to 60.60% on the Cotton-
Cultivar dataset. The performance on the SoyCultivarLocal
dataset also has a similar trend as that on CottonCultivar in
the above studies. It can be seen from these analyses that the
contours of leaves may have more discriminative information
compared with vein structure.

3) Backbone+vein feature+contour structure: By combin-
ing both leaf contour and vein structure, the classification
accuracy achieves 62.08% on the CottonCultivar dataset and
49.67% on the SoyCultivarLocal dataset.

In addition to the numerical results, the class activation
maps (CAM) [39] under different conditions of ablation stud-
ies on two datasets are also given to clearly show what kind
of features are really used for classification, as shown in Fig.
[ It is clear that augmenting the vein and contour structure
does help the model focus on the discriminative regions, which
verifies the feasibility and superiority of the proposed method.



(a) (b) © (e)

Fig. 4: Class activation maps (CAM) under different conditions
of ablation studies on two datasets. Applying feature augmen-
tation to the specific region helps the model focus on that area.
(a) Original images; (b) CAM by only using the backbone; (c)
CAM of applying both the backbone and vein feature maps;
(d) CAM of applying the backbone and contour feature maps,
and (e) CAM of applying backbone, contour, and vein feature
maps.

V. CONCLUSION

In this paper, a new feature extraction and augmentation
model is developed to support the Ultra-FGVC training task,
which overcomes the vulnerability of the existing methods
in solving problems of the overfitting and small inter-class
variance. The proposed method provides extra detail and
location information as masked images based on original leaf
images to the classification task. These mask features augment
the original feature map so that the classification network can
better focus on the most discriminative part of the images.
The whole process only requires a small amount of human
annotation and it does not require much computational power.
The performance of the feature augmentation method has a
great improvement compared to other state-of-the-art CNN
or FGVC methods based on the evaluation experiments on
two Ultra-FGVC leaf datasets. This feature detection and
augmentation strategy can also be applied to other Ultra-
FGVC problems as a promising solution to improve prediction
accuracy in the future.
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