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Abstract 

Existing prediction algorithms for the identification of heart failure (HF) patients at high risk of 

readmission or death after hospital discharge are only modestly effective. We sought to validate a 

recently developed predictive model of 30-day readmission or death in HF using an Australia-wide 

sample of patients. This study used data from 1046 HF patients at teaching hospitals in five Australian 

capital cities to validate a predictive model of 30-day readmission or death in HF. Besides standard 

clinical and administrative data, we collected data on individual socio-demographic and socio-

economic status, mental health (PHQ-9 and GAD-7 score), cognitive function (MoCA score), and 2D 

echocardiograms.  The original sample used to develop the predictive model and the validation 

sample had similar proportions of patients with an adverse event within 30 days (30% vs 29%, 

p=0.35) and 90 days (52% vs 49%, p=0.36). Applying the predicted risk score to the validation 

sample provided very good discriminatory power (C-statistic=0.77) in prediction of 30-day 

readmission or death. This discrimination was greater for predicting 30-day death (C-statistic=0.85) 

than for predicting 30-day readmission (C-statistic=0.73). There was little difference in the 

performance of the predictive model among patients with either LVEF<40% or LVEF≥40%, but an 

attenuation in discrimination when used to predict longer-term adverse outcomes. In conclusion, our 

findings confirm the generalizability of the predictive model that may be a powerful tool for targeting 

high-risk HF patients for intensive management. 

Key words: algorithm; mortality; rehospitalisation; risk score; quality. 
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Heart failure (HF) is the leading cause of hospitalization and re-hospitalization for adults aged >65 

years.
1, 2

 High readmission rates following an index HF admission continue to be a problem in many 

countries and across different racial and ethnic groups.
3-5

 In Australia, approximately 30,000 patients 

are diagnosed with HF each year and the costs for HF readmissions exceed $1 billion annually.
6
 

Readmission for HF is a powerful independent predictor of death among patients with HF, as well as 

being a serious health economic problem.
7, 8

 Readmissions shortly after discharge are expensive and 

often considered preventable.
2
  Recently, all-cause mortality and readmission within 30 days of a 

prior hospitalization for HF has emerged as a major focus of quality improvement and payment 

reform.
9
 However, despite a number of interventions, readmission rates have been difficult to 

reduce.
10

 This may be partly due to failure to target the interventions to patients at high risk of 

readmission. Financial constraints also become a problem when these interventions are applied 

indiscriminately to all patients.
11

 We have recently developed a predictive model for 30-day 

readmission or death in HF,
12

 which combined both clinical and non-clinical factors to provide 

excellent discriminatory power (C-statistic 0.82). We now aim to validate this predictive model on an 

Australia-wide cohort of HF patients. 

 

Methods 

This study used data from 1046 consecutive HF patients who were recruited during 2015–

2017 in most Australian States (Tasmania, Victoria, New South Wales, Queensland and South 

Australia). Patients were identified as eligible if their primary diagnosis was confirmed as HF by their 

treating physicians. Exclusion criteria were: <18 years of age, inability to provide written consent, 

moderate or worse primary mitral or aortic valve disease, concomitant unstable angina pectoris or 

acute myocardial infarction as the primary cause of admission, cardiac device malfunction, infective 

endocarditis, patients with left ventricular assist device, patients with potentially reversible left 

ventricular (LV) dysfunction including post-partum, alcoholic cardiomyopathy and hyperthyroidism, 

and concomitant terminal non-cardiac illnesses that could influence 12 month prognosis. All patients 
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provided written consent. The study was approved by the Tasmanian Human Research Ethics 

Committee. 

 Clinical data included past medical history (including chronic kidney disease based on 

discharge coding), medications, physical measurements and blood tests before discharge. Standard 

physical measurements included body weight, blood pressure, heart rate, respiratory rate, and 

electrocardiography. Two-dimensional echocardiographic parameters included LV ejection fraction 

(EF), LV volume index, left atrial volume index, right atrial pressure, pulmonary arterial systolic 

pressure and estimated LV filling pressure (E/e’), using standard techniques and procedures following 

the American Society of Echocardiography guideline.
13

 Biochemical measurements included troponin 

I, C-reactive protein, albumin, blood urea nitrogen, sodium, creatinine, hematocrit, hemoglobin, 

cholesterol, and B-type natriuretic peptide. HF functional class was defined using the New York Heart 

Association (NYHA) Class. The Charlson comorbidity index was calculated as previously 

described.
14

 Patients were considered to have a history of life-threatening arrhythmia if they had an 

episode of ventricular tachycardia or fibrillation shortly prior to (as part of the reasons for the baseline 

admission) or during their admission with HF. Patients’ cognitive function was assessed before 

discharge by trained personnel using the Montreal Cognitive Assessment (MoCA). The MoCA 

examines different domains of cognition and was designed to detect mild cognitive impairment with 

excellent sensitivity (90%) and specificity (87%).
15

 A MoCA score <26 was used to define mild 

cognitive impairment. Patients who did not finish college/grade 12 had one point added as instructed 

in the MoCA protocol. Depression was assessed using the Patient Health Questionnaire (PHQ-9), with 

cut-points of 5, 10 and 15 used to define mild, moderate and moderately severe/severe depression 

respectively.
16

  Anxiety was assessed using the Generalized Anxiety Disorder scale (GAD-7), with 

cut-points of 5, 10 and 15 used to define mild, moderate and severe anxiety respectively.  

 Non-clinical data included age, sex, language background, marital status, living alone, 

education, residential address, medical insurance, and any home health care services provided. 

Socioeconomic status based on residential postcode was derived using the Australian Bureau of 

Statistics Index of Relative Socioeconomic Disadvantage.
17

 The remoteness index - based on 
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residential address - reflects how far away a geographical area is from service towns of different sizes 

based on road distance.
18

 

 This model was developed to predict 30-day all-cause readmission or death in HF.
12

 It 

incorporates social history (living alone or with others), medical data (life-threatening arrhythmia, 

heart rate, NYHA classification, and whether being discharged in winter), cognitive function, mental 

health, echocardiographic data (left atrial volume index, right atrial pressure) and lab test (blood urea 

nitrogen, serum albumin). The development of this model has been previously described.
12

 Briefly, 

logistic regression was used to determine and rank the variables that served as best predictors of 

readmission or death. A predictor was included in the final model if it contributed ≥0.01 unit to the 

area under the curve.  

 For descriptive statistics, we reported categorical variables as the number of patients with 

percentages, and continuous variables as median with interquartile range. A score of predicted risk 

was calculated for each patient in the validation sample using the predictive model coefficients and 

intercept that were previously described in the original publication.
12

 These predicted scores were then 

converted to percentages to reflect how likely a patient was going to have an adverse outcome. We 

also used this predicted score to estimate the area under the curve and compared against the observed 

risk of having the adverse outcomes. Plots of the predicted risk vs. the observed risk outcomes were 

also used to evaluate the model’s calibration. Youden’s index was used to define the optimal cut-point 

of the risk score and to accordingly calculate its sensitivity and specificity.  

 

Results 

Table 1 compares baseline characteristics between patients in the original sample whose data 

were used to develop the predictive model and patients in the validation sample. The two samples of 

patients had similar age at admission and similar male-female ratio. However, there was significantly 

lower proportion of patients in the validation sample living outside of a major city, having a history of 

smoking and having a history of arrhythmia. This may explain for the lower use of antiarrhythmic 

medication in the validation sample compared with that in the original sample, despite of similar use 

of other HF medications. While the proportion of HF patients with reduced LVEF was similar, the 
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validation sample had more patients with more severe HF (higher NYHA class) and more dilated LV 

than the original sample. There was no significant difference in cognitive function and other 

comorbidities between the two samples. 

In general, the two samples had no significant difference in short-term adverse outcomes after 

discharge. Approximately one in three patients in either sample was readmitted or dead within 30 

days of discharge, and one in two patients was readmitted or dead within 90 days (Table 2). Table 3 

illustrates how to calculate predicted risk using the coefficients and intercept from the predictive 

model. The average risk score of the original sample (32%±27%) and the validation sample 

(34%±27%) were similar (p=0.42). 

Figure 1 shows the area under the curve when predicting adverse outcomes within 30 days of 

discharge. Applying the predicted risk score to the validation sample provided very good 

discriminatory power (C-statistic=0.77 [95% CI: 0.74, 0.81]) in prediction of the composite outcome 

within 30 days of discharge in HF. This discrimination was greater for predicting 30-day death (C-

statistic=0.85 [95% CI: 0.79, 0.91]) than for predicting 30-day readmission (C-statistic=0.73 [95% CI: 

0.69, 0.77]). Figure 2 demonstrates little difference in the performance of the predictive model in 

patients with either LVEF<40% or LVEF≥40%. However, there was an attenuation in discriminatory 

power of the model when used to predict outcomes within 90 days of discharge (as shown in Figure 

3). 

Figure 4 shows very good calibration of the predictive model with observed events by 

plotting predicted vs. observed risk of 30-day readmission or death within the risk deciles. Although 

slightly overestimating the absolute values of observed risks, the predictive model has shown 

excellent accuracy in risk stratification among HF patients (Figure 5). 

Youden’s index was used to define optimal cut-points of the risk score. A predicted score of 

44% risk (sensitivity 65%, specificity 81%) appeared to be optimal for 30-day readmission or death, 

and a predicted score of 29% risk (sensitivity 64%, specificity 65%) for 90-day readmission or death. 

 

Discussion 
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The short-term risks of death or readmission after a hospitalization with HF remain very high. 

These outcomes are important for health care quality improvement, and are a central focus for 

patients, health care providers, taxpayers and policy makers. Effective targeting of disease 

management programs is likely to reduce readmissions at the same time as saving money. This, 

however, requires a reliable tool to identify high-risk patients who are most likely to benefit from the 

interventions.  

This study used an Australia-wide sample of HF patients to validate a previously developed 

risk score of 30-day readmission or death. This model has shown excellent external validation and 

calibration, and may be used to predict both short-term mortality and readmission with very good 

discrimination. The availability of this risk score will facilitate targeting high-risk HF patients for 

intensive management, and therefore help to reduce readmissions. High-intensity home visiting 

programs may reduce all-cause readmission or death within 30 days of discharge among HF patients. 

Such programs are certainly expensive. Although a more detailed cost-effective analysis is required, 

the availability of our risk score may allow high-risk HF patients to be targeted for these programs 

and reduce cost. There was little difference in the performance of this model in predicting outcomes 

for patients with either reduced or preserved LVEF. The discriminatory power of the model was 

attenuated when used to predict longer-term adverse outcomes.  

A systematic review of readmission risk scores in 2008 showed that the strongest prediction 

models provided only poor discrimination (C-statistic<0.6) in predicting readmissions among HF 

patients.
19

 Several risk scores for the prediction of HF readmission have been developed and 

validated.
3, 20-24

 Despite the use of large samples, these models - which mainly consist of standard 

clinical parameters and comorbidities – are only modestly effective in predicting short-term outcomes 

in HF. These findings suggest that some important determinants of readmission were missing in the 

previous models. Of these previous models, the one developed by Amarasingham
24

 combined a range 

of clinical and non-clinical factors (some of which are similar to those of ours such as living 

arrangement and mental health) and is therefore most discriminative (C-statistic 0.72). However, this 

model used data from the electronic medical record, and did not include echocardiographic 
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parameters and cognitive function that are shown to be very important for 30-day adverse outcomes in 

our study. This may explain their lower C-statistic than that of our prediction model – which, to the 

best of our knowledge, has the greatest discriminatory power so far reported for prediction of short-

term adverse outcomes among HF patients. 

These factors may include readiness for discharge, ability for self-care and family/social 

support. A discharge echocardiogram to assess the level of congestion may help to determine if a 

patient is ready for discharge. A cognitive function test reflects a patient’s ability for self-care, which 

is a key to health maintenance and adherence to treatment. Whether a patient is living alone, with 

family or in a nursing facility indicates how much support the patient may need. All these factors 

were incorporated in the model that we tested in this study, which resulted in a very good 

predictability of both 30-day readmission and 30-day death in HF. Our validation of the model using 

an Australia-wide cohort of HF patients further confirms its generalizability. 

Common clinical factors such as prescription of evidence-based medications or Charlson’s 

comorbidity index, which are known to be predictors of long-term adverse outcomes in HF, were 

associated with the outcome in univariable analysis. However, these associations became weaker in 

multivariable analysis and did not add incremental value to the discriminatory power of the prediction 

model. These findings suggest that readmission shortly after discharge may be driven, not only by 

quality of care or severity of disease, but also by other factors such as social or family support, 

cognitive function or mental health. 

Our findings support the importance of multidisciplinary care to reduce short-term adverse 

outcomes in HF patients. Some of the risk factors in the model are potentially reversible with 

appropriate care. Although limited data show that therapeutic interventions to improve cardiac 

function such as heart transplantation,
25

 medications,
26, 27

 and exercise training
28

 might improve 

cognition in some HF patients,  it is likely that additional support and assistance would help most 

patients with poor cognitive function. Provision of greater nursing and medical attention to enhance 

adherence to treatment plan and medications may reduce short-term readmission and mortality risk 
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among these high risk patients. Depression is also potentially modifiable with pharmaceutical and/or 

psychological treatment. Although the mechanism underlying the relationship between depression and 

readmission or death in HF is unknown, data have shown that differences in help-seeking behaviour,
29

 

health behaviour and treatment adherence
30

 may play a role. 

This study included a range of patients from a multicenter study of HF, which favors the 

generalizability of our findings. The prospective nature of this study allowed us to collect a wide 

range of potential predictors and avoid the known limitations of administrative codes as in 

retrospective studies. The very good discriminatory power from our external validation further 

confirms the applicability of the prediction model to an external HF population.  

Because of the use of a composite outcome, the prediction model could not differentiate 

strong predictors of one outcome from those of the other. However, the primary aim of this work was 

to develop a simple and feasible tool that can quickly and accurately stratify HF patients in the busy 

setting of clinical practice. This model has proven to have excellent discrimination for both 

readmission and mortality. Although the predicted risks appear to overestimate the absolute values of 

observed risk, they are strongly correlated and show consistent risk stratification among HF patients. 

Our sample however included mostly Caucasian patients, and validation of the model on other ethnic 

groups is required. 

In conclusion, short-term risk of readmission and death after hospitalization for HF remain 

very high. Preventing such events is complex and requires multidisciplinary efforts. Our previously 

developed predictive model – which had excellent external validation and calibration – may be a 

powerful tool for this purpose. The availability of this model will facilitate targeting high-risk HF 

patients for intensive management, and therefore may help to reduce readmissions. 
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Figure legends 

Figure 1. Area under the curve of the predictive model with 30-day death (A), 30-day readmission 

(B) and the composite outcome (C) 

Figure 2. Area under the curve of the predictive model with 30-day readmission or death among 

patients with LVEF<40% (A) and LVEF≥40% (B). 

Figure 3. Area under the curve of the predictive model with 90-day death (A), 90-day readmission 

(B) and the composite outcome (C) 

Figure 4.  Calibration of the predictive model with observed events. The graph plots the predicted 

risk vs. observed 30-day readmission or death within the risk deciles (intercept 3.02, slope 0.79, R
2
 

96%, P<0.001).  

Figure 5. Accuracy of the predictive model for risk stratification among HF patients. There is a slight 

over-estimation of the absolute values of observed risks. 

  

Page 13 of 36



AJC-D-17-02218 

 

14 

 

Table 1. Patients’ baseline characteristics 

 Original sample
*
 

(n=430) 

Validation sample 

(n=1046) 

 

Potential predictors Description Description p 

Age at admission (year) 75 [64, 83] 76 [67, 84] 0.72 

Men  236 (55%) 607 (58%) 0.78 

Completed education (≥ High school) 220 (52%) 523 (50%) 0.31 

Living alone 129 (30%) 366 (35%) 0.85 

Living outside of a major city 172 (40%) 345 (33%) 0.05 

Smoker (ever vs never) 301 (70%) 721 (69%) 0.75 

Solid organ tumor 30 (7%) 73 (7%) 0.97 

Diabetes mellitus     0.37 

Mild, without complications 125 (29%) 293 (28%)  

Complications/End-organ damage 51 (12%) 115 (11%)  

Life-threatening arrhythmia 39 (9%) 67 (6%) 0.003 

Cerebrovascular disease or stroke 51 (12%) 105 (10%) 0.13 

Discharge during winter 116 (27%) 261 (25%) 0.32 

Heart rate 75 [68, 86] 76 [68, 88] 0.50 

Charlson comorbidity index 7 [5, 9] 7 [6, 9] 0.74 

Chronic kidney disease 155 (36%) 377 (36%) 0.73 

Cardiac catheterization (ever vs never) 172 (40%) 408 (39%) 0.87 

NYHA class     <0.001 

Class II or under 241 (56%) 418 (40%)  

Class III 150 (35%) 408 (39%)  

Class IV 39 (9%) 220 (21%)  

LVEF < 40% 206 (48%) 481 (46%) 0.55 

Right atrial pressure (mmHg) 8 [3, 15] 8 [3, 15] 0.45 
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Left atrial volume index (ml/m
2
) 42 [30, 60] 45 [34, 62] 0.77 

Pulmonary systolic pressure (mmHg) 38 [30, 48] 38 [30, 48] 0.52 

Left ventricular volume index (ml/m
2
) 56 [43, 80] 65 [47, 83] 0.001 

Blood urea nitrogen (mg/dL) 10.5 [7.6, 16.1] 10.1 [7.4, 15.1] 0.42 

B-type natriuretic peptide (pg/mL) 784 [416, 1723] 1352 [788, 3581] 0.003 

Serum albumin (g/dL) 35 [31, 38] 33 [30, 36] 0.36 

C-reactive protein (mg/L) 10.5 [5.0, 25.4] 13.0 [5.8, 29.0] 0.30 

Serum creatinine (µmol/L) 116 [90, 153] 112 [88, 152] 0.21 

MoCA score 23 [18, 26] 22 [17, 26] 0.69 

GAD-7 score 4 [1, 10] 4 [1, 9] 0.55 

PHQ-9 score 9 [4, 15] 8 [4, 14] 0.37 

Aldosterone use 202 (47%) 471 (45%) 0.84 

ACE-inhibitor/ARB use 348 (81%) 868 (83%) 0.31 

Antiarrhythmic medication use 73 (17%) 125 (12%) 0.005 

Beta-blocker use 327 (76%) 805 (77%) 0.74 

*
The sample of patients that was used to developed the risk score of 30-day readmission or death in heart 

failure. 

Data are shown as median [interquartile range] or number (percentage). 
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Table 2. Short-term adverse outcomes in heart failure 

Observed risk of adverse outcomes Original sample
* 
(n=430) 

n (%) 

Validation sample (n=1046) 

n (%) 

p 

Within 30 days Death 38 (9%) 72 (7%) 0.09 

 Readmission 92 (21%) 249 (24%) 0.11 

 Composite outcome 130 (30%) 303 (29%) 0.35 

Within 90 days Death 64 (15%) 135 (13%) 0.15 

 Readmission 185 (43%) 439 (42%) 0.36 

 Composite outcome 224 (52%) 509 (49%) 0.36 

*
The sample of patients that was used to developed the risk score of 30-day readmission or death in 

heart failure. 
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Table 3. Estimating risk of 30-day readmission or death in heart failure using the prediction model 

Predictors Value  Coefficient  Score  

NYHA class ..…… × 0.67 = ..……  

MoCA score ..…… × −0.10 = ..…… 

 

Left atrial volume index (ml/m
2
) ..…… × 0.02 = ..…… 

Right atrial pressure (mmHg) ..…… × 0.06 = ..…… 

Discharge in winter (Y=1 vs N=0) ..…… × 0.49 = ..…… 

Living alone (Y=1 vs N=0) ..…… × 0.72 = ..…… 

Blood urea nitrogen (mmol/l) ..…… × 0.04 = ..…… 

PHQ-9 score ..…… × 0.03 = ..…… 

Heart rate (per bpm) ..…… × 0.02 = ..…… 

Albumin (g/dl) ..…… × −0.05 = ..…… 

Life-threatening arrhythmia (Y=1 vs N=0) ..…… × 1.07 = ..…… 

Intercept    = −3.31 

   Total score =   

 

 

  

0
20

40
60

80
10

0

Es
tim

at
ed

 ri
sk

 o
f 3

0-
da

y 
re

ad
m

is
si

on
 o

r d
ea

th
 (%

)

-4 -2 0 2 4
Total score

Page 17 of 36



AJC-D-17-02218 

 

18 

 

 

Page 18 of 36



AJC-D-17-02218 

 

19 

 

Figure 1A_bestsetConverted.png 
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Figure 1B_bestsetConverted.png 
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Figure 1C_bestsetConverted.png 
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Figure 2A_bestsetConverted.png 
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Figure 2B_bestsetConverted.png 
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Figure 3A_bestsetConverted.png 
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Figure 3B_bestsetConverted.png 
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Figure 3C_bestsetConverted.png 
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Figure 4_bestsetConverted.png 
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