
Flexible and Fault-Tolerant Communication for Safety Critical
Real-Time Systems

Author
Raja, Fawad R

Published
2022-11-21

Thesis Type
Thesis (PhD Doctorate)

School
School of Info & Comm Tech

DOI

10.25904/1912/4711

Rights statement
The author owns the copyright in this thesis, unless stated otherwise.

Downloaded from
http://hdl.handle.net/10072/420124

Griffith Research Online
https://research-repository.griffith.edu.au

http://dx.doi.org/10.25904/1912/4711
http://hdl.handle.net/10072/420124
https://research-repository.griffith.edu.au


Flexible and Fault-Tolerant Communication for

Safety Critical Real-Time Systems

Fawad Riasat Raja

B.Sc. Software Engineering (Hons.)

M.Sc. Computer Engineering

School of Information and Communication Technology

Griffith University

Australia

SUBMITTED IN FULFILMENT OF THE REQUIREMENTS OF THE

DEGREE OF DOCTOR OF PHILOSOPHY

April 2022





Abstract

In distributed real-time systems, control is distributed over a number of nodes

connected in a network. Some nodes rely on information provided by other nodes

as an input to perform their operations. Therefore, distributed real-time systems

heavily depend on their communication subsystems, which are responsible for

timely and error-free delivery of the information among distributed nodes. A

real-time system is required to provide its services within a defined time frame,

which means it must meet certain deadlines. Safety-critical real-time systems

such as fly-by-wire, drive-by-wire and the like, must not only meet the criteria

of timeliness, but also must be fault-tolerant, as missing a deadline or a fault

may have catastrophic consequences. At the same time, engineering real-time

communication is a complex task, particularly in the safety-critical domain. To

make the complexity manageable when designing dependable systems in the safety-

critical domain, these systems are traditionally kept simple, rigid, and inflexible.

This is increasingly becoming a challenge, as hardware and software are becoming

more and more capable, and is used in systems that are becoming more and

more autonomous. Examples range from advance driver assistance systems to

self-driving cars. This poses a significant challenge for communication protocols

that exists in this domain.

The Time-Triggered Architecture (TTA) guarantees timeliness in all circumstances

by requiring communication scheduling ahead of time, and hence, it is used to

produce more dependable real-time systems. TTP/C and FlexRay are two widely

used TTA based bus protocols for safety-critical real-time systems. In this thesis,

I have investigated the impact of the flexibility issues of existing Time-Triggered

(TT) systems through a number of case studies such as brake-by-wire and an

autonomous vehicle. I have demonstrated the lack of flexibility results in poor

bandwidth and channel utilisation. Following that, I have analysed the shortcom-

ings of existing protocols in a systematic way. Based on this analysis, I propose

a protocol that is suitable for modern, autonomous safety-critical real-time sys-

tems and provides the flexibility needed for the complex payload requirements

i



ii

of these systems. My proposed approach uses flexible communication schedules

based on the transmission payload requirements of participating nodes not only

in a single Time Division Multiple Access (TDMA) round but also over multiple

TDMA rounds of a cluster cycle. Multiple operational modes are also supported

by allowing each mode to have a different communication schedule as per transmis-

sion requirements. As with all safety-critical communication, it is vital to prevent

the communication channel from being monopolised by a faulty node. The ex-

isting fault-tolerant model to tackle such faults cannot work with the proposed

approach due to its flexible communication schedules. I therefore investigate ap-

proaches for bus guardians that prevent such monopolisation. I propose a system

of guardian nodes that are fully aware of the assigned communication schedules

and the current situation by listening to the traffic of the channel. My analysis

shows that these guardians will block any faulty node trying to transmit outside

its assigned timing window. This thesis presents the formal verification model to

verify the timing parameters of participating nodes such as transmitter, receiver,

and guardian nodes. To tackle the design and implementations issues, I have used

a model-driven engineering approach that utilises a high-level design of verifiable

and directly runnable implementations. A subsumption architecture with clear

execution semantics is used to implement the more complex system behaviours

at a high level, mitigating the complexity of state replication. This subsumption

architecture made it possible to incrementally refine the implementation without

interfering with unaffected components of the system.

The proposed approach improves the channel utilisation by allowing the slot length

of nodes to be configured in accordance with the actual payload requirements of

these nodes inside a TDMA round. While this approach is based on the traditional

TDMA scheme utilised in the TTA, it significantly improves bandwidth utilisation

over the traditional schemes. The analyses performed in this thesis have shown

that gross overhead time is reduced by almost 90%, improving overall bandwidth

utilisation efficiency almost twofold in a typical automotive brake-by-wire system

scenario. Furthermore, channel utilisation is also increased by allowing the slot

length of each node to be configured in accordance with its actual transmission



iii

payload requirements for each TDMA round of a cluster cycle. This eliminates

node slot idle times for all nodes, hence reduces transmission overhead. This

flexibility makes it possible to reduce the gross overhead time by almost 99%,

improving overall bandwidth utilisation efficiency almost nine times compared to

existing TTA-based communication protocols in an autonomous vehicle system

case study. Despite the added flexibility, the same level of predictability has been

maintained. My approach not only increases flexibility and channel utilisation for

safety-critical payload, but also maintains the ability to handle faults in a fail-silent

way, at the same level as other TTA-based protocols.





Statement of Originality

This work has not previously been submitted for a degree or diploma in any

university. To the best of my knowledge and belief, the thesis contains no material

previously published or written by another person except where due reference is

made in the thesis itself.

Signed:

Fawad Riasat Raja

iv



Acknowledgements

First of all, I would like to thank Allah, The Almighty for listening to my prayers

and keeping me safe. He provided me with opportunities, and gave me determina-

tion and strength to do my research. His continuous Grace and Mercy throughout

my life made things easy and even more during the tenure of my research.

I truly acknowledge that the prolific work presented in the thesis has become

possible only with the support, guidance and encouragement of my supervisors. I

would also thank my friends and family for their constant backing whenever I felt

down. Their assistance made this knowledgeable and arduous journey possible.

I would like to express my sincere gratitude to my principal supervisors, Dr. Rene

Hexel and Dr. David Chen. Their continuous support, patience, motivation, en-

thusiasm and immense knowledge made my PhD research a doable feat. Their

constructive feedback showed me the way to build my knowledge-base for the

subject research. Dr. Hexel and Dr. Chen mentored an amicable and positive

disposition, and have always been available to explain my confusions and misun-

derstandings. Their sagacious discussions helped me to understand various aspects

of research problems. Over the course of my research journey, I considered them to

be my good friends with whom I was comfortable to share my personal problems

as well. They also put themselves in my shoes when a setback struck my research.

They fully cooperated during the period when I was going through multiple surg-

eries owing to Lisfranc injury. Thank you Dr. Hexel and Dr. Chen, for your

tremendous support. I am strongly optimistic about future research collaboration

with your kindness.

Furthermore, I would extend my gratitude to all the scholars of Machine Intel-

ligence and Pattern Analysis Laboratory (MiPAL). It would be unfair if I don’t

express my sincere gratitude to the heads of School of Information and Com-

munication Technology, who have been appointed during my stay at Griffith, for

motivating me to work for the betterment of the school, and providing a pleasant

environment for PhD studies. A special thanks to the present Head of School,

v



vi

Professor Paulo de Souza, for his various meetings that raised my morale. I am

also indebted to administrative staff of School of Information and Communication

Technology and Griffith Graduate Research School of the Griffith University for

their assistance.



Contents

Abstract i

Statement of Originality iv

Acknowledgements v

Contents vii

List of Figures xi

List of Tables xiii

Abbreviations xiv

Symbols xvi

1 Introduction 1

1.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Question . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Real-Time Systems 10

2.1 Real-time Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.1 Soft Real-Time Systems . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Hard Real-Time Systems . . . . . . . . . . . . . . . . . . . . 12

2.1.3 Distributed Real-Time Systems . . . . . . . . . . . . . . . . 13

2.2 Real-time Communication . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Timeliness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Communication Architectures . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Event-Triggered Communication . . . . . . . . . . . . . . . . 18

2.3.1.1 Characteristics of Event-Triggered Communications 19

vii



Contents viii

2.3.2 Time-Triggered Communication . . . . . . . . . . . . . . . . 21

2.3.2.1 Characteristics of Time-Triggered Communications 22

2.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Real-Time Communication Protocols 24

3.1 Controller Area Network (CAN) . . . . . . . . . . . . . . . . . . . . 24

3.2 ARINC-629 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Time-Triggered Model . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 The Time-Triggered Protocol . . . . . . . . . . . . . . . . . . . . . 34

3.4.1 TTP-Internal Operation . . . . . . . . . . . . . . . . . . . . 35

3.4.1.1 Node start-up and reintegration . . . . . . . . . . . 35

3.4.1.2 Clock Synchronisation . . . . . . . . . . . . . . . . 36

3.4.1.3 Membership Service . . . . . . . . . . . . . . . . . 37

3.4.1.4 Message Descriptor List-MEDL . . . . . . . . . . . 38

3.4.1.5 Communication Network Interface-CNI . . . . . . . 38

3.4.2 Reliability and Fault-Tolerance in TTP . . . . . . . . . . . . 39

3.5 FlexRay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Time Triggered CAN (TTCAN) . . . . . . . . . . . . . . . . . . . . 43

3.7 Time Triggered Ethernet (TTEthernet) . . . . . . . . . . . . . . . . 44

3.8 Audio/Video Bridging and Time Sensitive Networking . . . . . . . 45

3.9 Wireless communication for safety-critical clusters . . . . . . . . . . 48

4 Dynamic Time-Triggered Communication 50

4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Payload based slot lengths inside a TDMA round . . . . . . . . . . 52

4.2.1 Brake-by-Wire Case Study . . . . . . . . . . . . . . . . . . . 53

4.2.2 Node Startup and Resynchronisation . . . . . . . . . . . . . 57

4.2.3 Membership Service . . . . . . . . . . . . . . . . . . . . . . 58

4.2.4 Clock Synchronisation . . . . . . . . . . . . . . . . . . . . . 59

4.2.5 Efficiency Analysis for Channel Utilisation . . . . . . . . . . 60

4.2.5.1 Traditional slot allocation approach . . . . . . . . . 61

4.2.5.2 INCUS approach . . . . . . . . . . . . . . . . . . . 62

4.2.5.3 System-Level Analysis . . . . . . . . . . . . . . . . 62

4.3 Flexible communication schedules in different TDMA rounds . . . . 64

4.3.1 Why dynamic communication over different TDMA rounds? 65

4.3.2 The INCUS+ Protocol . . . . . . . . . . . . . . . . . . . . . 67

4.3.2.1 Membership service and implicit acknowledgment . 70

4.3.2.2 Clique avoidance . . . . . . . . . . . . . . . . . . . 74

4.3.2.3 Clock Synchronisation . . . . . . . . . . . . . . . . 75

4.3.3 Autonomous vehicle case study . . . . . . . . . . . . . . . . 76

4.3.3.1 Camera . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.3.2 Sensor Fusion Node . . . . . . . . . . . . . . . . . 80

4.3.3.3 Vehicle Controller Node . . . . . . . . . . . . . . . 81

4.3.4 Performance Comparison . . . . . . . . . . . . . . . . . . . . 82



Contents ix

4.3.4.1 FlexRay slot allocation . . . . . . . . . . . . . . . . 82

4.3.4.2 INCUS+ slot allocation . . . . . . . . . . . . . . . 84

4.3.4.3 Impact of flexibility on overhead time . . . . . . . 85

4.3.4.4 Impact of flexibility on Channel Utilisation . . . . 88

4.4 Flexible operational modes . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.1 Multiple operational modes . . . . . . . . . . . . . . . . . . 92

4.4.1.1 Implementation of multiple modes . . . . . . . . . 93

4.4.2 Mode handling . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4.2.1 Deferred Mode . . . . . . . . . . . . . . . . . . . . 94

4.4.2.2 Immediate Mode . . . . . . . . . . . . . . . . . . . 95

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Software Architecture Design and Implementation 98

5.1 Engineering a Software Architecture for Safety-Critical Real-Time
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.2 Executable Communication Model . . . . . . . . . . . . . . . . . . 100

5.2.1 LLFSM Design of INCUS+ . . . . . . . . . . . . . . . . . . 101

5.3 INCUS+ Subsumption . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3.1 Tackling Design Complexity using Subsumption . . . . . . . 106

5.3.2 Adding new Behaviours using the Subsumption Architecture 109

5.3.2.1 Start-up and Re-integration of nodes . . . . . . . . 109

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6 Ensuring Fail-Silence 113

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Bus Guardian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.1 Bus Guardian Architecture . . . . . . . . . . . . . . . . . . . 116

6.2.1.1 Closely coupled bus guardian . . . . . . . . . . . . 117

6.2.1.2 Loosely coupled bus guardian . . . . . . . . . . . . 117

6.2.1.3 Independent bus guardian . . . . . . . . . . . . . . 117

6.2.2 Fail-Silence through redundancy in different network topolo-
gies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Formal verification of slot timing . . . . . . . . . . . . . . . . . . . 122

6.3.1 Parameters used for Formal Verification . . . . . . . . . . . 123

6.3.2 Requirements and assumptions . . . . . . . . . . . . . . . . 124

6.3.3 Hierarchy of communication . . . . . . . . . . . . . . . . . . 125

6.3.4 Requirement R1 . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.4.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.3.5 Requirement R2 . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.5.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3.6 Prevention of slot overlapping . . . . . . . . . . . . . . . . . 133

6.3.7 Requirement R3 . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3.7.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.8 Requirement R4 . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3.8.1 Proof . . . . . . . . . . . . . . . . . . . . . . . . . 137



Contents x

6.4 Protocol Behaviour under Faults . . . . . . . . . . . . . . . . . . . . 138

6.4.1 What if the transmitter fails? . . . . . . . . . . . . . . . . . 139

6.4.1.1 Completely off the scheduled frame transmission . 139

6.4.1.2 Transmitter transmitting longer than expected . . 140

6.4.1.3 Transmission slot position is incorrect . . . . . . . 140

6.4.1.4 Transmitter assumes itself in a completely different
operational mode . . . . . . . . . . . . . . . . . . . 141

6.4.2 What if the Bus Guardian fails? . . . . . . . . . . . . . . . . 143

6.4.2.1 Bus guardian blocks correct transmission . . . . . . 143

6.4.2.2 The Bus guardian truncates a correct transmission 143

6.4.2.3 The slot positioning for a Bus guardian is incorrect 143

6.4.2.4 The Bus guardian assumes itself in a completely
different operational mode . . . . . . . . . . . . . . 145

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Conclusion and Future Work 148

7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

A List of Publications 153

Bibliography 154



List of Figures

1.1 Real Time Systems [1] . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Real-Time Systems [2, p. 2] . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Distributed Real-Time Systems [3] . . . . . . . . . . . . . . . . . . 14

2.3 Positive Acknowledgment and Retransmission . . . . . . . . . . . . 16

2.4 A Simple CSMA/CA based Scenario for Channel Access . . . . . . 19

2.5 A Simple TDMA based Scenario for Channel Access . . . . . . . . . 21

3.1 Arbitration Mechanism in CAN . . . . . . . . . . . . . . . . . . . . 26

3.2 Transmit Logic of ARINC-629 [4] . . . . . . . . . . . . . . . . . . . 29

3.3 Information Validity in the Phase-Insensitive Firewall [5] . . . . . . 33

3.4 Information Validity in the Phase-Sensitive Firewall [5] . . . . . . . 33

3.5 Structure of TTP cluster [6] . . . . . . . . . . . . . . . . . . . . . . 34

3.6 FlexRay Communication Cycle [7] . . . . . . . . . . . . . . . . . . . 41

4.1 TDMA based approach for channel access . . . . . . . . . . . . . . 53

4.2 INCUS based approach for channel access . . . . . . . . . . . . . . 53

4.3 Brake-by-wire Architecture . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Traditional slot allocation approach . . . . . . . . . . . . . . . . . . 56

4.5 INCUS slot allocation approach . . . . . . . . . . . . . . . . . . . . 56

4.6 INCUS vs Traditional approach . . . . . . . . . . . . . . . . . . . . 64

4.7 Slot length configurations during different TDMA rounds . . . . . . 68

4.8 Layout of Message Descriptor List (MEDL) extended from [8] . . . 69

4.9 Layout of Autonomous Vehicle . . . . . . . . . . . . . . . . . . . . . 78

4.10 Layout of Time-Triggered Class-C Network of Autonomous Vehicle [9] 79

4.11 Internal structure of each node in the protocol cluster . . . . . . . . 79

4.12 GOP configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.13 FlexRay slot allocation over a Cluster Cycle . . . . . . . . . . . . . 84

4.14 INCUS+ slot allocation over a Cluster Cycle . . . . . . . . . . . . . 84

4.15 Slot length, transmission time and overhead time (where IFG = 4
bits time ∼= 4µs) using FlexRay slot allocation method. . . . . . . . 90

4.16 Slot length, transmission time and overhead time (where IFG = 4
bits time ∼= 4µs) using INCUS+ slot allocation method. . . . . . . 90

4.17 Slot length configurations during different operational modes . . . . 93

4.18 Mode Descriptor List . . . . . . . . . . . . . . . . . . . . . . . . . . 94

xi



List of Figures xii

5.1 Transmission behaviour of INCUS+ using an individual LLFSM.
This machine contains around 50 states (not all are shown here)
without the implementation of other protocol services such as be-
haviour for the node start-up and reintegration, clock synchronisa-
tion, the membership service, mode changes, and other FTAMs. . . 100

5.2 This figure shows the subsumption architecture of INCUS+ where
single machine is splitted into number of multiple LLFSMs . . . . . 105

5.3 INCUS+ MAIN LLFSM: This figure shows Main LLFSM of IN-
CUS+. This only invokes Sender and CRC machines. . . . . . . . . 106

5.4 INCUS+ CRC LLFSM: This Machine is used to calculate the CRC
value before transmitting and after receiving a frame to and from a
communication channel. This machine is invoked by Main LLFSM
machine at different instants. . . . . . . . . . . . . . . . . . . . . . 107

5.5 INCUS+ Sender LLFSM: This figure shows the implementation of
a Sender machine. This machine is used to transmit data frame and
its CRC value. This machine is invoked by Main LLFSM machine
at different instants. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 This figure shows the addition of new behaviour using subsumption
architecture in INCUS+. . . . . . . . . . . . . . . . . . . . . . . . . 110

6.1 Independent Bus Guardian and Communication Controller . . . . . 116

6.2 Bus Guardian layout in bus topology with full redundancy . . . . . 120

6.3 Bus Guardian layout in bus topology with reduced redundancy . . . 120

6.4 Bus Guardian layout in star topology with reduced redundancy . . 121

6.5 Bus Guardian layout in star topology with full redundancy . . . . . 121

6.6 Bus Guardian Window . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.7 Slot Window Timing Parameters for formal verification extended
from [10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124



List of Tables

4.1 Frame Sizes for the Nodes of the Brake-by-Wire System . . . . . . . 55

4.2 Channel Utilisation for the Brake-by-wire System using Traditional Slot Al-
location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Channel Utilisation for the Brake-by-wire System using INCUS Slot
Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 The Ideal Transmission slot length for each Node of the Autonomous
Vehicle System during a Cluster Cycle . . . . . . . . . . . . . . . . 81

4.5 Definition of the terms used in the computational model . . . . . . 83

4.6 Allocated slot length and potential overhead time in FlexRay slot
allocation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Allocated slot length and potential overhead time in INCUS+ slot
allocation approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Definition of the parameters used in the formal verification model . 124

xiii



Abbreviations

ABS Anti-lock Braking System

ACL Access Control List

ADAS Adavnced Driver Assistance System

AVB Audio Video Bridging

BAN Brake Actuator Node

BBWM Brake By Wire Manager

BG Bus Guardian

BPN Brake Pedal Node

CAN Controller Area Network

CC Cluster Cycle

CNI Communication Network Interface

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

CState Controller State

CU Channel Utilization

ET Event Triggered

FTA Fault Tolerant Average

FTAM Fault Tolerant Algorithims and Mechanisms

GCL Gate Control List

GOPs Group Of Pictures

LLFSM Logic Labelled Finite State Machines

MARS Maintainable Architecture for Real-time Systems

MEDL Message Descriptor List

NGU Never-Give Up

xiv



Abbreviations xv

NIT Network Idle Time

NSCI Non-Safety Critical Information

PAR Positive Acknowledgement and Retransmission

PTP Precision Time Protocol

SAE Society of Automotive Engineers

SCI Safety-Critical Information

SCRT Safety-Critical Real-Time

SFN Sensor Fusion Node

SG Synchronisation Gap

SW Symbolic Window

TAS Time-aware Shaper

TCP Transmission Control Protocol

TG Terminal Gap

TI Transmit Interval

TSN Time Sensitive Networking

TT Time Triggered

TTA Time Triggered Architecture

TTP Time Triggered Protocol

WCET Worst Case Execution Time

WSSN Wheel Speed Sensor Node



Symbols

T trad r TDMA round in the traditional slot allocation approach

T inc r TDMA round in INCUS

τmax The node slot length in the traditional slot allocation approach

τ inci Slot length for each node in INCUS (possibly different for each node i)

T transi Transmission time for control and payload data for node i

T idlei Slot time for node i not utilised for data or control information

T ifg Time when no transmission occurs between frames

T ovhdi Total overhead for node i for its allocated slot

Slotst Time to start the node slot

Slotlen Length of the node slot

FtS Maximum time to start frame transmission

FtE Time to end frame transmission

GS Time to open bus guardian window

GB Time to block the transmission

GE Time to shut bus guardian window

RwS Time when receiver open its window to receive the frame

RwE Time when receiver closes its window

T fr r Length of FlexRay TDMA round (where T fr rm = T fr rn)

T inc+ r Duration of TDMA round in INCUS+

τmax Slot length of each node in FlexRay approach

τ inc+ Slot length of each node in INCUS+

T̂ ovhd r Total overhead time in a TDMA round

T̂ ovhd c cycle Total overhead time in a cluster cycle

xvi



Symbols xvii

T fr c cycle Total length of cluster cycle in FlexRay slot allocation approach

T inc+ c cycle Total length of cluster cycle in INCUS+ approach



Chapter 1

Introduction

Real-time systems are gaining greater importance in our daily life and we have

seen an explosive growth of these systems over the last few decades. A real-time

system is required to provide its services within a defined time-frame, which means

it must meet certain deadlines [2]. There are many kinds of embedded real-time

systems, e.g. command and control systems, telecommunication systems and the

like [11]. These systems play a vital role by providing different services. For

example, when we are driving, these systems are manage the control of the engine

and handle the brakes of our car. When we are flying, these systems are control

the landing, take-off, and other services essential for flying our plane. Real-time

systems are also used to manage the smooth flow of traffic, e.g. by controlling the

traffic lights. In medical care, these systems provide services to monitor our blood

pressure and heartbeats [1, 2, 11]. In summary, we can say that our dependence

on the use of real-time systems in our daily life is increasing day by day, and, as

technology evolves, the systems are becoming increasingly more complex.

On the basis of their functional requirements real-time systems can be divided

into two major types, safety-critical systems and non-safety-critical systems [2].

Safety-critical real-time systems such as fly-by-wire, drive-by-wire and the like,

must meet the criteria of timeliness and must be fault-tolerant [2]. This is vital, as

missing a deadline by the system or a fault in the system may have catastrophic

1



Introduction 2

Figure 1.1: Real Time Systems [1]

consequences, including loss of life [2]. By contrast, missing a deadline in non-

safety-critical real-time systems such as online audio/video streaming systems,

can be an inconvenience, but does not have any catastrophic effect [2].

1.1 Challenges

In distributed safety-critical real-time systems, different nodes are connected with

each other through a shared communication channel such as a bus. They coordi-

nate their actions through message-passing, therefore, timely and reliable message

delivery is critical. Communication errors and unpredictable delays in transmis-

sion may lead to unpredictable behaviour of distributed real-time systems [2]. For

instance, consider a brake-by-wire system in a car. When the driver hits the brake

pedal, then a brake force is calculated and transmitted to each wheel for stopping



Introduction 3

the car. Depending on the speed the car is traveling at, a slight delay or error

in communication may lead to (some of) the brakes engaging too late, potentially

causing harm [2].

These delays can have a severe impact, no matter at which communication layer

they occur on. When nodes share single communication channel, generally only

one node, at a time, is allowed to transmit over the communication channel [6].

Attempts of concurrent transmission from multiple nodes will often interfere with

each other. This is known as a transmission collision and all the nodes involved in

the transmission can lose their messages [2]. There are different strategies [12–14]

that can be used to minimise the collisions over the communication channel. The

most common one is sensing the channel before attempting to transmit and delay

the transmission if the channel is busy [14].

Often non-safety-critical environments use Event-Triggered (ET) communication,

where communication activities are initiated on the occurrence of significant

events [12]. A large number of events are unpredictable in nature [12]. This means

that a transmission activity from any node can take place at any time [12]. Vari-

ous safety mechanisms [14][13] are utilised to handle errors in communication. In

event-driven communication, error detection requires positive acknowledgments,

as can be seen in the Transmission Control Protocol (TCP) [2]. In the positive

acknowledgment mechanism, a transmitter node receives an acknowledgment from

the receiver node if its transmission is successful [2]. This process requires a time-

out that can accumulate to an indefinite amount of time if other nodes are causing

interference on the communication channel [2].

In the case of responsive systems, e.g. a brake-by-wire system, these delays can

compromise the usefulness and safety of the system [2]. As we will see in more

details later, the point is that ET communication is unpredictable and is therefore

unsuitable for responsive or safety-critical real-time systems.

In light of these issues, a new communication architecture, known as the Time-

Triggered Architecture (TTA) was introduced by C. Scheidler et al. [6] and now

it is widely used in industry. This architecture guarantees that communication



Introduction 4

that occurs within a system’s specified fault hypothesis arrives within its specified

deadline [6]. In the TTA, channel access is based on a Time Division Multiple

Access (TDMA) scheme where communication time slots for nodes to access the

channel are scheduled at design time [12]. All nodes use synchronised clocks and

know exactly at what point in time each node will transmit its message, guar-

anteeing that channel access will be free of collision [8]. This Time-Triggered

(TT) communication approach removes the necessity of explicit communication

acknowledgments and provides predictable communication even in congested net-

works that are utilised at capacity [6, 8].

Despite these benefits, the lack of flexibility has been one of the biggest obstacles

when it comes to the adoption of a TTA system. TTA systems follow strict pe-

riodic schedules that are configured offline [6]. Fault-tolerance services, such as

membership and bus guardians complement these static schedules [8]. However,

if the dynamics of communication patterns are changed over the time for safety-

critical systems and to accommodate such requirements flexibility becomes a must

requirement for these systems to work efficiently. Despite the significant research

in this area, the challenge of flexibility while retaining predictability and fault-

tolerance in safety-critical real-time system still needs to be addressed. The focus

of this research is to overcome this fundamental challenge and design a flexible

communication protocol for safety-critical real-time systems that can accommo-

date the flexibility needed for today’s complex applications as well as changes in

the environment, while ensuring the same, stringent level of reliability and safety.

This thesis explores a number of real-world scenarios and analyses how the lack

of flexibility can impact the essential requirements such as timeliness and fault-

tolerance of safety-critical real-time systems.

The existing TTA based protocols for safety-critical real-time systems such as

TTP/C, were designed at a low, procedural level and implemented using a mix of

programming languages such as C++ and assembly [15]. This approach certainly

offers predictable, high performance direct hardware implementation but a key

limitation is the design and development effort, which may take to several man



Introduction 5

years, severely limiting what can be achieved. Moreover, such a low-level imple-

mentation is often wedded to a specific hardware, and therefore, is difficult to port

to a different platform. The rigorous timing requirements for safety-critical real-

time systems that need to be modelled early on in the design process has made

it difficult to model verifiable executable real-time behaviour at a high level [16].

Another objective of the thesis is therefore to investigate how to overcome such de-

sign and development issues by using a high-level design approach using executable

models to facilitate the incremental development of the protocol.

1.2 Research Question

Is it possible to architect communication for safety-critical real-time systems that

supports flexibility without compromising safety and reliability?

After years of research in distributed real-time systems, this question still needs to

be addressed. There are many types of distributed systems, but the focus of this

thesis is on the safety-critical distributed real-time systems that interacting with

real-world objects. Examples of such systems are assisted braking system in auto-

motive, aircraft control, factory automation systems, etc. [17][18][2]. To eliminate

single points of failure, these are designed as large-scale distributed systems that

link multiple sensors with computers through bus or star network topology [2].

Importantly, such control systems are involved in controlling real world objects,

therefore, they have timing constraints dictated by the physical characteristics of

the environment and the objects they control [2]. Consequentially, it is necessary

for the communication subsystems used in such control systems to handle the as-

sociated constraints in communication [19]. By far, bounded latency is considered

one of the most important factors in real time communication [20] [21]. The tim-

ing constraints are defined through deadlines that determine the correct temporal

behaviour of safety-critical real-time systems [2]. Other factors fundamental to the

correctness of such systems include bandwidth, reliability, fault tolerance, clock

synchronisation, and membership services [2].



Introduction 6

It has been argued that the best way to design a safe and reliable system is to make

things more static [2][6]. By removing dynamic behaviour, the exact sequence of

events can be determined in advance. This idea is exploited by time-triggered

protocols in order to design dependable real-time systems [2]. However, the major

drawbacks of static systems are the lack of flexibility in reacting to sporadic events

and that they are not able to adapt to changes in the environment. Another

disadvantage of these protocols is that they can only operate in a homogenous

environment due to their strict communication requirements to ensure the safety

and reliability of the system. This no longer matches the heterogeneity of today’s

complex systems.

The term flexibility refers to configurational flexibility throughout this thesis. The

precise meaning of configurational flexibility will be elaborated in more detail in

the upcoming chapters. The objective of the present research was to analyse the

shortfalls of existing TTA based communication protocols, investigate how this can

be overcome, and propose a comprehensive solution to this problem in the form of

a protocol, its associated principles, and a proof-of-concept implementation. We

will explore, how flexibility can be achieved despite the rigid timing requirements

of safety-critical real-time systems. The impact of flexibility on safety services and

how to handle that impact at the protocol level is also a contribution of this re-

search. Furthermore, engineering real-time communication at a higher level using

a subsumption architecture is another contribution of this thesis that demonstrates

how the emergent complexity in designing a flexible protocol can be reduced.

1.3 Contribution of the Thesis

Flexibility and dependability are the two parameters that are often considered as

contrary to each other and choosing between them to solve an engineering problem

is a hard task [22][23]. There is a strong argument in the literature that to achieve

and verify dependability, static prior knowledge about the sequence and timing of



Introduction 7

state changes is essential [2][6]. This idea has been exploited by the Time-Triggered

Architecture (TTA) to produce more dependable real-time systems [6].

This thesis analyses how to overcome the fundamental shortfalls of the existing

TTA based communication protocols. Two major incumbents are the Time Trig-

gered Protocol and FlexRay. These protocols are widely used in safety-critical

real-time systems. A number of other time-triggered protocols, developed on top

of event-driven communication especially protocols under Time Sensitive Network-

ing (TSN) domain were also explored in this thesis.

As an initial case study, a brake-by-wire case study is used to analyse the need for

dynamic communication schedules in a TDMA round. I will show that function-

ality of each node connected to an Anti-Lock Braking (ABS) system is different

and so are their payload requirements. The length of communication slot of each

node is configured according to its payload requirements inside a TDMA round

which significantly reduces gross overhead time. This work has been published in

the proceedings of 20th IEEE Asia-Pacific conference on communication (APCC-

2014)[Appendix A, Publication 3].

The span of communication schedules is expanded over a number of TDMA rounds

in an improved iteration of the proposed approach. A number of use-cases such

as Advanced Driver Assistance Systems (ADAS) in an autonomous vehicle, Un-

manned Aerial Vehicles (UAVs), and healthcare systems based on Internet-of-

Things (IoT) are investigated that exhibit this need for different transmission

schedules during different TDMA rounds of a cluster cycle and in different modes

of operation. The proposed approach improves channel utilisation nine times as

compared to existing TTA-based communication protocols. This work has been

published in an international journal of IEEE Access-2022 [Appendix A, Publica-

tion 1].

This thesis also contributes formal verification as a means to validate and ensure

the correctness of the proposed approach. Protocol behaviour under different

faults is analysed and verified by using a formal verification model. This work



Introduction 8

has been published in an international journal of IEEE Access-2022 [Appendix A,

Publication 1].

This thesis further presents the implementation of the proposed approach utilis-

ing a high level subsumption architecture. The ability of Logic Labelled Finite

State Machines (LLFSMs) is demonstrated to show that hierarchical module in-

teractions can be utilised towards the implementation of testable, safety-critical,

real-time communication protocols that transcend the inherent limitations of prior

approaches. This work has been published in the proceedings of 11th International

conference on Evaluation of Novel Software Approaches to Software Engineering

(ENASE-2016)[Appendix A, Publication 2].

1.4 Thesis Outline

This thesis is divided into seven chapters. Following this introductory chapter,

the rest of the thesis is organised as follows:

Chapter 2 explores to the basic concepts of real-time systems and real-time com-

munication. The fundamental relevant material and definitions are presented in

this chapter. Some key requirements such as timeliness, dependability and flexibil-

ity are discussed, which distinguish between real-time and non real-time systems.

Two basic communication architectures, event-triggered and time-triggered archi-

tectures along with their characteristics are compared and analysed.

Chapter 3 discusses relevant communication protocols in the literature used for

real-time communication in safety-critical real-time systems. An in-depth analysis

of each protocol is presented in this chapter. The tradeoff between predictabil-

ity and flexibility is discussed and an analysis shows how existing communication

protocols are more tilted towards predictability and less towards flexibility. Pro-

tocols based on time-triggered architectures such as the Time-Triggered Protocol

and FlexRay are analysed in more detail as well as communication protocols build

on top of the event driven approach such as Time-Triggered Ethernet and other



Introduction 9

approaches under the domain of Time Sensitive Networking (TSN). A detailed

analysis of the limitations of these existing protocols are presented in this chapter.

Chapter 4 addresses the issue of TDMA based slot length configuration of each

node in a TDMA round of a cluster cycle. A brake-by-wire case study is used to

analyse the impact of equal-length time slots over bandwidth and channel utili-

sation. We investigate what happen when each node in the system has different

transmission payload requirements. An autonomous vehicle case study is presented

that shows the need for flexible communication schedules.

Chapter 5 evaluates an implementation of the proposed approach. We investigate

how complexity can be overcome by using a high-level subsumption architecture.

The ability of LLFSMs is demonstrated to handle elaborate hierarchical module

interactions that is utilised in the implementation of testable, safety-critical real-

time communication protocols.

Chapter 6 analyses the complex task of preventing single points of failure. My

contribution is a bus guardian analysis investigating how a faulty node can be

blocked to transmit outside its assigned communication schedule even when we

have a flexible communication schedule. Key fault scenarios are discussed and the

role of bus guardians is analysed to tackle these faults. A verification model is

presented to formally verify the timing parameters for transmitter, receiver, and

bus guardian nodes.

Chapter 7 presents the conclusions from this thesis.

Appendix A presents the publications that have resulted from the work contained

in this thesis.



Chapter 2

Real-Time Systems

This chapter presents a literature review in the context of an architectural view of

real-time systems. It explains the difference between real-time systems and non

real-time systems, including the fundamental concept of a deadline. The main

focus of this chapter is on real-time communication, particularly the requirements

of distributed real-time systems. To this end, we compare two key communication

architectures, Event-Triggered (ET) and Time-Triggered (TT) systems.

2.1 Real-time Systems

A real-time system needs to process information and respond within a specified

time frame [2]. In real-time systems, the correctness of system behaviour (sequence

of outputs in time) not only depends on the logical computational results but also

on the physical time when these results are produced [2]. A real-time system

changes its state as a function of physical time [2].

Example: A chemical reaction continues to change its state even after its con-

trolling computer system has stopped [2]. Therefore, a real-time system can be

decomposed into a set of subsystems such as the controlled object, the real-time

computer system and the human operator [2] as shown in Figure 2.1.

10



Basic Concepts 11

Figure 2.1: Real-Time Systems [2, p. 2]

A real-time computer system must react to stimuli from the controlled object or

the operator within time intervals dictated by its environment [2]. The instant at

which a result is produced is called a deadline [2]. A deadline is the time limit

by which a task must be completed [2]. Efficiency of a real-time system is not

measured based only on the logical results of computation but also depends on

the timing of the results [24]. Deadlines can be classified into soft, firm and hard

deadlines.

Soft deadline: If the result has utility even after the deadline has passed, the

deadline is classified as soft deadline [11]. For example, a result is produced beyond

the deadline, and the result is still effective and required by the system, then this

is classified as a soft deadline [11].

Firm deadline: If the result has no utility after the deadline has passed, the

deadline is classified as firm deadline [11].

Hard deadline: If a catastrophe could result if a firm deadline is missed, the

deadline is considered as hard deadline [11]. In simple words, we can say that a

deadline is considered a hard deadline if there are severe consequences of missing

a firm deadline [2][25].

On the basis of soft and hard deadlines, a real-time system can be divided into

two types i.e. a soft real-time system and a hard real-time system.



Basic Concepts 12

2.1.1 Soft Real-Time Systems

A soft real-time system is based on soft deadlines i.e. missing a deadline by a soft

real-time system will have no catastrophic effect on the system environment [2].

Often in a soft real-time system, a performance degradation during a peak load

situation can be tolerated.

Example: Consider the case of an airline reservation system. If the system is

unable to keep up with the demands of the users, it just extends the response time

and forces the users to slow down [2].

Example: In a factory automation system, a robot arm is collecting items from

a conveyor belt must have a hard deadline to grab the correct item at the right

time [19]. If the robot arm misses this deadline then the item will be out of its

reach. Failure of the robot arm to grab the item from the belt within the specified

deadline, may require production to be stopped, marking the system inefficient and

incorrectly designed [19], but may not otherwise have catastrophic consequences.

2.1.2 Hard Real-Time Systems

A hard real-time system is based on hard deadlines i.e. missing a deadline by a hard

real-time system may have severe consequences for the system or environment,

potentially leading to catastrophic outcomes [2]. A hard real-time system can also

be referred to as a safety-critical real-time system. Many research works [26][27][28]

in the area of real-time systems focus on how it can be assured that these hard

deadlines will be met. A real-time system that must meet at least one hard

deadline is known as a hard real-time or a safety-critical real-time system [2].

Example: If brake-by-wire system does not respond within a few milliseconds

when brakes are applied then this may result in catastrophic system failure [2].

Example: An accident could happen if a traffic signal at a road before a railway

crossing does not change to red before the train arrives [2].



Basic Concepts 13

The research work presented in this thesis mainly focuses on hard real-time sys-

tems. A deadline is not the only criterion to define timing constraints, there are

other factors that have equal importance in defining the behaviour of real-time

systems, such as network latency, throughput and jitter to name a few [19]. Peak-

load scenarios must be fully defined for hard real-time systems so that they can

guarantee they meet the deadlines in all situations [19]. Active replication or

redundancy mechanisms play a vital role for error detection in hard real-time sys-

tems [19]. By contrast, roll-back and recovery mechanisms are not useful for hard

real-time systems because it would be hard to guarantee deadlines as roll-back and

recovery mechanisms can take longer than required [19].

2.1.3 Distributed Real-Time Systems

In a real-time control system, the system interacts with real-world objects [3]. For

instance, in a factory automation and control system, a variety of machines are

widely distributed and interact with each other through a real-time communication

network to complete the assigned task [3] as shown in Figure 2.2. Similarly, in

an automotive setting such as brake-by-wire [29] and steer-by-wire systems [30],

sensors are connected with computers all through the vehicle e.g., by means of bus

technology.

As distributed control systems have to interact with real-world objects, these sys-

tems have timing constraints that must be supported by an underlying commu-

nication subsystem [2]. The communication subsystem is subject to timing con-

straints in the form of bounded network latency [20, 21]. This plays a major role in

real-time communication. Besides the importance of timely delivery of messages,

reliable message delivery is also critical [2].



Basic Concepts 14

Figure 2.2: Distributed Real-Time Systems [3]

2.2 Real-time Communication

The previous section introduced the concept of deadlines to define real-time sys-

tems. In real-time communication, it is essential to assign deadlines to messages

communicated over the network. Based on these deadlines, the timing behaviour

of the system can be marked as correct or incorrect [2]. In distributed real-time

systems, control is distributed over a number of nodes connected via a network.

Some nodes rely on the information provided by other nodes as an output to per-

form their operations [2]. Therefore, distributed real-time systems heavily rely on

their communication subsystems, which are responsible for timely and error-free

delivery of the information among distributed nodes [2]. Consequently, for safety-

critical real-time systems, timeliness, dependability, and flexibility are important

factors in order to perform the behaviour required for successful operation [2].

2.2.1 Timeliness

The main difference between real-time and non-real-time communication is Time-

liness. Timeliness in real-time communication can be achieved by ensuring short



Basic Concepts 15

message-transport latency and minimal jitter [2]. To achieve short message-

transport latency in a distributed real-time system, the time required to take

the readings from a sensor node, and after computation, forwarding the result to

an actuator node should be as small as possible [2]. Jitter is the difference be-

tween worst-case and best-case message transport latency [2]. Therefore, to ensure

timeliness, this difference must be as small as possible, known as minimal jitter [2].

The underlying communication subsystem of any safety-critical distributed real-

time system is responsible for the delivery of a message from a transmitting node

to the receiver node within the defined time-line, ensuring that any corresponding

deadline will be met [2].

2.2.2 Dependability

Dependability is a key characteristic of any safety-critical real-time system [2]. In

many distributed systems, communication reliability is achieved by using a re-

transmission mechanism in case of message loss [2]. For instance, in the Positive

Acknowledgment and Retransmission (PAR) protocol, a sender must wait for an

acknowledgment from the receiver after transmitting a message [2]. If no acknowl-

edgment has been received after a specific time, the sender will retransmit the

message and this process will continue until the message is transmitted success-

fully or a permanent failure is reported [2] as shown in Figure 2.3. TCP used this

mechanism for reliable delivery of messages.

However, this mechanism is not suitable for safety-critical real-time systems, be-

cause it can add significant delays to the communication.

Fault-Error-Failure Chain:

Failures are usually recorded at the system boundary [31]. They are basically errors

that have propagated to the system boundary and have become observable. Faults,

Errors and Failures operate according to a mechanism [31]. This mechanism is

sometimes known as the Fault-Error-Failure chain [31].



Basic Concepts 16

Figure 2.3: Positive Acknowledgment and Retransmission

Fault: A fault is a defect in a system [32]. This may or may not lead to a failure as

a system may contain a fault, but its input and state conditions may never cause

this fault to be executed so that an error occurs; and thus that particular fault

never exhibits as a failure [32].

Error: An error is a discrepancy between the intended and actual behaviour of a

system inside the system boundary [32]. When activation of a fault makes some

part of the system to enter in an unexpected state, an error occurs [32].

Failure: A failure is an instance in time when a system displays behaviour that is

contrary to its specification [32]. It can be prevented by using fault tolerance tech-

niques so the overall operation of the system will conform to the specification [32].

In distributed real-time systems, communication reliability can be achieved

through redundancy [2]. For example, robust channel encoding (forward error

correction) or redundancy through transmitting replicated copies of a message on

replicated communication channels can reduce the probability of message loss in

the presence of a fault e.g., errors can be detected through a Cyclic Redundancy



Basic Concepts 17

Check (CRC) [33], where each message contains the CRC field that can be used

at receiver side to check the integrity of the message [2].

Hardware component faults should be detected and reported by the communica-

tion subsystem to all other functioning components of the system so that these

other components can handle the corresponding errors, avoiding a failure sce-

nario [2].

Example: In a brake-by-wire system, if the brake system of one wheel has failed,

then the other three wheels must be aware of this failure so that they can redis-

tribute the brake force between them in a way that car can be stopped safely with

only three braking wheels.

2.2.3 Flexibility

A real-time communication protocol must support flexibility to accommodate

changes in the environment without any modification in the protocol [19]. For

example, in an avionics system, the operation of system components is different

during different operational phases, such as taxiing on ground, landing and dur-

ing autopilot engagement [19]. Therefore, the underlying communication protocol

must support the changes in the environment and must be able to react accordingly

without significantly increasing the complexity of the protocol on the system [19].

This is a trade-off that is difficult to reconcile, and thus most of the existing safety-

critical distributed real-time communication protocols lack flexibility, as we will

explore in more detail in the next chapter.

2.3 Communication Architectures

This section discusses the two widely used communication architectures for real-

time communication, Event-Triggered (ET) Communication and Time-Triggered



Basic Concepts 18

(TT) Communication. In light of the above mentioned communication require-

ments, this section will discuss their suitability for distributed safety-critical real-

time systems.

2.3.1 Event-Triggered Communication

In Event-Triggered (ET) systems, all the system-related activities such as pro-

cessing, communication, and the like, are based on the occurrence of significant

events [12]. A significant event can be defined as a change of state in a real-time

entity or object and this change of state is realised through an interrupt mech-

anism in ET systems [12][34]. The unpredictable nature of many events in ET

systems requires a dynamic scheduler to handle these kind of events. As there

is a possibility that multiple events can occur concurrently which may lead to

significant delays in processing and communication [12].

In event-triggered communication, a sender node will transmit the message on the

occurrence of an event [12]. This message will be placed in a send queue at sender

side until underlying communication protocol is ready to transmit the message over

the channel [12]. The readiness of communication protocol means giving the right

to transmit to the sender node over the communication channel [13, 14]. A number

of techniques exist in traditional, event-driven communication architectures to

avoid collisions. A typical example is the Carrier Sense Multiple Access (CSMA)

scheme that is based on collision detection (CSMA/CD) [13] or collision avoidance

(CSMA/CA) [14]. In a collision avoidance system, each node has to sense traffic

on the channel and wait until there is no traffic on the channel [14], while in

a collision detection scheme, after detecting a collision all nodes have to back

off (terminate their transmission) and retransmit after waiting for some random

amount of time [13] as shown in Figure 2.4.

Due to their probabilistic nature, these techniques result in unpredictable channel

access (and consequently, delivery) latency and are only suitable for non-safety-

critical real-time systems, since best-case message delivery times can differ greatly



Basic Concepts 19

Figure 2.4: A Simple CSMA/CA based Scenario for Channel Access

from worst case scenarios and thus missing deadlines needs to be tolerable [2, 12,

34].

After the arrival of a message at the receiver the message is placed in the receive

queue until accepted by the receiver after performing a series of tests to check

whether the message is intact or not [2]. Involvement of queues to hold the message

before transmission or acceptance has significant threat of queue overflow [2]. For

example, the send queue can overflow if the transmission rate of the sender is larger

than the network capacity and receiver queue can be overflow if the reception rate

of the receiver is lower than the delivery rate of the network [2].

2.3.1.1 Characteristics of Event-Triggered Communications

Dynamic scheduling in ET systems make them more responsive than TT systems

during low or average load conditions, as the processing of a task depends on its

actual execution time, rather than maximum execution time as in TT systems [34].

The use of dynamic communication schedulers simplifies the design phase of ET

systems compared to TT systems, where communication schedules are created and

verified manually [34].



Basic Concepts 20

The ET based control paradigm is often preferred due to its higher flexibility and

resource efficiency in soft real-time or non safety-critical applications [12]. ET

architectures support dynamic resource allocation and resource sharing strate-

gies [34]. The provision of resources in ET systems can be biased towards average

demands, thus, during worst-case scenarios, timing failures are allowed to occur

in favour of cost-effective solutions [34]. In ET systems, resources can be mul-

tiplexed among different applications while providing probabilistic guarantees for

communication latencies only if the correlation between resource usages of different

applications is known [35].

However, while ET systems offer the biggest amount of flexibility no analytical

guarantees can be given for the performance of ET systems during peak system

loads [12]. Communication protocols in ET systems are event-triggered. There-

fore, only the sender knows the exact time when a message has to be transmit-

ted [34]. Error detection in communication is based on a timeout parameter, with

the sender waiting for a positive or negative acknowledgment from the receiver [12].

Transmission of explicit acknowledgment adds time in the case of failure and thus,

can add significant and unpredictable delays in communication [12]. Therefore,

assessing the worst-case execution time, and thus guaranteeing to meet deadlines

becomes complex and quickly infeasible, making this approach unsuitable for most

safety-critical real-time systems [12, 34].

For example, consider a TCP connection that is used to ensure reliable message

delivery by using the PAR mechanism [12]. As TCP is normally expected to deliver

messages with tight constraints, errors can introduce significant delays in commu-

nication due to timeouts and retransmission [12]. As TCP and, in general, ET

communication are difficult to predict in the presence of faults, they are unsuitable

to use for responsive or dependable safety-critical real-time systems [12].

Moreover, there is the possibility that multiple events can occur at the same time,

e.g. as a result of communication failure [34]. This is referred to as Event showers

that can cause extreme delays in processing events [34].



Basic Concepts 21

2.3.2 Time-Triggered Communication

Time-triggered communication is based on TDMA (Time Division Multiple Ac-

cess), where the right to transmit over a shared communication channel is based

on pre-defined time-slots [12]. A prominent example of a TDMA-based medium

access is the Time-Triggered Protocol (TTP) [33], which is discussed in detail in

Section 3.4.

In order to avoid a collision in TDMA based medium access control, each node is

allocated a different time-slot and it can only transmit over the communication

channel within this slot [12]. Slot allocation is done offline and all the nodes have

the information about their allocated slots a priori as shown in Figure 2.5.

Figure 2.5: A Simple TDMA based Scenario for Channel Access

As all the communication scheduling is determined in advance, it is easy to find

the worst-case response time [12]. The key benefit of deterministic communication

is to guarantee hard deadlines for safety-critical real-time systems [19].

Each node in a distributed Time-Triggered (TT) system contains only one inter-

rupt, the periodic real-time clock interrupt [2]. In a TT system, a processing or



Basic Concepts 22

communication activity is initiated at a predetermined tick of a clock [2]. A global

time is formed by synchronising clocks of all the nodes in a distributed TT sys-

tem [2]. This global time is used to time-stamp the observation of the controlled

object [2]. The granularity of the global time must be chosen such that the tem-

poral order of any two observations made anywhere in a distributed TT system

can be established from their timestamps with adequate accuracy [2].

2.3.2.1 Characteristics of Time-Triggered Communications

The predictable nature of time-triggered communication has made TT systems

capable of handling peak load scenarios without performance degradation [12]. In

TT systems, receivers know exactly when they will receive a message from the

sender, due to its pre-defined communication schedule [12][2]. If a message is not

received by a receiver within the predefined time-frame, this will be considered

a loss of communication [2]. Therefore, TT systems do not require any explicit

acknowledgment or timeout mechanism [2, 34, 36]. The temporal behavior of

TT systems remains the same, as long as maximum execution time of a task

stays within its deadline [34]. Consequently, TT systems are much more reliable

than ET systems and their reliability can be predicted analytically, which is an

important aspect for any real-time system [34].

Alterations in TT systems require redesigning all communication schedules. Dis-

tributed TT systems must deal with the requirement of clock synchronisation to

function correctly [6]. Therefore, all the distributed components of a TT system

must maintain a global time base and their clocks must be synchronised with each

other [6][36]. Responsiveness of TT systems is lower than that of comparable ET

systems during low or normal load situations, as they need to wait for the worst

possible execution time of a task to have elapsed [34]. Designing a communication

schedule before the system deployment is a complex part of TT systems, because

anything related to timing that is not completely known in advance cannot be

handled efficiently [34].



Basic Concepts 23

2.3.3 Discussion

In general, it depends on the application whether an event-triggered or a time-

triggered system behaviour is suitable, as both approaches have specific charac-

teristics making them suitable for specific requirements. Considering the require-

ments of safety-critical real-time systems, i.e. timeliness, dependability, and safety,

it can be argued that a time-triggered approach is more suitable for these kind of

systems because of its deterministic communication. Unlike an ET approach, TT

protocols provide a mechanism for detecting communication errors without the

need of explicit acknowledgment. Therefore a time-triggered approach reduces

the significant difference in timing between the best and worst case in commu-

nication and hence, guarantees the requirements for worst-case responsiveness of

safety-critical real-time systems.



Chapter 3

Real-Time Communication

Protocols

This chapter gives an analysis of communication protocols used in safety-critical

real-time systems. This analysis presents the trade off between predictability and

flexibility of communication protocols. The discussion will start in a chronological

order on the basis of the evolution of these protocols. The shortcomings of the ex-

isting protocols for safety-critical real-time systems will be analysed and discussed

in this chapter. Although the wireless communication is not in the scope of this

thesis but there will be an insight of why wireless architectures are not suitable

for safety-critical real-time communication and what the possible areas are where

an integration of wired and wireless architecture can be used.

3.1 Controller Area Network (CAN)

In the mid-eighties, a serial data communication bus known as Controller Area

Network (CAN) [37, 38] was developed by Robert Bosch for the German car in-

dustry. Since then, CAN has been adopted by the automotive industry world-

wide for data communication. The major reasons that drove the development of

CAN were provision of real-time communication, combined with reduced cabling

24



Communication Protocols 25

size and weight [37, 38]. Networking protocols in industrial devices were actively

adopting CAN, prominent examples include DeviceNet [39] and CANOpen [40].

Examples of CAN devices include engine controllers (ECUs), transmissions, Anti-

lock braking systems, lights, power windows, power steering, and the like.

This section briefly describes the communication mechanism for all nodes con-

nected through the CAN bus. A detailed description of the protocol can be found

in [37, 38]. CAN consists of three layers with reference to the OSI (Open Sys-

tem Interconnection) model [41][42]. These layers are the physical layer, data link

layer, and an optional application layer. The data link layer is specified by [43]

while physical layer specifications are discussed in ISO-11898 [44]. At the appli-

cation layer, high level protocols are used such as CAL/CANOpen [45] and CAN

Kingdom [46].

CAN is deployed in a bus topology and belongs to the class of event-triggered

protocols, where communication activities are initiated on the occurrence of sig-

nificant events [37]. The basic channel access mechanism is based on CSMA/CA,

where a node can only transmit its message over the communication channel after

sensing that the channel is idle [14]. If multiple nodes intend to transmit messages

at the same time, then the node with the highest priority message will transmit

first [37].

To achieve this, the CAN bus behaves as a logical-AND electrical network when

monitored in a dominant-bit format [37]. The dominant bit is interpreted as zero

and a recessive bit is interpreted as one [37]. If all nodes are transmitting recessive

bits then receivers perceive the bus as carrying a recessive bit [37]. If one or more

nodes are transmitting dominant bits, then all nodes will see a dominant bit on

the bus [37].

The priority of a message is identified through an 11-bit arbitration field [37].

When two or more nodes are trying to transmit data, they monitor the bus for

inactivity [37]. When the bus is idle, all nodes waiting to transmit will send a

Start of Frame (SOF) bit, potentially simultaneously [37]. SOF is a dominant

bit, so all nodes will see that dominant bit on the bus [37]. After this, each



Communication Protocols 26

Figure 3.1: Arbitration Mechanism in CAN

node will transmit the arbitration field on the bus [37]. The arbitration field has

an 11-bit binary value with the most significant bit being transmitted first [37].

During the arbitration process, if a node transmits a recessive bit, but detects a

dominant bit on the bus, this means there is another node with a higher priority

message competing for the arbitration [37]. Then the node with the lower priority

message stops transmitting and allows the node(s) with high priority messages to

continue [37]. This continues bit by bit, so at the end of arbitration only the node

with the highest priority will be left, transmitting its data on the bus [37]. This

higher priority node will continue to transmit until its data is completely sent or

an error is detected [37]. Nodes with lower priority messages will wait until the

next idle interval on the bus [37]. Then they will try again to send their messages,

after winning the arbitration process in the same way as discussed above [37]. This

whole arbitration mechanism is shown in Figure 3.1.

In CAN, if a node starts transmitting high priority messages continuously, then

low priority message from other nodes will not get a chance to transmit. The in-

definite amount of time wait for these low priority messages can create a starvation

scenario. Consequently, if the transmission load on the communication channel

increases, the worst case transmission time of messages varies significantly and

cannot be predicted or bounded. For guaranteed temporal deadlines of safety-

critical real-time systems, message delivery must occur within a given deadline [2].



Communication Protocols 27

Another issue with CAN is propagation delay. For example, one node can see a re-

cessive bit on the channel while another node can see a dominant bit on the channel

due to different propagation delay. Due to the medium access technique (priority-

based Carrier Sense Multiple Access/Collision Resolution), the maximum data

rate that can be achieved with CAN, essentially depends on the bus’ length [47].

For example, the maximum data rate for 30 and 500 meter buses are respectively

1 Mbit/s and 100 kbit/s [47].

CAN is basically an event-triggered communication protocol with a flexible com-

munication schedule. A node can transmit any time at the occurrence of an event

and therefore has an efficient response time during low or average load conditions.

But this flexibility comes at the cost of reliability. Any node can monopolise the

communication network because of the arbitration mechanism in CAN. It is hard

to guarantee the deadlines due to starvation issues in CAN. This is particularly

precarious in the presence of faults, as single point of failure cannot be ruled out.

3.2 ARINC-629

ARINC-629 [48] is a communication protocol for a bidirectional and multiple ac-

cess data bus and is capable of transmitting safety-critical and non-safety-critical

information. It is designed for modular avionics systems [49] and more specifically

used in Boeing 777 [50].

The CSMA/CA protocol, which allows any bus node to start transmitting after

sensing the bus being idle, avoids possible collisions on the communication chan-

nel [14]. But still, there is a room for collisions due to propagation delays on the

transmission line. For example, a node waiting to transmit may see an idle bus

while another node has already started transmitting. To cope with this situation,

the CSMA/CD protocol supports collision detection so that nodes can determine

whether their attempt to transmit was successful or not [13]. In case of collision

detection, nodes stop transmitting, and after waiting for a random delay, they



Communication Protocols 28

attempt to transmit again, provided the bus is idle at that moment [13]. A ran-

dom back-off mechanism is used to avoid permanent collisions, but this may result

in poor channel utilisation and severe throughput problems during peak-load sce-

narios [13]. This mechanism also introduced network monopolisation issues [48].

If a node starts transmitting after sensing that channel is idle, then there is no

mechanism to avoid network monopolisation by that node, because it can utilise

the channel for transmission as long as it wants [48]. This will prevent other nodes

from transmitting over the communication channel [48].

ARINC-629 was designed to handle the issues of CSMA/CA and CSMA/CD proto-

cols [48]. It is a time-driven protocol but with a capacity to transmit non-periodic

data after transmitting periodic data [48]. Other protocols that transmit periodic

and non-periodic data in a similar way include WorldFiP [51] and ProfiBUS [52].

WorldFiP is using master node to control the medium access [51] while ProfiBUS

is using token passing mechanism to transmit the data on the channel [52].

The channel access in ARINC-629 is based on three timers (timeout parameters),

a Synchronisation Gap (SG) timer, a Terminal Gap (TG) timer, and a Transmit

Interval (TI) timer [48]. First, the set of nodes that want to transmit is admitted

to a waiting room [48]. All the nodes in the waiting room can transmit their

messages before a new node is allowed to enter in the waiting room [48]. The

value of the SG timer is the same for all the nodes and it is used to control the

entrance of nodes into waiting room [48]. The TG timer has a different value for

each node and it is therefore known as a ”personality” timer [48]. TG is used to

control access of a node to the communication channel [48]. The TI timer is used

to prevent a node from monopolising the channel and it is identical for all the

nodes [48]. The relationship between these timers can be defined as:

SG > Max(TGi) (3.1)

TI > SG (3.2)

The detailed operation of the protocol regarding channel access is best explained



Communication Protocols 29

by taking an example of two nodes P and Q, that want to transmit over the

communication channel [4] as shown in Figure 3.2. Let us assume that TGP of

node P is shorter than TGQ of node Q [4]. Initially both nodes will wait for a period

of silence in the communication channel that is longer than SG [4]. Then both

nodes will enter in the waiting room where they have to wait for another period

of silence corresponding to their individual TG timers i.e. TGP and TGQ [4]. As

TGP is shorter than TGQ then node P will start transmitting if the bus is idle

when its TGP has elapsed [4]. At the start of transmission, node P will set its TI

to block any further transmission activity before the transmission activity of all

other nodes admitted in the waiting room is completed [4]. This mechanism makes

it impossible for a single node to monopolise the communication network [4].

Figure 3.2: Transmit Logic of ARINC-629 [4]

As soon as node P has started its transmission, node Q should back off until P has

finished its transmission [4]. After P has finished, Q needs to wait for TGQ again

and it will start its transmission if there is no bus activity on the communication

channel at the point of TGQ timeout [4].

ARINC-629 [48] is a communication protocol designed specifically for avionics

systems [53]. The Boeing 777, for example, is using ARINC-629 for control and

many related safety-critical functions [50]. ARINC-629 utilises a data bus that

is bidirectional and allows access for transmitting both safety-critical information

(SCI) and non-safety-critical information (NSCI) [48] [4]. Monopolisation of the

communication network is handled in ARINC-629 by controlling network access

by using three different timers as discussed above. Channel access in ARINC-629

is loosely based on time slots regulated by a transmission gap (TG) timer [48].



Communication Protocols 30

The protocol uses a collision avoidance approach (CSMA/CA) [14] for bus arbi-

tration [48]. The value of the TG is different for each node in order to prevent

simultaneous channel access by different nodes [48]. A node starts listening on

the communication channel and once its TG has elapsed, it starts transmitting its

messages only if the channel is idle [48]. A node cannot transmit if its TG has

elapsed but there is traffic on the channel. In this case, the whole procedure of

the timer restarts afresh [48]. ARINC-629 is similar to other approaches [52][54]

that transmit periodic and sporadic information. However, a timing analysis of

ARINC-629 shows that the protocol supports periodic and sporadic traffic with

deadlines, provided that the worst case sporadic traffic in the system is known [55].

In ARINC-629, a time slot is allocated to each node and it listens to the commu-

nication channel for inactivity [55]. If the bus is inactive during the allocated time

slot, the node may begin to transmit [55]. But if the communication channel is

busy, access is not attempted until the next time slot [55]. This slot allocation

sets the time limit on the node for transmission so that it cannot monopolise the

communication channel [55].

Importantly, in ARINC-629, nodes do not have a common knowledge about the

communication schedule, so different nodes can attempt to transmit at any time.

Due to this unpredictability, a global view and associated guarantees of system

real-time behaviour cannot be determined a priori. The arbitration mechanism in

ARINC-629 to avoid collisions on the shared channel makes it near impossible to

predict worst-case response times.

ARINC-629 does not provide any significant support at the protocol level against

faults introduced on the network due to interference. The protocol leaves all

concerns regarding fault tolerance to the application. This means fault tolerance

must be handled at application level. Furthermore, the channel access mechanism

in ARINC-629 is not efficient and does not prevent starvation.

The inability of ARINC-629 to prevent starvation can be demonstrated with a

simple example. If a single node (often termed a babbling idiot) continually occu-

pies the channel, then other nodes will keep waiting indefinitely, as they cannot



Communication Protocols 31

detect the channel as idle. Furthermore, fault tolerance is not handled at protocol

level and it is assumed that all such concerns can be handled at application level,

which is also not possible in this scenario.

3.3 Time-Triggered Model

The Time-Triggered Architecture (TTA) [6] is a composable architecture for the

design of large real-time systems in the safety-critical domain. The main char-

acteristics of TTA are common a notion of time in all subsystems as well as the

provision of interfaces fully specified in both the value and time domains, known

as temporal firewalls [2][6]. A large real-time system can be decomposed into

subsystems such as a controlled object, an operator and a computational subsys-

tem [2]. The interface between a controlled object and the real-time computer

systems is called the instrumentation interface, which consists of sensors and ac-

tuators [2]. While the interface between an operator and the real-time computer

system is known as the man-machine interface, consisting of input devices such as

a keyboard [2]. A real-time system can change its state as a function of physical

time [2]. The current state of a controlled object can be described by recording

the values of its state variables at a specific instant [2]. It is not always necessary

to record all the state variables, but a few are significant for a given purpose [56].

These significant state variables constitute a Real-Time (RT) entity [56]. The

current picture of an RT entity is known as an RT image [2]. In other words,

we can say that the observation of an RT entity in a controlled object is stored

as a real-time image [2]. At any given point in time, an RT image is considered

valid if it is an accurate representation of its RT entity in both the time and

value domains [2]. However, an RT image is time dependent and thus it can be

invalid with the progression of time [2]. The temporal accuracy of an RT im-

age is the time interval during which it is considered temporally valid [57]. A

TTA node can be considered as an RT object that provides the current RT image

of its corresponding RT entity [58]. All elements of the TTA have access to a

global time with known precision and must be fault-tolerant to avoid catastrophic



Communication Protocols 32

consequences [59]. The progression of global time is used as a control signal to

transmit and receive messages and for monitoring the temporal accuracy of the

messages [59]. An interface has a huge importance in the Time-Triggered (TT)

model [2]. It consists of a memory element between two subsystems and holds the

RT images of the relevant RT entities [2]. The characteristics of interfaces in the

TT model are described through temporal firewalls [2][6]. The temporal firewalls

can be categorised as phase-sensitive or phase-insensitive [2]. A phase-insensitive

temporal firewall is a data sharing interface that can be accessed by a subsystem

at a priori known instant [2]. The information contained in the temporal fire-

wall is considered temporally accurate for at least the defined temporal accuracy

interval [2]. By contrast, on a phase-sensitive temporal firewall, the information

remains accurate for a given, but much shorter temporal accuracy interval in the

future at the instant when the information is delivered to the temporal firewall

by a producer process [2]. Application tasks receiving phase-sensitive data ele-

ments must be synchronised with the sending task [2][60][61]. Otherwise, a state

estimation task must be executed at the receiver [61]. Therefore, phase-insensitive

data elements are preferred as they make the system more resilient and less tightly

coupled [5][60][61].

For example, if a user process uses a data element such as a sensor value from a

phase-insensitive firewall within a defined temporal accuracy interval after reading

the value then the result will be temporally valid at the time of use[5]. Therefore,

the data elements of the phase-insensitive firewall can be accessed at arbitrary

instants without the risk that the RT image becomes invalid before it is used [5].

An example of information validity in a phase-insensitive firewall [5] is shown in

Figure 3.3. On the other hand, a user process that uses a data element from a

phase-sensitive firewall [5] must ensure that the time interval between its use of

the information and the point in time of information delivery by the producer is

less than the temporal accuracy interval [5]. An example of information validity

in the phase-sensitive firewall is shown in Figure 3.4.

In the TTA it is assumed that sensors are intelligent [5]. This means that every

sensor and actuator has a microcontroller with processing capability [5]. These



Communication Protocols 33

Figure 3.3: Information Validity in the Phase-Insensitive Firewall [5]

Figure 3.4: Information Validity in the Phase-Sensitive Firewall [5]

microcontrollers observe the associated RT entity and, after after converting the

signal to a specific format, they deliver it to a TTA node in that format [60]. On

a serial bus, only a single message can be transported at a time [60]. Therefore,

some observation messages have to wait longer than others [60][5]. However, in the

TTA the time difference between an observation of an RT entity and the delivery

of corresponding RT images at the receiver is known a priori [5][60]. This time

difference can be used by the intelligent sensors for state estimation [5][60]. Since

each TTA node knows in advance about its channel access interval, sensors can

use their knowledge of their personal time slots for this state estimation [5, 60]. At

the receiving TTA node, the behaviour of the system will be as if all sensors values

were observed at the same point in time. Thus, the temporal properties of a sensor



Communication Protocols 34

subsystem are hidden behind the temporal firewall of a controlled object [5, 60, 62].

3.4 The Time-Triggered Protocol

The origin of TTP [33] can be found in the MARS (Maintainable Architecture

for Real-Time Systems) project [63] that was started in 1979 and funded by the

European Commission. The aim of this project was to build some baseline for an

architecture so that within the next twenty years it became possible to implement

a node for a distributed real-time system on a single inexpensive chip [64]. The

mechanism of fail-silent behaviour of a node on the detection of faults was a key

concept of MARS project [63] that was adopted by subsequent real-time commu-

nication protocols such as TTP [33]. Architectural components akin to MARS-like

nodes, node clusters, global time base, fault-tolerant units and the like are still

actively being used in TTP [33] and in other real-time communication protocols

such as FlexRay [7].

Figure 3.5: Structure of TTP cluster [6]

The development of TTP was led by Prof. Hermann Kopetz at the Technical

University of Vienna [2] and is now being maintained by the TTA-Group since

2001.

TTP/C [8] is a variant of TTP [33] specifically designed to meet the requirements

of SAE (Society of Automotive Engineers) Class-C standards [65]. Class C is a

protocol class that includes safety-related features such as prevention against bab-

bling idiot failure, omission failure, crash failure, etc [65]. Class C also requires low



Communication Protocols 35

and bounded network latency as well as the provision of fault-tolerant, distributed

clock synchronisation mechanisms [18]. The time-triggered nature of TTP estab-

lishes the ground for it to qualify for SAE Class C requirements [18]. TTP/C is

widely used in safety-critical real-time systems such as avionics and automotive

systems such as fly-by-wire and drive-by-wire systems [66].

3.4.1 TTP-Internal Operation

TTP implements its communication mechanism through a TDMA scheme with

statically configured timing [33]. All nodes participating in the system are allowed

to periodically access the channel on their turn for a fixed length time slot [33].

The duration is the same for every node’s time slot [33]. The main communication

component of TTP is a shared communication bus that interconnects distributed

nodes with each other [33]. Each node consists of a host layer, a Communication

Network Interface (CNI) layer and a Communication Controller layer [33] as shown

in Figure 3.5.

3.4.1.1 Node start-up and reintegration

After starting up all the nodes operating in the system, each node will wait for its

start-up time-out before accessing the communication channel [8]. Please note that

each node has a different start-up time-out value and the node with shortest time-

out will start the communication by sending an initialisation frame (I-frame) over

the channel [8]. The I-frame is used to establish a global time-base by synchronising

the clocks of all distributed nodes [8]. Collisions on the channel are possible [67]

during the start-up phase of TTP if the start-up timer of two or more than two

nodes elapse at the same time and they start transmitting I-frames at the same

time over the communication channel [8]. To make sure no node is integrated on

any of the colliding frames in case of a startup collision between two cold starters,

a big bang mechanism is used [8]. In case of a startup collision between two cold

starting nodes, the big bang ensures that no node will integrate on any of the



Communication Protocols 36

collided frames [8]. However, if a collision is consistently detected by all nodes

then big bang is not required [8]. It is possible that subsets of nodes may integrate

on different cold starters and hence, create multiple cliques [8]. Therefore, to avoid

such a scenario, the first received, correct cold start frame is rejected by all nodes

and the listen timeout is restarted [8].

There are two types of frames in TTP, initialisation frames (I-frames) and normal

frames (N-frames) [8]. The I-frames are used to form the global time base by

synchronising the clocks of all the nodes during system start-up phase [8]. They

are also used during normal operation (data transmission) at predefined intervals

of time for reintegrating lost or failed nodes [8]. N-frames are used during normal

operation to transport data [8].

3.4.1.2 Clock Synchronisation

Clock synchronisation [68] is a core requirement of time-triggered communication

protocols [6]. In TTP, the nodes have physical clocks (internal or local clocks)

and a predetermined schedule defined in their own copy of the MEDL [8]. Each

node operating in the system times its slots (transmit or receive actions) in ac-

cordance with a predetermined schedule that is triggered by the progression of

time [33]. For these node slots to be synchronised, the nodes’ clocks have to be

synchronised [68]. Any clock skew between sender and receiver is identified at the

receiver side by using the difference between the expected arrival time defined in

the MEDL and the actual arrival time of a frame [68]. The slots used for clock

synchronisation are denoted in the MEDL (e.g., transmissions from nodes with

cheaper, less accurate clocks may be disregarded) [8]. These slots are called resyn-

chronisation points [8]. The Fault Tolerant Average (FTA) [59] is then used to

correct the local clock based on the measured deviations. There are two phases

to perform clock synchronisation. In the first phase, the difference is stored in a

sorted array with a size of four where the highest and lowest value are discarded

and then the average of the remaining two values is calculated [59]. This average

value is used as the correction term to adjust the local clock’s time [59].



Communication Protocols 37

3.4.1.3 Membership Service

The membership service of TTP informs all connected nodes about their status

operating under the same cluster i.e. whether they are functioning correctly or

not [8, 68]. This service makes TTP capable of determining any violation of the

fault-hypothesis, so that a never-give up (NGU) strategy can be invoked immedi-

ately [8]. When there are not enough resources available to provide the minimum

required service, then NGU is initiated by the TTP in combination with the appli-

cation [8]. The NGU strategy is highly application specific e.g., if the cause of the

outage is a massive transient fault, then the NGU strategy in some applications

may freeze the actuators in their current state until a successful restart of the

whole cluster has been completed [62] [8].

The membership is encoded in a membership vector whose size is equal to the

number of nodes operating in a cluster [8]. Each node is assigned to a specified bit

position of the membership vector and this bit is set to TRUE if node is operating

correctly otherwise this bit is set to FALSE [8]. The membership point of a node

is the periodic send instant of a message by this node [8]. The Controller-state

(C-state) of a communication controller of a node consists of the current time and

membership vector [8]. A 24-bit CRC is calculated over the message contents in

concatenation with the C-sate of the sender to enforce the agreement on the C-

state of all the nodes of a cluster [8]. At the receiver side, again a 24-bit CRC is

calculated on the contents of received message in concatenation with the C-state

of the receiver [8]. Any disagreement on C-states of sender and receiver or the

transmission of faulty/corrupted message is detected through the negative result

of the CRC check at the receiver side [8]. The message is discarded in either case

and the receiving node assumes that the sender has been faulty [8]. This way,

a correct node cannot be killed by a faulty node in the system [8]. In the above

scenario, if the sender node has been correct then all other nodes have received the

message correctly, which means only the receiving node must have been faulty [8].

Therefore, on its turn it will send a message with a wrong membership vector

and all other working nodes will remove this node from their membership [8]. By



Communication Protocols 38

contrast, if the receiving node is right, then the sender node will be considered

faulty and will be removed from the membership [8].

It is important to note that, by using a membership service, TTP removes the need

for any additional acknowledgment overhead or timeout requirements, as this can

be achieved by checking the membership list of the successive sender [8].

3.4.1.4 Message Descriptor List-MEDL

The Message Descriptor List (MEDL) [8] is a data structure that contains all

control information which is required during the initialisation phase and is stored

in the communication controller’s memory [8]. This makes the communication

controller able to work independently, without requiring any control signal from

the host after the initialisation phase [8]. The MEDL contains information such

as:

� The address of CNI from where data can be retrieved and the points of time

when this data could be sent [8] [69].

� The point of time when data should be received and the address of the

CNI where received data can be stored. It also includes other additional

information for the protocol [8].

3.4.1.5 Communication Network Interface-CNI

Importantly in TTP, there is a CNI layer between the host and communication

controller [69]. The CNI is visible to the application software running on the host

computer [69]. The CNI has a status area and a message area [69]. The status

area is used for communication between the communication controller and the

host, whereas the message area is used for the exchange of data sent and received

by the node [69] [8].



Communication Protocols 39

3.4.2 Reliability and Fault-Tolerance in TTP

The TTP provides a high degree of fault-tolerance against a number of failures [68].

Fault-tolerant elements of TTP include:

� Fail-Silence: TTP nodes are designed in such a way so that they can detect

faults in their own operation [8]. If a node detects a fault in its operation, it

isolates itself from other correct nodes and will not participate in the system

operations until it restarts itself in a healthy state [69] [8].

� Bus Guardian: Bus guardians are implemented at the hardware level in

TTP [69] [8]. Each normal node has a bus guardian node in the bus topology

of the TTP network where the bus guardian is synchronised with the cluster

and knows the transmission schedule of the node [8]. A normal node that

tries to transmit outside its allocated time slot is known as babbling idiot

node [8]. The bus guardian physically prevents the normal node from trans-

mitting over the communication channel outside its allocated time slot [8].

� Replication of Components: TTP provides the basis for fault tolerance

through node replication and ensures replica determinism [8]. Use of du-

plicated communication channels makes it fault-tolerant in case of a single

channel failure [68].

The predictable nature of the Time Triggered Architecture (TTA) [6], by com-

parison, provides a solid base to implement reliable and fault-tolerant distributed

real-time systems [68] [33]. The Time-Triggered Protocol (TTP/C) [33][8] imple-

ments TTA communication by using a fixed, TDMA based channel access scheme,

where all nodes are allocated static and equal length time slots [8]. The scheduling

of time slots is done offline and all nodes know the exact time of transmission and

reception of data [8]. This predictable nature of communication made it possible

for TTP to provide effective error detection mechanism that ensures the maximum

degree of fault tolerance, safety and availability. It is therefore largely deployed in

dependable real-time systems such as automotive, aerospace, banking and the like.



Communication Protocols 40

However, on one hand this predictability supports reliable and timely delivery of

messages and on other hand it makes TTP inflexible.

A node can have a different transmission payload during different operational

modes. Therefore, the length required for its allocated time slot can vary during

different modes. However, TTP does not support any dynamic transmission sched-

ule that can allocate different time length slots to the same node during different

mode of operation, that depends upon the transmission payload of that node.

A more flexible approach is introduced by using slot-skipping (TDMA/SS) [70]

mechanism to improve channel utilisation. The basic concept of TDMA/SS is to

skip the transmission slot of a node if it does not start sending within a predefined

time in its slot [70]. The next node is permitted to send data before the sched-

uled time [70]. Channel utilisation can be improved by using this [70] and other

similar approaches later [71]. However, these approaches are unsuitable for fault-

tolerant, SCRT systems, as its flexibility compromises the determinism inherent in

the distributed agreement achieved by the static schedule and fault-tolerant clock

synchronisation, which is a basic requirement of fault-tolerance in the TTA.

3.5 FlexRay

FlexRay [7] is an automotive network communication protocol developed by the

FlexRay Consortium [72] in 2000. It can be viewed as the combination of

TTP [33][8] from the Technical University of Vienna and ByteFlight [73] from

BMW. Byteflight was designed for safety systems where a short response time is

required such as Airbag release application in automotives [73]. As these kind of

systems have a very short mission time (in milliseconds) the probability of fault

occurrence is very low, hence the Byteflight protocol forgoes require any fault-

tolerance mechanism [74]. Without fault-tolerance support, Byteflight cannot be

used for other control systems such as X-by-Wire systems which have a long mis-

sion time [74].



Communication Protocols 41

The structure of a node in FlexRay is the same as in TTP (See Figure 3.5). A

node has three components, a host computer, a CNI and a communication con-

troller [7]. The basic communication channel access mechanism is the same as in

TTP. However, FlexRay adds flexibility by dividing the communication cycle into

different segments [7, 75]. A communication cycle in FlexRay consists of a static

segment, a dynamic segment and two other protocol segments called Symbolic

Window (SW) and Network Idle Time (NIT) [7] as shown in Figure 3.6.

Figure 3.6: FlexRay Communication Cycle [7]

In the static segment, all nodes are allocated static and equal-length time slots

to transmit safety-critical information, while the dynamic segment is based on

dynamic time slots also known as mini slots (inherited from the ByteFlight pro-

tocol [73]) to transmit non-safety-critical information [7]. Channel bandwidth in

the non-safety-critical part is shared on-demand among the nodes to ensure better

bandwidth utilisation [7].

The SW is a fixed-length time slot used to transmit special symbols over the

network to perform network management [7]. During the NIT in a communication

cycle there is complete silence on the communication channel [7]. Communication

controllers utilise this time to execute the clock synchronisation algorithm [7].

FlexRay utilises similar fault-tolerance mechanisms to TTP for the safety-critical

part of communication. Both protocols are designed to address the same set

of requirements for automotive systems, but there is a clear distinguishing line

between their goals. TTP is tilted more towards safety while FlexRay towards

flexibility.

FlexRay adds its flexibility only by providing support for non-safety-critical infor-

mation, i.e. by introducing a dynamic segment for this information in each TDMA

round [7]. However, the static segment of FlexRay that supports safety-critical



Communication Protocols 42

communication uses the same approach with regards to channel access as TTP,

i.e. the use of static and equal length time slots for all the nodes [7].

As FlexRay is also based on the TTA [6], reliable and timely delivery of mes-

sages is ensured through predictable real-time communication where communica-

tion schedules are predefined and all the nodes of a cluster know exactly when

they will transmit and receive messages [7].

As mentioned earlier in this section, FlexRay inherited most of its features from

TTP [33]. Therefore its error detection mechanism is the same as in TTP, which

makes it fault tolerant and safe for safety-critical real-time communication.

However, since the static segment in a TDMA round of FlexRay is the same as in

TTP, allocation of static and equal length time-slots to all the nodes irrespective

of their transmission payload can cause inefficiencies regarding channel utilisation,

as nodes with shorter transmission payload cannot utilise the full length of their

allocated time slots. FlexRay does not support any dynamic transmission schedule

that can allocate different length time slots to the same node during different

modes of operation depending upon the transmission payload of that node.

To improve the network utilisation in FlexRay, an algorithm is proposed in [76]

to obtain the optimal length of static messages, however, the messages that are

longer than optimal length are migrated to the dynamic segment of FlexRay [76].

Therefore, shifting the safety-critical messages to dynamic segment removes them

from the safety-critical domain and compromises the reliability of the protocol.

A heuristic algorithm is proposed in [77] to efficiently utilise the bandwidth of

a FlexRay network. The basic idea is to utilise both channel in FlexRay inde-

pendently [77]. Two modes have been introduced, called independent mode and

fault-tolerant mode [77]. It is assumed that some frames in static segment do not

need fault tolerance and hence, the independent mode can be used to send different

messages on both channels in a given time slot [77]. This idea is in contradiction

of the basic theme of a static and dynamic segment of FlexRay and therefore,

does not provide an optimal solution if all frames scheduled in the static segment

require fault-tolerance properties. The work of Lee et al. [78] to avoid transient



Communication Protocols 43

failures in FlexRay by introducing retransmission of frames in static segment [78]

further reduces the bandwidth utilisation and is prone to replicate communication

errors. Similarly, other recent work such as [79] only addresses the issue of com-

putation of the end-to-end delay for the messages those are scheduled with slot

multiplexing in dynamic segment of FlexRay.

The deterministic communication in TTP and FlexRay therefore comes at a cost.

Although communication is guaranteed to be collision free and existing TTA pro-

tocols have a known channel access latency, they have the disadvantage of poor

channel utilisation. As each node has different functionality and consequently dif-

ferent transmission payload requirements, allocating equal-length slots to all nodes

inevitably causes inefficiencies, as nodes with lower payload will not be able to fill

their allotted time slots with meaningful data.

3.6 Time Triggered CAN (TTCAN)

Time-Triggered CAN (TTCAN) [80] was developed on top of the physical layer

of the widely used, event-triggered CAN protocol [80]. The idea was to develop a

flexible, hybrid protocol that can transmit time-triggered as well as event-triggered

messages [80]. The protocol uses an exclusive window to transmit a safety-critical

message that needs a guaranteed latency [80]. Unlike the original CAN proto-

col, safety-critical messages are transmitted at specific points in time (by using

exclusive windows) and do not need to compete for bus access with messages trans-

mitted using the CAN arbitration protocol [80]. The system matrix of TTCAN

consists of a number of basic cycles and it allows TTCAN to choose multiple send-

ing patterns, e.g., transmit a message once per basic cycle, once in a whole matrix

cycle, etc [80].

A master node concept is used to synchronise clocks of all participating nodes [80],

but this mechanism can add a significant delay in choosing a new master node in

case of failure of the active master node. TTCAN does not provide important

dependability services at the protocol level such as membership, independent bus



Communication Protocols 44

guardians, reliable acknowledgment, or similar. Some, but not all of these services

can be build at the application level, but at the expense of the efficiency of the

protocol and timing bounds.

3.7 Time Triggered Ethernet (TTEthernet)

TTEthernet [81] was developed to enable time-critical real-time traffic over a stan-

dard Ethernet network. It supports three classes of traffic, Time Triggered (TT),

Rate Constrained (RC), and Best Effort (BE) [81]. The schedule is computed

offline for TT traffic, hence guarantees contention-free communication over the

same network [81]. A transmitter node sends TT messages in pre-defined, static

time slots in order to avoid collisions, however these slots are distributed over

equal-size communication cycles, repeating indefinitely [81]. In TTEthernet, end

systems (nodes) are connected through switches [81]. Flows (frames) can be trans-

mitted from one end system to multiple end systems through these switches [81].

TT frames are periodically transmitted in pre-assigned time slots [81]. A trans-

mission slot from one node, say Node A to Node C through switch 1, may be

different in duration than the time slot from Node B to Node C through the same

switch but remains the same (static and equal length) along the same path [81].

Each node in the TDMA round of TTEthernet may have a different slot length and

the TDMA round cyclically repeats [81]. This means that the length of TDMA

rounds across the cluster cycle are required to be the same. Therefore, TTEth-

ernet does not cover more dynamic scenarios where a node requires different slot

lengths in different TDMA rounds. Moreover, fault tolerance is achieved through

redundancy management and does not cover all fault scenarios at the protocol

level, missing important services such as membership, implicit acknowledgment,

overhead-free, fault-tolerant clock synchronisation, clique avoidance and the like.

Similarly, the bus guardian mechanism does not support variable slot lengths for

the same node over different TDMA rounds.



Communication Protocols 45

3.8 Audio/Video Bridging and Time Sensitive

Networking

Current audio and video encoders and decoders can generate frames that vary

in size by order of magnitude [82]. The Audio/Video Bridging (AVB) [83] Task

Group developed a set of protocols to support the deterministic communication

of audio/video (AV) streams over a standard Ethernet network [84]. Despite the

advantages of standard Ethernet such as high bandwidth and low cost, it does

not provide temporal properties that are essential for real-time traffic. The AVB

Task group introduced a set of standards such as 802.1As [85], 802.1Qat [86],

802.1Qav [87], and 802.1BA [88] to support low latency and jitter requirements for

multimedia streams. Time synchronisation is supported by the 802.1AS standard,

which is based on the IEEE1588 Precision Time Protocol (PTP) [89]. The Stream

Reservation Protocol (SRP), also known as 802.1QAT is utilised to reserve the

bandwidth for high-priority traffic classes, while 802.1QAV supports a queuing

and forwarding policy for AV traffic [90]. AVB was introduced to provide low

latency and jitter for AV traffic, by reserving bandwidth along the whole path

from transmitter to receiver [84].

Despite its success and widespread use in the automotive industry, AVB fails to

provide the real-time and fault-tolerance capabilities to support the rigid timing

requirements of hard real-time applications [91].

Improvements have been made to IEEE AVB standards by the Time Sensitive

Networking (TSN) Task group [92] in order to support real-time capabilities and

performance improvements. TSN introduces different standards that are built on

top of the AVB standards [92]. The Credit-based Shaping (CBS) algorithm used

by the IEEE AVB 802.1Qav [87] standard does not support timing requirements of

TT streams of AV traffic when non real-time traffic is in transmitted over the same

channel [90]. CBS is used to overcome the issue of starvation for low priority traf-

fic, but due to its non-preemptive nature, a low priority AV stream can block the

transmission of time-critical AV streams [93]. TSN introduced the Time-Aware



Communication Protocols 46

Shaper (TAS) in IEEE 802.1Qbv [94] to resolve this issue. TAS adopts a preemp-

tive approach where scheduled traffic can preempt low-priority traffic to fulfil its

timing requirements [94]. TSN defines high-priority queues for TT traffic while the

rest of the queues are same as used in AVB [94]. The traffic that does not require

strict temporal properties is categorised as best-effort and assigned the least pri-

ority [95]. TSN is using IEEE 802.1AS-Rev [96] to synchronise the clocks to form

a global time base for enabling the deterministic communication [96]. However,

this mechanism comes at the cost of extra overhead (synchronisation frames) in

addition to the normal traffic over the communication network [97]. TSN uses the

concept of Gate Control List (GCL), which is implemented on the egress ports of

each participating device in the network [97]. Each port can have multiple queues,

where some of the queues are assigned to TT traffic and the rest of the queues are

assigned to other traffic types such as AV or BE traffic [97]. GCLs are computed

offline and at each egress port, frames will be transmitted from a queue whose

gates are opened. When gates for TT queues are opened, the gates for other

queues must be blocked [97]. It is to be noted that when a TT queue has multi-

ple frames and its gate is opened based on GCL then a FIFO mechanism is used

to transmit the frames from the same queue [98]. This may lead to unavoidable

delays in transmitting safety-critical information over the network as fragmenting

a flow into numerous frames and adding sequence numbers need extra time [97].

The complexity increases when there are multiple hops between end systems [97].

A GCL scheduled for a priority queue defines the exact interval when that queue

has exclusive access to the transmission channel [97]. Interleaving frames from

different TT flows to the same priority queue can significantly increase end-to-end

transmission delays [99]. To avoid arbitrary transmission of TT frames and han-

dling of babbling idiot faults, TSN introduces time-based ingress policing in IEEE

802.1Qci [100]. A time-aware Access Control List (ACL) is used to keep track of

the arrival time of incoming TT frames. The ACL is computed offline and must be

aligned with GCLs [100]. A TT frame can be transmitted successfully only if the

ACL grants permission to pass at the ingress port and at the same time the GCL

has an active transmission time slot at the egress port [100]. The GCL period is



Communication Protocols 47

computed offline for a TT flow and repeats in cycles, which means the GCL has a

static and equal-length time period for a TT flow as used in [99]. TSN introduces

reliability and fault tolerance by using IEEE 802.1CB [101]. A transmitter or any

intermediate device such as a switch will generate sequence numbers for all frames

and multiple copies are generated for each frame before transmitting them over

the network [101]. Therefore, to identify and control the individual streams or

flows, additional mechanisms such as Per-Stream Filtering and Policing [102] as

well as Frame Replication and Elimination for Reliability [103] are required. To

avoid a single point of failure, redundant routes are configured by using IEEE

802.1Qca [104] and copies of a frame are transmitted over these routes[104]. The

issue of network overloading is resolved by eliminating the duplicated copies of

the frame, either by an intermediate device, such as a switch, or at the receiver

end system [97]. The TSN fault-tolerance mechanisms introduce additional com-

plexity and latency, which is not suitable for low-latency SCRTs [97]. Most of

the TSN approaches [105] use uni-casting to transmit TT flows, therefore advan-

tages of membership service such as atomic multicast, tracking the status of active

and inactive nodes in the cluster, clique avoidance, and implicit acknowledgment

without any extra overhead cannot be implemented at the protocol level in the

TSN standards [105]. The most complex issue with TSN is the computation of

its TT communication schedules for a large number of network components [105].

Interdependency of routing and communication schedules become computation-

ally intensive due to combinatorial explosion [97]. Recently, a number of TT

schedulers [106][107][108] have been proposed to solve the aforementioned issues

sequentially and some approaches [109][110][111] use ILP-based solutions but are

very time consuming and not scalable for large real-time systems [97]. Most of

the TT schedulers [106][107][109][110][111][112] for TSN assume that the under-

lying network infrastructure is fault-free. In reality such assumptions don’t hold

for SCRTs. Consequently, the TT scheduling problem under faults environment

can lead to a computationally intractable scheduling process [97]. In addition,

although TTEthernet and TSN are aimed at using existing, low-cost Ethernet in-

frastructure for timing-critical traffic, their implementation comes at a high cost



Communication Protocols 48

of maintenance and design complexity [113].

3.9 Wireless communication for safety-critical

clusters

Wireless communication techniques are being actively developed to be used in

safety-critical real-time systems such as Intelligent Transport Systems (ITS) [114–

116]. Numerous car manufacturing and telecommunication companies as well as

research and development institutions worldwide, are working to develop a variety

of vehicular communication networks [117] [118][119]. With the advances in the

technology, vehicles are becoming increasingly smart. Vehicle connected with each

other and with Road Side Units (RSUs) allow updates about weather, traffic den-

sity on routes, and communication of safety-related information to other vehicles

and surrounding infrastructure [120]. Such systems are referred in the literature

as vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything

(V2X), and vehicular ad hoc networks (VANETs) [117] [118][119]. The most com-

monly used communication protocol under the V2X architecture is 802.11p, de-

fined in [121] and revised in [122]. Channel access in 802.11p is based on a Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) scheme, where all

transmitter nodes participate in channel sensing before starting their transmis-

sion [122]. On sensing the channel as busy, a node will delay its transmission by

choosing a random backoff value [122].

The unsynchronised channel access mechanisms in these wireless architectures can

result in significant transmission delays. This is not suitable for safety-critical

real-time systems by any means. Another MAC method proposed for VANETs

is Self-organising Time Division Multiple Access (STDMA) [123], where time is

divided into time slots constituting a frame which means a node is transmitting

its frame in multiple time slots [123]. For example, a case study used in [124] is

using 904 and 2283 time slots per frame in its two different data traffic models.

It is important to note here, that any wireless protocol is subject to potential



Communication Protocols 49

interference with associated packet loss or unbounded delays and thus is considered

a best-effort protocol [123] [122], not meeting the fault-tolerance requirements of

safety-critical real-time systems.

Therefore, using wireless communication in safety-critical real-time systems such

as in-vehicle networks to connect different nodes of a safety-critical cluster such as

an anti-lock braking (ABS) system is not an appropriate choice as these protocols

are not capable to cover all the fault scenarios considered in this thesis. However,

it is possible that these protocols can play an important role in augmenting on-

board systems. For example, a gateway can be designed to link safety-critical

clusters of a wired network with a wireless network such as V2X architecture to

exchange the information on road infrastructure, congestion, and the like.



Chapter 4

Dynamic Time-Triggered

Communication

In distributed safety-critical real-time systems, different nodes are connected with

each other through a shared communication channel such as bus. They coordi-

nate their actions through message passing, therefore, timely and reliable message

delivery is critical [2]. Communication errors and unpredictable delays in trans-

mission may lead to unpredictable behaviour of distributed real-time systems [2].

Let us examine the brake-by-wire system in a car we discussed earlier. When

the driver hits the brake pedal, then, based on physical parameters such as the

speed of the car and its wheels, a brake force is calculated and transmitted to each

wheel for stopping the car [2]. A slight delay or error in communication may lead

to a longer stopping distance or even complete brake failure, potentially causing

harm [2]. To avoid certain delays to access the communication channel, Time-

Triggered Architecture (TTA) uses a Time Division Multiple Access (TDMA)

scheme for channel access [6]. Communication time slots used by the nodes that

make up the distributed system are deterministic and scheduled offline [6]. To this

end, these communication time slots are static and equal-length for all nodes in a

TDMA round irrespective of their transmission payload requirements. The same

communication slots repeat over different TDMA rounds in a cluster cycle. How-

ever, this static scheme comes at the expense of flexibility, which results in poor

50



Dynamic TT Communication 51

channel utilisation, as we will see. This chapter develops an alternative approach

that utilises configurational flexibility in allocating the slot length of each node on

the basis of its transmission payload requirements, while retaining the properties

required for safety-critical operation.

4.1 Motivation

Flexibility and dependability are the two parameters that are often considered as

contrary to each other, and choosing between them to solve an engineering prob-

lem is a hard task [22][23]. There is a strong argument in the literature [6] [33] [68]

that to achieve and verify dependability, static prior knowledge about the sequence

and timing of state changes is essential [2]. This idea has been exploited by the

Time-Triggered Architecture (TTA) [6][5] to produce more dependable real-time

systems [125]. In TTA-based communication, permission to use a communica-

tion channel is determined by a Time Division Multiple Access (TDMA) scheme

with pre-defined time slots [6]. The most prominent example of such commu-

nication in real-time systems is the Time-Triggered Protocol (TTP) [2][8]. To

ensure collision-free channel access, all nodes are assigned time slots to transmit

their information [6]. All nodes have synchronised clocks to form a global time

base, and thus, they know the exact point of time each node will transmit its

message [6][33][68]. All static time slots are of equal duration and are distributed

between participating nodes in equal-length TDMA rounds. These TDMA rounds

repeat indefinitely, making channel access periodic.

This predictability ensures that channel access will be inherently free of collision

and all the protocols that follow this approach will have known channel access

latency [6]. However, this comes at a cost. In a system, it is likely that different

nodes have very different transmission requirements for their transmission payload

which can vary in each TDMA round of a cluster cycle. Therefore, they need

different length time slots, and assigning equal length time slots will result in poor

channel utilisation (CU).



Dynamic TT Communication 52

There are a number of approaches [70, 71, 99, 126–131] that make an effort to

overcome this issue. None of these approaches completely solve this problem while

also retaining the requirements that are imperative for Safety-Critical Real-Time

(SCRT) systems, such as fault tolerance and guaranteed timeliness. In fact, this

problem has long been recognised and attempts exist to split up communica-

tion and, at least, provide some flexibility and better channel utilisation for non-

essential messages, while retaining the strict real-time guarantees for safety-critical

communication [7]. Time-triggered scheduling and communication models [132–

134] are implemented in different real-time applications but none of them use a

flexible slot allocation that retains the fault-tolerance features required at protocol

level.

4.2 Payload based slot lengths inside a TDMA

round

This section discusses INCUS (Individually Node Slot CUStomizable protocol),

my approach to overcome the above-mentioned limitations towards efficient chan-

nel utilisation in time-triggered communication. INCUS is a protocol developed

in the course of this research that allows the slot length of nodes to be configured

in accordance with their payload requirements when a TDMA round is designed.

The feasibility of this proposed approach is evaluated while retaining the level of

reliability required for safety-critical real-time systems. An analysis in this chap-

ter will show an almost twofold improvement in efficiency in a typical automotive,

brake by wire scenario.

All the existing TTA communication protocols for safety-critical, distributed real-

time systems use a TDMA approach for channel access where static and equal

length node slots are used in each TDMA round for transmitting the safety critical

information as shown in Figure 4.1. Here, the term traditional approach is used

for such an approach.



Dynamic TT Communication 53

Figure 4.1: TDMA based approach for channel access

I would argued that, while care must be taken to facilitate fault tolerance and

ensure replica determinism, assigning same-length node slots will cause low channel

utilisation and will affect the efficiency of the communication protocol. This is

due to each node in the system typically having different functionality and, thus,

associated transmission requirements. The slot length of each node should be

configured according to its transmission payload requirements in a TDMA round

and may repeat in subsequent TDMA rounds as shown in Figure 4.2. The Brake-

by-Wire (BBW) case study [29] is used to illustrate this problem further.

Figure 4.2: INCUS based approach for channel access

4.2.1 Brake-by-Wire Case Study

X-by-wire systems such as steer-by-wire, brake-by-wire, and the like, are nowadays

starting to become more prevalent in the automotive industry [29]. These systems

are designed to replace mechanical components with more sophisticated electrical

components including sensors and electrical actuators [29]. The goal is to make

these systems more reliable and fault tolerant than traditional mechanical systems



Dynamic TT Communication 54

(and it is expected for them to also become cheaper, once used in a higher number

of mass-produced vehicles) [29].

Figure 4.3: Brake-by-wire Architecture

The Anti-lock-Braking System (ABS) widely used in modern vehicles is an example

application that can sit on top of a brake-by-wire system [29]. ABS provides more

safety to drivers by avoiding wheel lock-up and uncontrolled skidding [29]. It also

decreases the stopping distance on dry and slippery roads. The layout of a typical

brake-by-wire system is shown in Figure 4.3. Each wheel has a wheel speed sensor

and a brake actuator. The function of the Brake-by-Wire-Manager (BBWM) is to

use the brake pedal sensor value from the pedal node (BPN) and the speed of each

wheel from the wheel speed sensor nodes (WSSNs) to calculate the brake force for

each brake actuator node (BAN). Each BAN will take this brake force value and

apply it to their corresponding wheel through their brake actuators. The BBWM

periodically monitors the wheel speeds reported by the WSSNs and checks the

difference between them. If a wheel is about to lock, the BBWM will send a lower

brake force to that wheel’s BAN. Wheels that spin faster than others will have a

stronger brake force applied. To provide fault tolerance at the hardware level, two

redundant BBWM are used. However, the WSSNs and BANs are not replicated,

as it is possible to brake the car with the remaining wheels, even if one wheel unit

fails. The whole communication among BBWM, BPN, WSSN and BAN is based

on replicated communication channels with a bandwidth of 1 Mbps. The BAN for



Dynamic TT Communication 55

Table 4.1: Frame Sizes for the Nodes of the Brake-by-Wire System

Node Data Frame Size Slot Length
Node Data Frame Size Slot Length
BBWM 12 bits 12 · 4 + 28 = 76 bits 76 µs
BPN 10 bits 10 + 28 = 38 bits 38 µs
WSSN 10 bits 10 + 28 = 38 bits 38 µs
BAN nil 0 + 28 = 28 bits 28 µs

each wheel is not transmitting any application data, but control information to

show its membership on the network is still transmitted.

Table 4.1 shows the payload data and ideal transmission lengths for all the nodes

in the Brake-by-Wire system. The transmission lengths also take into account 28

bits of control information with the same functionality as in TTP [33] (a 1-bit

frame identifier, 3 bits of mode information, and a 24-bit CRC value). Each type

of node in the BBW system requires a different node slot length. If a traditional

TTA slot allocation approach is used, the slot length for each node will need to be

the maximum 76 microseconds required by the BBWM. All other nodes transmit

only half the data or less and would have to pad their node slot to the static,

maximum length. No other node can transmit during that padding time, so this

is considered as the node slot overhead time as illustrated in Figure 4.4.

In INCUS, the slot length for each node is configured in accordance with the

transmission requirements of a node. Rather than allocating same-length slots

to all nodes, each slot length is configured on the basis of its transmission data

requirements. Consequently, node slots vary in their length within a TDMA round

as shown in Figure 4.5. This concept eliminates the overhead time of a node during

transmission and improves the overall efficiency of channel utilisation (as shown

in Section 4.2.5).

The principle of operation of INCUS is otherwise based on TTP [33]. The commu-

nication controller subsystem of a node that is actually responsible for transmission

and reception of data over the communication channel operates under similar prin-

ciples. The Message Descriptor List (MEDL, a data structure within controller

memory) holds the time schedule for the data transmission and data reception



Dynamic TT Communication 56

Figure 4.4: Traditional slot allocation approach

Figure 4.5: INCUS slot allocation approach

phase for all the nodes. MEDL used in INCUS is different than MEDL [8] as it

holds the transmission schedule of each slot of a node in all TDMA rounds (slot

length vary in each TDMA round). Each node has a replicated copy of the MEDL,

hence it knows the exact time when it and other nodes have the right to access the

communication channel. Depending on the nature of transmission, three classes of

frames are used. Normal frames (N-frames) carry application data, initialisation

frames (I-frames) carry synchronisation information for reintegration of recovering



Dynamic TT Communication 57

nodes, and coldstart frames (CS-frames) carry synchronisation information for the

integration of nodes during system start-up [8].

4.2.2 Node Startup and Resynchronisation

Node startup and resynchronisation is based on TTP [8], but INCUS requires

different values of timeout parameters. All nodes have a unique listen timeout

(time for a node to wait for I-frame) and coldstart timeout (time for a node to

wait for a response from other nodes on the network after transmitting a CS-

frame), because of their unique startup delay defined in Equation 4.1.

T start0 < T start1 < .... < T starti < ... < T startn−1 (4.1)

In INCUS, a startup delay for a nodei is the duration of all incus-slots from the

beginning of the incus-round up to the beginning of the incus-slot of nodei. The

term T inc r (incus-round) denotes a TDMA round in INCUS and τ inc (incus-slot)

represents a specific node slot. It is important to note that this differs from TTP

in that τ inci 6= τ incj is now possible! In TTP, the listen timeout parameter for a

recovering node i during the integration process is T starti + 2T trad r with T trad r

being the time for a traditional TDMA round [8]. This may result in the frequent

transmission cold-start frames in case node i did not receive any I-frames for up

to two traditional-rounds. In INCUS, I bound the listen timeout by the number

of incus-rounds in a cluster cycle.

T listeni = T c cycle + T starti (4.2)

where the cluster cycle time for r incus-rounds is

T c cycle =
r∑
i=1

T inc ri (4.3)



Dynamic TT Communication 58

such that the incus cold-start time is

T inc coldi = T inc r + T starti (4.4)

I-frame Transmission. TTP has to transmit I-frames on both channels after

two traditional rounds [8]. INCUS can accommodate a more flexible approach

in transmitting I-frames. For example, if there are some nodes, such as actuator

nodes in the network, that are not transmitting any data at all (other than control

information to show their presence on the network) then I-frames can also be

transmitted by these nodes. This may be desirable for faster reintegration of

recovering nodes, as they will receive I-frame in each incus round. Conversely,

any two nodes can be statically configured to transmit I-frame only once, in each

cluster cycle as defined in Equation (4.3), transmit I-frames on both channels,

reducing the overhead from I-frame transmissions.

4.2.3 Membership Service

To facilitate fault tolerance and keep track of active and inactive nodes within

a round, a TTA membership service [8, 68] is implemented, by recording the

membership status of each node in a membership vector whose bit size is equal

to the number of nodes in the cluster. It is important to note that, following the

TTA [6], this comes without any additional acknowledgement overhead or timeout

requirements, as each node transmits once per incus-round. For every slot, the

transmission of a node (or lack thereof) is registered in the membership vector. As

in TTP, the membership vector does not have to be transmitted explicitly [8], but is

used in the frame CRC calculation, causing dissenting minority nodes (those with

a differing view from the majority) to no longer be heard (and no longer being

able to receive frames from the majority of nodes within the cluster) [8]. The

membership vector of such minority nodes will quickly drop to half the nodes in

the system or below, causing them to restart and re-integrate into the cluster [33].

A detailed mechanism of membership service is discussed in Section 4.3.2.1.



Dynamic TT Communication 59

4.2.4 Clock Synchronisation

Clock synchronisation [68] is a core requirement of time-triggered communication

protocols [6, 33]. All the nodes have physical clocks (internal or local clocks) and

a predetermined schedule defined in their own copy of the MEDL [8]. Each node

operating in the system times its slots (transmit or receive actions) in accordance

with a predetermined schedule that is triggered by the progression of time [6, 68].

For these node slots to be synchronised, the nodes’ clocks have to be synchronised.

Clock synchronisation in INCUS is based on TTP [8] and follows the same princi-

ples. Hence, clock synchronisation in TTP will be described first before discussing

the differences in INCUS. Any clock skew between sender and receiver is identi-

fied at the receiver side by using the difference between the expected arrival time

defined in the MEDL and the actual arrival time of a frame [8]. The slots that are

to be used for clock synchronisation are denoted in the MEDL (e.g., transmissions

from nodes with cheaper, less accurate clocks may be disregarded) [8]. These slots

are called resynchronisation points Rp. The Fault Tolerant Average (FTA) [59] is

then used to correct the local clock based on the measured deviations. There are

two phases to perform clock synchronisation [59]. In the first phase, the difference

is stored in a sorted array with a size of four where the highest and lowest values are

discarded and then the average of the remaining two values is calculated [59]. This

average value is used as the correction term to adjust the local clock’s time [59].

If resynchronisation point is set after n number of slots then duration of Rp can

be calculated in TTP [33] as follows: let t be the real time such that:

Rp(t) = n ∗ τmax (4.5)

where τmax is the node slot length in TTP.

As in TTP [33], all nodes have the same length time slot to access the commu-

nication channel, the resynchronisation interval can be calculated by using Equa-

tion (4.5). For INCUS, the nodes can have different length slots, so it need to



Dynamic TT Communication 60

adjust the formula as follows:

Rp(t) =
n−1∑
i=0

Si(t) (4.6)

where (n ≥ 4) and S(t) is the slot length of each node.

With the membership and distributed clock synchronisation mechanism, INCUS

provides the basis for fault tolerance through node replication and ensures replica

determinism. Use of duplicated communication channels allows us to tolerate a sin-

gle channel failure. As the communication schedule of all the nodes is predefined,

the additional mechanisms in the TTA can be used, such as bus guardians [8],

to prevent a “babbling idiot” node from transmitting outside its allotted slot [6].

Hence, in terms of fault tolerance and other safety critical features, INCUS is on

par with TTP.

4.2.5 Efficiency Analysis for Channel Utilisation

In order to analyse the channel utilisation in the existing traditional approach and

compare it with INCUS, there is a need to define the timing terms to perform the

analysis.

� T trad r represents (the length of) one TDMA round using the traditional slot

allocation approach.

� T inc r represents one TDMA round in the proposed slot allocation approach

for INCUS.

� τmax represents the node slot length in the traditional slot allocation ap-

proach (same for all the nodes).

� τ inci represents the slot length for each node in INCUS (possibly different for

each node i).

� T transi is the transmission time for control and payload data for node i during

its allocated node slot.



Dynamic TT Communication 61

� T idlei is the remaining allocated slot time for node i not utilised for data or

control information.

� T ifg is the Inter Frame Gap (IFG) overhead time, i.e., the time when no

transmission occurs between frames.

� T ovhdi is the total overhead for node i for its allocated slot.

4.2.5.1 Traditional slot allocation approach

Due to equal length slot allocation to all the nodes, it can say that slot length

(τmax) of each node consists of node slot transmission time (T transi ) and a node

slot overhead time (T ovhdi ) as shown in Figure 4.4. Node slot overhead time of a

nodei can be calculated as:

T idlei = τmax − T transi (4.7)

T ovhdi = T idlei + T ifg (4.8)

If T ovhdi is the overhead time in each node slot then total overhead time (T̂ ovhd)

for n number of nodes in a TDMA round is:

T̂ ovhd =
n−1∑
i=0

T ovhdi (4.9)

If there are n number of nodes then the length of a TDMA round (T trad r) in

traditional slot allocation approach is defined as:

T trad r = n · (τmax + T ifg) (4.10)

By using Equation (4.9) and Equation (4.10) channel utilisation (CU) in a TDMA

round for traditional slot allocation approach can be calculated as:

CU =
T trad r − T̂ ovhd

T trad r
(4.11)



Dynamic TT Communication 62

4.2.5.2 INCUS approach

In the proposed protocol, the slot of each node is customised on the basis of its

transmission load to avoid the node slot overhead time within the allocated node

slot as shown in Figure 4.5. Therefore, for slot length τ inc of each node, T idlei is

zero and the slot length of a nodei is:

τ inci = T transi (4.12)

If there are a number of n nodes then length of a TDMA round (T inc r) in my slot

allocation approach can be defined as:

T inc r =
n−1∑
i=0

(τ inci + T ifg) (4.13)

Channel utilisation in a TDMA round for the this approach can be calculated by

using Equations (4.9) and (4.13):

CU =
T inc r − T̂ ovhd

T inc r
(4.14)

As there is no node slot overhead time in my approach, every node will fully utilise

its allocated node slot time for transmitting data and control information over the

communication channels. Hence, INCUS can transmit the same amount of data in

less time than the traditional approach. In the exceptional case where the payload

requirements for all the nodes are the same, traditional slot allocation overhead is

equal to INCUS. In all other cases, INCUS avoids the additional overhead caused

by unequal payloads.

4.2.5.3 System-Level Analysis

Now let’s apply the analysis regarding channel utilisation to the Brake-by-wire

case study. There are a total of eleven nodes connected through a bus1 as shown

1For simplicity, we ignore the replicated bus here – however, it is important to note that the
timing requirements for the redundant bus are exactly the same.



Dynamic TT Communication 63

Table 4.2: Channel Utilisation for the Brake-by-wire System using Tradi-
tional Slot Allocation

Node τmax T ovhdi

BBWM1,2 76µs each (0 + 4) · 2 = 8µs
BPN 76µs (38 + 4) · 1 = 42µs
WSSN1...4 76µs each (38 + 4) · 4 = 168µs
BAN1...4 76µs each (48 + 4) · 4 = 208µs
Total 880µs 426µs

Table 4.3: Channel Utilisation for the Brake-by-wire System using INCUS
Slot Allocation

Node τ inc T ovhdi

BBWM1-2 76µs each (0 + 4) · 2 = 8µs
BPN 38µs (0 + 4) · 1 = 4µs
WSSN1-4 38µs each (0 + 4) · 4 = 16µs
BAN1-4 28µs each (0 + 4) · 4 = 16µs
Total 498µs 44µs

in Figure 4.3.

According to the traditional slot allocation approach the slot length τmax of each

node should be 76µs. Only two nodes, BBWM1 and BBWM2 will fully utilise

that slot length for transmitting information over the communication channel; the

rest of the nodes will have a node slot overhead time in their allocated slot length

as shown in Table 4.2. INCUS is using 4 µs for T ifg, therefore a slot length,

plus T ifg, is 80 µs for each node. According to Equation (4.10) T trad r is 880µs

where T̂ ovhd by using Equation (4.9) is 426 µs. By substituting these values in

Equation (4.11), channel utilisation for a TDMA round according to traditional

slot allocation approach is 51.59%. In the traditional slot allocation approach,

the 454 bits of payload data are transmitted in a TDMA round of 880 µs.

By comparison, in INCUS, the slot length τ inc of each node depends on its trans-

mission requirements as shown in Table 4.3. Therefore, T ovhdi is zero for all nodes.

As T ifg is 4 µs and T idlei is 0 µs, according to Equation (4.9) T̂ ovhd is only a total

of 44µs in INCUS.



Dynamic TT Communication 64

Figure 4.6: INCUS vs Traditional approach

This constitutes only 10.3% of the overhead of the fixed maximum-length slot al-

location approach shown before. Consequently, following Equation (4.13), T inc r

now totals 498µs per TDMA round (compared to 880µs in a traditional proto-

col such as TTP). By substituting these values in Equation (4.14), the channel

utilisation for each TDMA round is 91.16% when using INCUS slot allocation.

Figure 4.6 illustrates the comparison between the traditional and INCUS slot al-

location approaches.

4.3 Flexible communication schedules in differ-

ent TDMA rounds

Dependable SCRT systems are becoming increasingly important and complex.

Examples of such systems are autonomous or self-driving cars, which are poised

to revolutionise the transport industry. A critical part of these SCRT systems

is the network communication protocol that is used by components in an SCRT

system to exchange data. Communication protocols for SCRT systems are required

to exhibit predictable, worst-case execution times and thus have to be designed

in a more static [2] and less flexible way. To ensure this predictability, current



Dynamic TT Communication 65

state-of-art communication protocols for SCRT systems are based on the Time-

Triggered Architecture (TTA) [6], where static and equal length time-slots are

used for all nodes to access the communication channel, irrespective of the size

of their transmission payload. This determinism forms the basis of predictable

timing, behaviour and fault tolerance [6]. However, as we saw, this determinism

comes at the cost of poor channel and bandwidth utilisation, which hinders the

development of SCRT systems.

In the previous sections, INCUS has shown that assigning time slots on the ba-

sis of transmission payload of each node in a Time Division Multiple Access

(TDMA) round significantly improves the communication efficiency. This sec-

tion will present an enhanced version of INCUS, INCUS+, where optimisation

of communication schedules are proposed for different TDMA rounds of a cluster

cycle.

INCUS+ allocates the slot length of a node based on its varying transmission

requirements in each TDMA round of a cluster cycle. We will see that this flexi-

bility can be achieved while retaining the level of dependability required for SCRT

systems and still ensuring fail-silence. The INCUS+ design exhibits a significant

improvement in bandwidth and channel utilisation, as will be demonstrated in an

autonomous vehicle case study presented in this section.

4.3.1 Why dynamic communication over different TDMA

rounds?

Let us investigate different use-cases that exhibit the need for different trans-

mission slot length during different TDMA rounds of a cluster cycle. Nowadays

Advanced Driver Assistance Systems (ADAS) are getting very common in modern

vehicles [135]. While this was originally considered under the Telematics domain,

it has, over time, been accreting more and more new features, to the effect that the

ADAS is considered as a separate domain [135]. These systems are also commu-

nicating with in-vehicle safety networks to provide autonomous operations for the



Dynamic TT Communication 66

self-driving vehicle [135]. ADAS relies on videos collected from multiple cameras

mounted on the vehicle [135]. Compressed videos from the camera are sent to

ADAS through the in-vehicle safety networks [135]. Compression techniques such

as H.264 produce frames of different data length and hence, a camera node may

need a different transmission slot length in each TDMA round [135]. A number

of similar scenarios are discussed in the literature such as [136] where the stream

sender is using H.264 based compression technique for low latency video stream-

ing for autonomous cars. Similarly, some approaches [137] use TDMA-based tech-

niques to transmit compressed video frames but have to use multiple, equal-length

time slots to transmit different-length frames that, consequently, results in poor

channel utilisation.

Another use-case is Unmanned Aerial Vehicles (UAVs). These are increasingly

used for numerous applications, including surveillance, exploring and tracking tar-

gets [138]. For example, UAVs are in high demand for the inspection of large scale

structures as well as search and rescue operations in a disaster area [138]. One or

more UAVs are used to transmit live video from an area of interest to a ground

station where an operator can adjust the position of UAVs after analysing the

streaming video [138]. In remote areas, multi-hop wireless networks are created

where a number of UAVs are used as relays to extend the range [138]. Each relay

(a UAV in this case) forwards a received packet to the next hop closer to the

sink node [138]. This transmission is carried out by using a native wireless CS-

MA/CA [14] arbitration scheme. Transient asymmetries between the relay links

leads to unbounded packet buffering which further creates longer queuing delays

and buffer overflow results in pack losses [138]. To overcome this issue, Pinto et

al. [138] proposed a TDMA-based approach on top of standard WiFi, where an

adaptive slot length for each relay node in every round mitigates the issue of un-

bounded queuing delays and reduces packet losses [138]. However, this approach

was designed for soft real-time systems and does not provide any fault-tolerance

guarantees.

The Internet-of-Things (IoT), is a new paradigm that is used to connect surround-

ing physical objects containing sensor or actuator nodes in order to operate them



Dynamic TT Communication 67

remotely through the Internet [139]. This concept is used in a number of applica-

tions from different domains such as healthcare, smart homes, etc [139]. Healthcare

applications deployed in smart homes may consist of sensor devices to monitor the

vital signs of a patient, alerting family members or physicians in an emergency

situation [139]. Efficient communication is one of the biggest challenges in IoT

as data networking is used to collect information (e.g. vital signs) from sensor

devices [139]. Researchers have attempted to improve communication efficiency

for such systems. Saxena [139] proposed a context-aware, adaptive, forwarding

(Cdf) strategy to transmit critical, health-related data, even in poor network con-

ditions. For example, if patient’s vital signs are consistently good, the acquisition

interval increases, which reduces the transmission rate of packets, otherwise, more

frequent data transmission is required [139]. However, their approach to facilitate

efficient data transmission is opportunistic [139], utilising a rules-based best-effort

approach.

The objective of the proposed work is to overcome the issue of poor channel utili-

sation with a deterministic level sufficient for fault tolerance and predictability in

SCRT systems. The principle of operation of the proposed protocol is discussed

in Section 4.3.2. Section 4.3.3 discusses the proposed work in light of the need for

configurational flexibility for slot allocation in TTA-based communication proto-

cols, exemplified by a representative case study. In Section 4.3.4 a computational

model is presented, comparing different slot allocation approaches. The proposed

work shows how flexibility in slot allocation can significantly improve the channel

and bandwidth utilisation.

4.3.2 The INCUS+ Protocol

In the literature (see Chapter 3), different communication protocols for safety-

critical distributed real-time systems have been discussed. All the nodes in TTA-

based communication protocols use static and equal-duration time slots for trans-

mitting Safety-Critical Information (SCI) [7]. The term FlexRay slot allocation is

used for the slot allocation mechanisms in such TTA based protocol i.e. FlexRay.



Dynamic TT Communication 68

In this section, a slot allocation approach is presented that allows variable slot

length of each node over the TDMA rounds of a cluster cycle as shown in Fig-

ure 4.7.

Figure 4.7: Slot length configurations during different TDMA rounds

We shall refer to this flexible approach as the INCUS+ slot allocation approach.

Importantly, the slot length of each node is configured according to its payload

requirements in each TDMA round, which means a node may have a different

slot length in a different TDMA rounds. Consequently, the length of each TDMA

round may vary in a cluster cycle. The need of such flexibility is justified by using

an example of an autonomous vehicle case study (see Section 4.3.3).

The principle of operation of communication in our proposed approach follows [140]

and [33]. The communication controller of each node is a subsystem that transmits

and receives channel data and has a copy of the Message Descriptor List (MEDL)

as shown in Figure 4.8. The MEDL holds information about different parameters

including data transmission and reception time for each slot in each TDMA round

of a cluster cycle for its respective node. The MEDL is statically configured and

therefore each node knows the exact time to access the communication channel.

The three classes of frames used to control the communication operations over

the communication channel are N-Frame, I-frames, and CS-frames as discussed

in the previous section. Please note that in this and in the coming sections, the

I-frame term is used for intra-coded pictures from the camera (used in case study,

see Section 4.3.3.1), therefore, the full term initialisation frame is used instead of

the usual TTA I-frame moniker that is colliding here with the video encoder frame

type of the same name.



Dynamic TT Communication 69

Figure 4.8: Layout of Message Descriptor List (MEDL) extended from [8]

The mechanism to start the protocol cluster or to reintegrate a lost node back to

the cluster is the same as in TTP [8] but requires different timeout parameters. For

nodei, the startup delay is the duration of transmission slots in the TDMA round

up until the start of the nodei transmission slot. Therefore, the start-up process

for this proposed approach is much more efficient as it eliminates the node slot

idle time. All nodes have unique parameters for the listen and coldstart timeout

as they each have a unique start-up delay.

The configuration for the transmission of the CS-frame is same as used in INCUS

which is bound with the number of TDMA rounds in a cluster cycle, unlike TTP

where it is transmitted after each two TDMA rounds [8] that may result in fre-

quent transmission of the frame if a node did not receive an initialisation-frame for

up to two TDMA rounds. Initialisation-frames are used to reintegrate recovering

nodes and typically, TTP is using a configuration of two TDMA rounds to trans-

mit initialisation-frames over both replicated channels [8]. However, the process of

reintegration can be improved if an actuator node (not transmitting any applica-

tion data but control information) is configured to transmit initialisation-frames

(See Section 4.3.3.3).

INCUS+ adds the flexibility necessary for better channel utilisation to time-

triggered communication, while retaining the deterministic nature of the protocol

regarding channel access. The communication schedule of each and every node

is stored in the Message Descriptor List (MEDL), and each node has the copy



Dynamic TT Communication 70

of the MEDL. Therefore each node knows when to broadcast a frame over the

communication channel and when to receive a frame from the communication

channel. Please note that the term flexibility in this chapter is referring to con-

figurational flexibility which will not impact the deterministic nature of the pro-

tocol. INCUS+ utilise the same fault tolerance features of earlier time-triggered

protocols [33][7], such as distributed clock synchronisation, membership and ac-

knowledgment service, bus guardians, and replica determinism to handle faults at

the protocol level. The communication channel is prevented from being a single

point of failure through the use of replicated communication channels.

4.3.2.1 Membership service and implicit acknowledgment

The membership service [8, 68] records the status of all nodes to facilitate fault

tolerance. The membership status of each node is recorded in the membership

vector [8]. The bit size of the membership vector N reflects total number of

participating nodes in all TDMA rounds of a cluster cycle such as N={1,2,3,...,n}.

The membership service informs all the nodes about active and inactive nodes

with a latency of one TDMA cycle [8]. The presented approach removes trans-

mission slot overhead time in all TDMA rounds, therefore membership service

latency is also improved as compared to traditional time-triggered protocols such

as FlexRay. Similarly, no explicit membership information or acknowledgment

is required, as the corresponding information can be derived from the embedded

frame CRC calculation, further reducing overhead through this implicit acknowl-

edgment mechanism.

Algorithm 1 represents the mechanism of membership service [8] as a transmitter

node. It has a membership vectors with a size of total number of active nodes in the

cluster. Please note, the term active nodes is used for those who are transmitting

frames in their allocated transmission slot. The node who is passive such as an

actuator node and has nothing to transmit should not be the part of membership

vector. A transmitter sets its membership flag to TRUE in the membership vector

before calculating the CRC on the CState (Controller State). The CRC value is



Dynamic TT Communication 71

embedded in the frame, therefore, the CState is transmitted implicitly, saving

more bandwidth on the network [8]. The term remoteCRC is used to represent

the value of CRC calculated on its controller state and same is true for every

transmitter node. When the local clock of a transmitter node reaches an instant

that is marked as the transmission time for the node, the node starts transmitting

the frame over the communication channel.

Algorithm 1 Membership service for a Transmitter node

Require: sizeof(MembshipV ector) = n ∈ N
1: Let Ti,j is a transmitter node in slot i of TDMA round j
2: if (currentT ime == timetoTransmit) then
3: set flag of Ti,j in membership vector as TRUE
4: set agreedSlotCounter to ONE
5: remoteCRC ← PerformCRConCState
6: Transmit Frame
7: else
8: Wait to transmit
9: Go to 2

10: end if

Algorithm 2 represents the mechanism of membership service [8] as a receiver node.

Before receiving the frame from a transmitter say Ti,j, it sets the membership flag

of Ti,j as TRUE in its membership vector. Then it calculates the CRC check on

its controller state. The calculated CRC value is represent by the term localCRC

and same term is used for all the receiver nodes. When the local clock reaches

an instant that is marked as the time to receive a frame from Ti,j in the MEDL

then it starts receiving. The CRC value it receives as remoteCRC (processed by

the transmitter node) will be compared with localCRC (processed by the receiver

node) and if the result is true then it means the frame received from Ti,j is intact,

otherwise it will set the membership flag to FALSE for Ti,j in its membership

vector. A CRC check will be failed in-case of a mode change request. As the

mode change is not deterministic and requested at run time therefore transmitter

and receiver nodes’ controller state will disagree, which results in a CRC failure.

To avoid the complexity, the proposed approach allowed only selected number of

nodes those can make a mode change request. Therefore, when the CRC check

fails, the receiver node will check whether transmitter node is authorized to initiate



Dynamic TT Communication 72

the mode change request and if so, then receiver node will update its CState

and re-compute the CRC value. Then the receiver will compare localCRC with

remoteCRC and sets the membership flag accordingly, based on the result of CRC

comparison, i.e., either true or false.

Algorithm 2 Membership service for a Receiver node

Require: Ti,j as transmitter node
1: Let Ri,j is a receiver in slot i of TDMA round j
2: Ri,j sets membership flag of Ti,j as TRUE in its membership vector
3: localCRC ← PerformCRConCState
4: if (currentT ime == timeToReceiveFrame) then
5: Receive frame
6: else
7: wait to receive
8: Go to 4
9: end if

10: Compare CRC values
11: if (remoteCRC == localCRC) then
12: Ri,j received correct frame from Ti,j
13: else
14: If Ti,j is authorized to perform mode change
15: Ri,j update it CState and recompute localCRC
16: in-case result of (remoteCRC == localCRC)
17: Ri,j received correct frame from Ti,j
18: else
19: Ri,j sets membership flag of Ti,j as FALSE in its membership vector
20: end if

Frame Acknowledgment: The acknowledgment of a frame happens implicitly

through the membership service, by including the CState into each payload frame’s

CRC calculations [33]. A transmitter transmits replicated frames on two different

communication channels, and, if any one of them is received correctly by a receiver

then it will consider the transmitter as an active node at its membership point (a

post receive phase after the transmission phase of a transmitting node).

If a transmitting node views itself as fully functional then it sets its own mem-

bership flag to TRUE in its membership vector and its agreedSlotCounter to one

as shown in Algorithm 1. If the successor (Ti+1,j) of the transmitting node Ti,j

has received a correct frame on any of the two replicated communication channels

then membership flag of Ti,j is set to TRUE in the membership vector of Ti+1,j,



Dynamic TT Communication 73

therefore, Ti,j can use Ti+1,j transmission as an acknowledgment. The Ti,j will only

consider the transmission of Ti+1,j as an acknowledgment if it receives a correct

frame on any of the replicated communication channels. Otherwise, the member-

ship flag of Ti+1,j is set to FALSE in the membership vector of Ti,j and Ti,j will

look for the transmission of Ti+2,j (next successor) to find an acknowledgment of

its transmission.

When Ti,j acts as a receiver to receive a frame from its successor, say Ti+1,j, then

there are two cases that are checked when performing CRC calculations on the

received frame.

� CASE 1: Ti,j sets its own and Ti+1,j membership flag to TRUE in its

membership vector and then performs CRC calculations on its local CState.

Then a comparison is performed on localCRC and remoteCRC.

� CASE 2: Ti,j sets its own membership flag to FALSE and Ti+1,j membership

flag to TRUE in its membership vector and then performs CRC calculations

on its local CState. Then a comparison is performed on localCRC and

remoteCRC.

If the result of CASE 1 is TRUE then Ti,j assumes that its transmission was

correct and remains in the membership vector. The Ti,j will also increased its

agreedSlotCounter by one. But if the result of CASE 1 is FALSE then CASE 2

will be considered and if the result of CASE 2 is TRUE then it means either

transmission of Ti,j was not successful or Ti+1,j made some error. At this stage,

it is not confirmed whether Ti,j or Ti+1,j is correct, therefore, Ti,j will look for

its second successor i.e. Ti+2,j. If CASE 1 and CASE 2 both fail then it can be

predicted that either transmission of Ti+1,j is corrupted or Ti+1,j is not operational

at all. If transmission activity from Ti+1,j on any of the replicated communication

channel is observed then Ti+1,j will be considered as faulty and failedSlotCounter

will be incremented by one. If Ti,j is unable to make a decision by using CASE 1

and CASE 2 then it will use the transmission of its second successor i.e. Ti+2,j and

following two cases will be tested.



Dynamic TT Communication 74

� CASE 3: Ti,j sets its own and Ti+2,j membership flags to TRUE while Ti+1,j

membership flag to FALSE in its membership vector and then performs

CRC calculations on its local CState. Then a comparison is performed on

localCRC and remoteCRC.

� CASE 4: Ti,j sets its own membership flag to FLASE while Ti+1,j and Ti+2j

membership flags to TRUE in its membership vector and then performs

CRC calculations on its local CState. Then a comparison is performed on

localCRC and remoteCRC.

The result of CASE 3 (if TRUE) indicates that transmission of Ti,j was correct

and Ti+1,j was faulty. Therefore, Ti+1,j will be removed while Ti,j will remain

in the membership vector. Both agreedSlotCounter and failedSlotCounter will

be incremented by one. Thus, Ti,j is acknowledged. Otherwise, if the result of

CASE 4 is TRUE then it means original transmission from Ti,j was erroneous and

transmission from Ti+1,j was correct. Therefore, Ti,j will remove it from member-

ship vector. Both agreedSlotCounter and failedSlotCounter will be incremented

and Ti,j marks the transmission of Ti+2,j as correct. Ti,j will consider its transmis-

sion as not acknowledged and if acknowledgment failure reaches to its maximum

value (defined in MEDL) then Ti,j will freeze its controller. In worst case, if both

CASE 3 and CASE 4 fails then Ti+2,j will be removed from membership vector

and failedSlotCounter will be incremented by one. Ti,j will choose Ti+3,j as sec-

ond successor and the loop continues depending upon the number of nodes in the

TDMA round.

4.3.2.2 Clique avoidance

It is possible that an erroneous condition may leave a cluster with multiple cliques

where a few nodes do not agree with the rest of the nodes on their CState and

hence, remove them from their membership list [8]. This leads to formation of

multiple cliques [8]. To avoid such errors, a clique avoidance algorithm [141] is

implemented as shown in Algorithm 3. A point in time, when a node reaches a



Dynamic TT Communication 75

conclusion about its CState agreement with the rest of the nodes in the ensemble,

is called a membership recognition point [8]. Different nodes may reach this point

at different points in time. At its membership recognition point, a node is able to

decide whether majority of the nodes are in agreement with its CState by using

two of its counters [8]. These are agreedSlotCounter (shows the number of other

nodes in a TDMA round that are agree with the slot status of the node) and the

failedSlotCounter (shows the number of other nodes in a TDMA round that do

not agree with the slot status of the node). If the node in question resides within

a majority clique, then it will continue its functioning, otherwise it has to restart

and reintegrate into the cluster [141].

Algorithm 3 Clique avoidance

Require: with latency of one TDMA round and before transmitting the frame

in next TDMA round

1: if agreedSlotCounter > failedSlotCounter then

2: agrees with majority of cluster nodes

3: set 0← agreedSlotCounter

4: set 0← failedSlotCounter

5: do transmit the frame

6: else

7: freeze the CC

8: restart in healthy state and reintegrate with the cluster

9: end if

4.3.2.3 Clock Synchronisation

To enable the deterministic behaviour of the protocol so that each node knows

the precise point of its pre-defined schedule saved in its local MEDL for sending

and receiving information over the shared channel, it is essential for each node to

synchronise its clock with the other nodes in order to establish a global time base

and run the protocol smoothly [68]. Clock synchronisation in INCUS+ follows

an analogous procedure to that discussed in INCUS and [33]. The key difference



Dynamic TT Communication 76

here, in contrast to these time-triggered protocols, is the resynchronisation point

Rp(t) – a slot defined in the MEDL to perform clock synchronisation. Let k be

the number of slots set as resynchronisation point then Rp duration becomes:

Rttp
p (t) = k ∗ τmax (4.15)

where t be the real time and τmax is the slot length. In INCUS+, the formula

needs to be adjusted to accommodate different slot lengths:

Rincus+
p (t) =

k−1∑
i=0

Si(t) (4.16)

where Si(t) represents slot length and (k ≥ 4).

The resynchronisation interval in INCUS+ is less than the resynchronisation in-

terval of traditional protocols such as Flexray and TTP. The reason for this is

the node slot net idle time, which is zero for all node slots in the my approach.

This provides the ground for fast-tracking the process of clock synchronisation.

The fault-tolerant average algorithm [59] which is formally verified in [142] to

synchronise the clocks of all nodes in the cluster is shown in Algorithm 4.

4.3.3 Autonomous vehicle case study

We shall now analyse the efficiency gains in a representative case study. The

bandwidth requirements to deploy ADAS systems are very high, specifically by

adding multiple cameras with different focal lengths to detect multiple objects such

as traffic lights, pedestrians, road signs, etc [135]. Therefore, multiple compression

techniques are used to handle huge data traffic in in-vehicle networks [135]. A

generic video compression technique, H.264, has been used in this case study and

it has been shown by Tankred Hase et al. [143] that using the H.264 compression at

a low bit rate of up to 0.125Mbps provides sufficient quality to detect an obstacle.

To keep it simple, the need of flexible TDMA round lengths, i.e., the length of

rounds may vary depending on differing payloads of a node in different TDMA



Dynamic TT Communication 77

Algorithm 4 Clock Synchronisation

Require: received correct frame only
1: Initialised stack of four with zero
2: Capture the time interval when received the first bit from sending node
3: Let ˆtRF is the actual time when receiver starts receiving the frame from the

sender
4: Let tRF is time when receiver supposed to receive the frame from the sender

- defined in MEDL
5: Calculate correction term ∆corrterm

6: ∆corrterm = ˆtRF − tRF
7: PUSH ∆corrterm

8: if Rincus+
p (t) then

9: POP the values
10: discard the largest and smallest values
11: take the average of remaining two values
12: apply this average to correct the local clock
13: else
14: wait for the interval Rincus+

p (t)
15: push new values of ∆corrterm to the stack
16: end if

rounds is elaborated through this case study with single mode of operation. The

autonomous vehicle moves along the road and avoiding obstacles as detected by

sensors such as cameras. Importantly, emergency braking systems depend on these

sensors to detect critical situations, such as a pedestrian on the road, that require

automated emergency braking within a tightly constraint deadline to prevent a

collision.

To develop a safety-critical, distributed real-time system node cluster for this case

study, the concept of a platooning system [144][9] and a pedestrian detection

system [145] is utilised.

The layout of the autonomous vehicle is shown in Figure 4.9. The basic building

blocks of the system are the Sensor fusion Node (SFN), Vehicle Controller Node

(VCN), and a Camera with on-board with H.264 compression. Two redundant

SFNs are deployed to improve fault tolerance in the hardware domain. The com-

ponents, VCN and Camera, are not replicated as the drive controller interface is

able to perform a fail-safe operation (emergency stop) if it does not get a valid

life sign from the VCN. The communication among camera, SFN and VCN is



Dynamic TT Communication 78

Figure 4.9: Layout of Autonomous Vehicle

performed through replicated communication channels with a communication ca-

pacity of 1Mbps. The layout of a time-triggered cluster for the case study is shown

in Figure 4.10.

Each node in the cluster is divided into three layers, Host, Communication Net-

work Interface (CNI), and Communication Controller (CC) layer as shown in Fig-

ure 4.11. The CC is the part of the communication subsystem and it interacts

with the host through the CNI. To avoid the increased design complexities of

the protocol, Logic-Labelled Finite State Machines (LLFSMs) are used to imple-

ment the functionality of each communication controller [146]. A subsumption

architecture is used, where the functionality of each controller is decomposed into

sub-machines. The host processes the information from/to sensors/actuators and

exchanges the data with the CC through the CNI. The CC fetches and transmits

the data from and to the communication channel at the periodic instances stored

in the MEDL. Each CC has the copy of the MEDL and, hence, knows in advance

when to transmit and receive the data to and from the communication channel.

This mechanism guarantees the deterministic behaviour of the protocol.



Dynamic TT Communication 79

Figure 4.10: Layout of Time-Triggered Class-C Network of Autonomous Ve-
hicle [9]

Figure 4.11: Internal structure of each node in the protocol cluster

4.3.3.1 Camera

The camera is transmitting compressed frames such as Intra-coded (I), Bidirec-

tional (B), and Predicted (P), frames by using the H.264/AVC codec. To deliver

videos in real-time, a frame from a camera (e.g. an I-frame) is transmitted in a



Dynamic TT Communication 80

TDMA round, followed by the next frame (e.g. B-frame) in the next round, and

so on. These frames are of significantly different sizes: an I-frame is many times

larger than P and B-frames. Using the same transmission slot length (required by

the I-frame) in the following TDMA rounds to send B and P-frames results in huge

inefficiency regarding channel utilisation as payloads of B and P-frames are much

smaller than I-frames. and a GOPs (Group of Pictures) configuration is used with

M = 2 (distance between two anchor frames) and N = 3 (distance between two full

images) which leads to the sequence IBPIBP as shown in Figure 4.12. The camera

is transmitting GOPs on the basis of one frame per round, therefore a complete

sequence of the compressed frames is transmitted in three different TDMA rounds.

Consequently, the cluster cycle of the case study consists of three TDMA rounds.

Figure 4.12: GOP configuration

As the camera is transmitting different size frames in different TDMA rounds of

a cluster cycle, the slot length of this node should be different for each TDMA

round (Table 4.4).

4.3.3.2 Sensor Fusion Node

The SFN decodes the encoded stream received from the camera and forwards it to

the detection module. The principle of operation to detect a pedestrian is same as

used in [145]. The detection module extracts the region of interest in each frame

and to detect a pedestrian, it exploits the fact that object size increases while

relative distance decreases [145]. The distance to a possible collision is calculated

on the basis of change in object size, velocity, and yaw of the autonomous vehicle.



Dynamic TT Communication 81

Table 4.4: The Ideal Transmission slot length for each Node of the Au-
tonomous Vehicle System during a Cluster Cycle

First TDMA Round
Node Name Data Frame Length Slot Length
Cam-I 75032 bits 75032 + 28 = 75060

bits
75060 µs

SFN 8 bits 8 + 28 = 36 bits 36µs
VCN Nil 0 + 8 = 8 bits 8µs

Second TDMA Round
Node Name Data Frame Length Slot Length
Cam-B 4400 bits 4400 + 28 = 4428 bits 4428µs
SFN 8 bits 8 + 28 = 36 bits 36µs
VCN Nil 0 + 8 = 8 bits 8µs

Third TDMA Round
Node Name Data Frame Length Slot Length
Cam-P 20392 bits 20392 + 28 = 20420

bits
20420µs

SFN 8 bits 8 + 28 = 36 bits 36µs
VCN Nil 0 + 8 = 8 bits 8µs

This follows the detailed functionality of pedestrian detection found in [145]. The

sensor value processing module takes velocity and yaw rate value from the sensor

network and forwards it to the detection module [145]. The decoding and detection

module sends an output of 8 bits to the VCN that informs the actuator node about

a possible risk of collision and the VCN acts accordingly [145]. To keep it simple,

a single mode of operation is used in this case study as discussed above and the

state of each node is marked as a ready state.

4.3.3.3 Vehicle Controller Node

The Application controller in the VCN receives the information on collision risk

and passes on this information to the Anti-lock-braking System (ABS) through its

drive controller interface. All modern vehicles are equipped with the ABS system

as it helps to stop the vehicle on slippery roads by avoiding uncontrolled skidding.

The cluster of the ABS system consists of Wheel Speed Sensors Nodes (WSSN),

Brake Actuator Nodes (BAN) and Brake-by-Wire Manager Nodes (BBWM). ABS

sits on top of the Brake-by-wire system and is responsible for applying automated



Dynamic TT Communication 82

brakes to stop the vehicle when it receives a positive signal for brake force from the

VCN. A detailed description of the ABS’s cluster can be found in the Section 4.2.1.

For the case study, the VCN is designed to send an initialisation-frame in each

TDMA round. This is because the VCN acts as an actuator node and does not

need to transmit any application data. This approach helps to speed up the

reintegration process of recovering nodes.

4.3.4 Performance Comparison

In this section, the logical computations are used to analyse the impact of fixed

and equal length slot configurations on bandwidth and channel utilisation. We

will explore the computed results of INCUS+ and compare them with an existing

TTA-based communication protocol, FlexRay. Table 4.5 shows a descriptive list

of the terms used in the computational model in order to compare FlexRay and

INCUS+. Please note, for simplicity, the proposed approach is not using the timing

parameters discussed in the Section 6.3 as these, while hardware-dependent, would

be the same for all approaches.

4.3.4.1 FlexRay slot allocation

τmax of each node comprises of T transi and T idlei as given in Figure 4.13. T ovhdi and

T idlei of nodei are:

T idlei = τmax − T transi (4.17)

T ovhdi = T idlei + T ifg (4.18)

T̂ ovhd r for n number of nodes in a TDMA cycle should be:

T̂ ovhd r =
n−1∑
i=0

Ti
ovhd (4.19)



Dynamic TT Communication 83

Table 4.5: Definition of the terms used in the computational model

Symbol Description
T fr r Length of FlexRay TDMA round (where T fr rm = T fr rn)
T inc+ r Duration of TDMA round in INCUS+ (where T inc+ rm != T inc+ rn

is possible)
τmax Slot length of each node in FlexRay approach (where τmax rmi =

τmax rmj and τmax rmi = τmax rni )

τ inc+ Slot length of each node in INCUS+ (where τ inc+ rm
i != τ inc+ rm

j

and τ inc+ rm
i != τ inc+ rn

i is possible)
T transi Transmission time for control information and application data for

node i during its allocated node slot in TDMA round
T idlei Node slot idle time for node i that is not utilised to transmit appli-

cation data or control information
T ifg Time when there is no transmission between frames known as Inter

Frame Gap (IFG) overhead time. This is used to
accommodate latency and jitter because of propagation delay and
clock synchronisation limits etc.

T ovhdi Total overhead for node i for its allocated slot

T̂ ovhd r Total overhead time in a TDMA round

T̂ ovhd c cycle Total overhead time in a cluster cycle
T fr c cycle Total length of cluster cycle in TTA based slot allocation approach
T inc+ c cycle Total length of cluster cycle in INCUS+ approach

If there are k number of TDMA rounds then the total overhead time (T̂ ovhd c cycle)

in a cluster cycle can be calculates as:

T̂ ovhd c cycle =
k∑
i=1

T̂i
ovhd r

(4.20)

T fr r for n number of nodes is:

T fr r = n · (τmax + T ifg) (4.21)

The length of a T fr c cycle in FlexRay slot allocation approach with k number of

TDMA rounds should be:

T fr c cycle = k · (T fr r) (4.22)



Dynamic TT Communication 84

By using Equation (4.20) and Equation (4.22), CU in a FlexRay cluster cycle can

be calculated as:

CU =

[
T fr c cycle − T̂ ovhd c cycle

T fr c cycle

]
.100 (4.23)

Figure 4.13: FlexRay slot allocation over a Cluster Cycle

Figure 4.14: INCUS+ slot allocation over a Cluster Cycle

4.3.4.2 INCUS+ slot allocation

Let us now evaluate the proposed, INCUS+ approach, where the length of the

slot for each node is customised in relation to its transmission payload in each



Dynamic TT Communication 85

TDMA round of the cluster cycle. This customisation avoids the overhead time

as demonstrated in Figure 4.14. Therefore, T idlei is zero and τ inc+i in each TDMA

round becomes:

τ inc+i = T transi (4.24)

For a number of nodes n , T inc+ r in INCUS+ is:

T inc+ r =
n−1∑
i=0

(τ inc+i + T ifg) (4.25)

Similarly, for a number of TDMA rounds k , T inc+ c cycle becomes:

T inc+ c cycle =
k∑
i=1

(T inc+ r
i ) (4.26)

CU in a cluster cycle then can be defined by using Equation (4.20) and Equa-

tion (4.26):

CU =

[
T inc+ c cycle − T̂ ovhd c cycle

T inc+ c cycle

]
.100 (4.27)

As it is now guaranteed that T ovhdi = 0 for every i, every node will fully utilise

its allocated τ inc+i for transmitting application data and control information over

the channels. This results in transmitting the same data while removing the slot

overhead of previous approaches. The INCUS+ slot allocation approach therefore

avoids the additional overhead caused by unequal transmission payloads across

TDMA cycles.

Let us now analyse how flexibility improves the performance of the protocol by

illustrating its impact on the autonomous vehicle case study.

4.3.4.3 Impact of flexibility on overhead time

Every node in the autonomous vehicle system has a unique functionality and,

hence, requires a different transmission time. The slot length of a node not only

differs from other nodes, but also the same node may need different transmission



Dynamic TT Communication 86

Table 4.6: Allocated slot length and potential overhead time in FlexRay slot
allocation approach

First TDMA Round
Node τmax T ovhdi

Camera 75060µs (0 + 4) = 4µs
SFN1,2 75060µs each (75024 + 4).2 = 150056µs
VCN 75060µs (75032 + 4) = 75036µs

Second TDMA Round
Node τmax T ovhdi

Camera 75060µs (0 + 4) = 4µs
SFN1,2 75060µs each (75024 + 4).2 = 150056µs
VCN 75060µs (75032 + 4) = 75036µs

Third TDMA Round
Node τmax T ovhdi

Camera 75060µs (0 + 4) = 4µs
SFN1,2 75060µs each (75024 + 4).2 = 150056µs
VCN 75060µs (75032 + 4) = 75036µs

requirements in different TDMA rounds, such as the camera in this case study. For

the FlexRay approach, τmax for each node would have been 75060 microseconds,

as required by the camera to transmit maximum size packets (camera I-frames).

Therefore, the FlexRay slot allocation approach adds a significant T idle to each

node slot that requires less transmission time than assigned, as shown in Fig-

ure 4.13. Hence, FlexRay would get a significant transmission overhead time for

most slots.

A much better result can be achieved using my flexible slot allocation approach,

as the transmission times of all τ inc+ are configured on the basis of their actual

transmission requirements in each TDMA round of a cluster cycle. Here, the

camera is allocated different transmission slot lengths of 75060 microseconds, 4428

microseconds, and 20420 microseconds for the first, second, and third TDMA

rounds respectively. While still statically configured, this slot allocation approach

is more flexible and, importantly, eliminates the T idle in each slot as shown in

Figure 4.14. Therefore, T idle=0 for all node slots over the cluster cycle, which

significantly reduces the T ovhdi for a nodei.

Why is fragmentation not feasible? One might wonder, what if taking the



Dynamic TT Communication 87

same fixed and equal-length slot allocation approach as demonstrated by FlexRay

and TTP, but configure it with zero slot idle time by allocating to all nodes

the minimum (instead of maximum) slot length required by a node in the whole

cluster? As per the case study, VCN is the node that requires 28 microseconds slot

length to transmit an initialisation frame. This slot length can be configured for

each node in the cluster which eliminates slot idle time. However, this may need

fragmentation for the nodes having bigger frames such as Camera and SFN nodes.

A fragmentation of a larger frame can be used to accommodate the frame within

the duration of transmission slot length and this single frame can be transmitted

over multiple TDMA rounds. Each camera transmits three frames with different

payload length such as I, B and P-frames as discussed above. Let us have a look

how many slots are required to transmit an I-frame using this approach. This will

need 2680 slots to transmit an I-frame by the camera node. This means, instead of

one TDMA round, 2680 TDMA rounds are required to transmit a complete I-frame

when using fragmentation. Each fragment of an I-frame is transmitted once in a

TDMA round to avoid the complexity such as giving more weightage to one node

by allowing it to transmit more than once in a TDMA round as compared to other

nodes in the membership service. If such node is actually a faulty node or a single

fragmentation becomes faulty during transmission, then this can disrupt the whole

fault tolerance mechanism ensured by the membership service. An extra overhead

of 75040 microseconds will be incurred through appended control information in

each frame, while an extra 10720 microseconds overhead time is required for inter-

frame gap (IFG) time as compared to my proposed approach, which requires 28

microseconds of control information and 4 microseconds for IFG to transmit an I-

frame. Similarly, if B and P-frames are considered using multiple fragments as well

as multiple fragments for the SFN node, then this transmission overhead time will

be huge, and results in significant transmission latency. Moreover, my approach

decouples the time to detect an error, by using the membership service, which is

independent of the frame payload. For example, if one or more fragments failed to

reach the destination due to any error on the network, then the whole message from

the transmitter node would have to be discarded. This fragmentation approach



Dynamic TT Communication 88

therefore would add significant overhead and system complexity, as it requires

additional error handling above the protocol level, i.e. it would need additional

higher level services for fault tolerance. Those higher-level services would need to

interact with the protocol-level fault tolerance mechanism, creating unnecessary

coupling and thus, impeding on decomposability.

Allowing a variable slot length for each node on the basis of its payload require-

ments may, at first glance, appear to result in jitter, caused by data transmission

at irregular intervals (due to the unequal TDMA slot lengths). However, this vari-

ability is deterministic and known in advance, as all communication schedules are

created at design time. I therefore argue that this does not actually constitute

jitter (which would cause inherent uncertainties due to its stochastic nature), as

here, the exact latency is known in advance. As long as the transmitted data

are phase-insensitive, taking into account a simple measure such as the maximum

latency is sufficient to allow the system to be designed in the same fashion as with

existing TTA-based protocols. If, on the other hand, the transmitted data are

phase-sensitive, the exact interval at which data are scheduled to be transmitted

(i.e. the timing of the corresponding TDMA slot as designed) needs to be taken

into account when interpreting the data. It should be noted that in either case,

the maximum latency of INCUS+ is expected to be better (and guaranteed to be

no worse) than that of TTP/C or FlexRay.

4.3.4.4 Impact of flexibility on Channel Utilisation

We will now analyse how INCUS+ can improve channel utilisation in our scenario.

Four nodes are connected via the replicated bus2 (see Figure 4.10). In a FlexRay

approach, τmax for each node in all TDMA rounds would be 75060µs. Only one

node, the camera (during first TDMA round) makes full use of τmax for transmis-

sion and all remaining slots, including those of the camera in subsequent TDMA

rounds, will have T ovhd in their allocated τmax (see Table 4.6, Figure 4.15). By

using four bits time (4 µs) for T ifg; slot length, plus T ifg, is 75064 µs for each

2The timing requirements of both replicated buses are exactly the same.



Dynamic TT Communication 89

Table 4.7: Allocated slot length and potential overhead time in INCUS+ slot
allocation approach

First TDMA Round
Node τ inc+ T ovhdi

Camera 75060µs (0 + 4) = 4µs
SFN1,2 36µs each (0 + 4) · 2 = 8µs
VCN 28µs (0 + 4) = 4µs

Second TDMA Round
Node τ inc+ T ovhdi

Camera 4428µs (0 + 4) = 4µs
SFN1,2 36µs each (0 + 4) · 2 = 8µs
VCN 28µs (0 + 4) = 4µs

Third TDMA Round
Node τ inc+ T ovhdi

Camera 20420µs (0 + 4) = 4µs
SFN1,2 36µs each (0 + 4) · 2 = 8µs
VCN 28µs (0 + 4) = 4µs

node. Each slot is configured with 4 microseconds of Inter-Frame Gap (IFG) time.

This accommodates the latency and jitter due to a number of factors, such as

propagation delay and clock synchronisation limits. The same IFG time is set for

all the existing protocols. Therefore, we can ignore latency and jitter impact here,

as both, FlexRay and INCUS+ use exactly the same time limits to accommo-

date latency and jitter. According to Equation (4.21), the first T fr r is 300256µs

where T̂ ovhd r by using Equation (4.19) is 225096 µs. Similarly, the values for T fr r

and T̂ ovhd r in the second and third TDMA rounds are (300256µs, 295728µs) and

(300256µs, 279736µs) respectively.

According to Equation (4.22), the length of a cluster cycle in the FlexRay

slot allocation approach is 900768µs while the total overhead time according to

Equation (4.20) is 800560µs. Substituting the above-mentioned values in Equa-

tion (4.23), channel utilisation for a cluster is only 11.124% when following the

FlexRay approach.

By comparison, in INCUS+, the τ inc+ of each node in each TDMA round is

dependent on transmission requirements (see Table 4.7, Figure 4.16). Therefore

the net overhead T ovhd is zero for all nodes in each TDMA round. As T ifg is 4µs



Dynamic TT Communication 90

Figure 4.15: Slot length, transmission time and overhead time (where IFG =
4 bits time ∼= 4µs) using FlexRay slot allocation method.

and T idle is zero, therefore, by using Equation (4.26) the length of a cluster cycle

in INCUS+ is 100256µs while total overhead time according to Equation (4.20) is

48µs. Substituting the above-mentioned values in Equation (4.27) yields a channel

utilisation for a cluster cycle in INCUS+ of 99.95%. This is almost a ninefold

increase in channel utilisation.

Figure 4.16: Slot length, transmission time and overhead time (where IFG =
4 bits time ∼= 4µs) using INCUS+ slot allocation method.



Dynamic TT Communication 91

4.4 Flexible operational modes

The use-cases we have discussed so far demonstrate the need for flexible commu-

nication schedules not only inside a TDMA round but also, in different TDMA

rounds. However, only a single, static configuration still exists for the system. A

greater level of flexibility can be achieved by setting up different MEDLs (each with

different communication schedule) for different operational modes. These MEDLs

can then be switched at runtime. For example, a more complex use-case from

the aviation industry where an on-board computer system in an aircraft controls

different operational modes, e.g. based on whether the aircraft is on the ground

or in the air [147]. To accommodate these different operational modes, a mecha-

nism of mode changes was introduced in [147]. Mode changes are used to switch

between statically defined but different operational modes [147]. In accordance

with the changes in an operating environment, a controlling computer system per-

forms mode changes, which means proceeding with different control patterns i.e.

different task and message schedules [147]. Traditionally, the temporal control

pattern does not change in a time-triggered (TT) systems [147], which currently

restricts the achievable flexibility of TT real-time systems. There are a number

of applications that have multiple distinct phases. For example, an aircraft flying

from Brisbane to Sydney may have different operational phases such as taxiing

on the airport, take off from the airport, climbing up in the air, level flight, de-

scending in the air, landing at destination airport and then taxiing again [147].

However, different operational phases in [147] does not support flexible communi-

cation schedules. I have emphasis that each phase can be considered a different

operating mode, which requires different control patterns. For example, a land-

ing gear may need a different frame transmission frequency with different payload

length during landing mode compared to level-flight mode with autopilot engaged.

Consequently, it needs different length TDMA slots not only in different cluster

cycles of an operating mode but also for different operational modes. Therefore,

assigning same length transmission slots to a landing gear while in a landing mode

as compared to level flight mode will result in poor channel utilisation. We will



Dynamic TT Communication 92

now examine how multiple operational modes, each with different communication

schedules can be achieved. A comprehensive analysis of channel utilisation with

different operational modes is not part of this section as it has already become

evident from the previous case studies that a slot length configuration in accor-

dance with the transmission payload will result in efficient bandwidth and channel

utilisation. However, a formal verification of the impact of slot timings on system

safety in different operational modes will be presented in Chapter 6.

4.4.1 Multiple operational modes

Safety-critical, distributed real-time systems can be configured to have different

operational modes [147] at different points in time. Nodes operating as part of

these systems exhibit different roles and therefore can have different transmission

loads during each mode as illustrated in Figure 4.17. For example, a landing gear in

an aeroplane transmits a different transmission payload during normal flight mode

as compared to landing mode. Therefore the length of an allocated time-slot for

a node can be different during different operational modes. Existing communica-

tion protocols for safety-critical systems are not capable of handling these different

transmission schedules. They keep the same, fixed pattern of TDMA cycles and

message lengths for all modes. There are vital reasons for this, as it was argued

that bus guardians are not aware of any operational mode [147], so keeping dy-

namic TDMA pattern in different operational modes makes it difficult for guardian

nodes to protect the network from babbling idiot faults. My proposed approach

implements multiple operational modes with different communication schedules

and lengths in each mode. The principle of operation is shown in this chapter,

while the principles of bus guardians that can offer this level of flexibility are shown

in Chapter 6.



Dynamic TT Communication 93

Figure 4.17: Slot length configurations during different operational modes

4.4.1.1 Implementation of multiple modes

The principle of operation of mode changes and mode handling in INCUS+ is

the same as in TTP [33], except for supporting different communication schedules

for each operational mode. Multiple MEDLs are initialised, each with a differ-

ent communication schedule, as required by the respective operational mode. The

protocol starts with a startup mode and after integration of all participating nodes

in the ensemble, switches to one of the operational modes. To avoid a combina-

torial explosion of the complexities, a mode change request is only initiated by a

node that is allowed to do so and this request is embedded in the frame header.

All the nodes in the ensemble that receive this request correctly will switch their

mode either immediately or from the next TDMA cycle, depending upon the mode

type configuration [147]. A mode change request contains a mode number that

refers to the specific MEDL for that mode. An array that hold these references

is called Mode Descriptor List (MODL) as shown in Figure 4.18. When acting

upon the received mode change request, all nodes will replace their current MEDL

with the new MEDL specified for the new mode. This new MEDL may contain



Dynamic TT Communication 94

a different communication schedule (with different message lengths) compared to

the previous MEDL.

Figure 4.18: Mode Descriptor List

4.4.2 Mode handling

INCUS+ supports two types of mode change requests as discussed in [147], a

deferred mode change and an immediate mode change. The difference between

both modes is as follows:

4.4.2.1 Deferred Mode

Deferred mode changes can be used to reflect changes in normal operational condi-

tions of the controlled object, for example, a change from taxiing mode to take-off

mode in an aeroplane [147]. As stated above, deferred mode changes reflect the

principle of consistency, i.e., maintaining an equal state among all nodes of a clus-

ter and between the state of the protocol on the one hand and the state of the

application on the other [147]. Deferred mode changes can be requested by an

authorised node at any time during a cluster cycle. However, the change will only

come into effect from the beginning of the next cluster cycle [147]. All tasks re-

lated to the previous mode of the participating nodes must be completed before



Dynamic TT Communication 95

the start of the new operational mode. This means that a system must be in

ground state before the transition to a new mode [148].

A deferred mode change request during a cluster cycle remains pending until the

start of the next cluster cycle [147]. All the ensemble nodes that successfully

received the mode change request in the previous cluster cycle will make an au-

tonomous transition to the new, requested mode at the start of next cluster cycle

without any further notification. It is to be noted that a node which reintegrates

into the ensemble only after the mode change request has been sent would have

missed the mode-change request and thus will not be aware of this and hence,

would not be able to adopt the new mode change from the next cluster cycle.

This issue is resolved by making the mode change part of the controller state and

therefore, a reintegrating node will also receive the pending mode change request

whenever it receives the initialisation frame [147]. It is also possible that more

than one request can be initiated during a cluster cycle from different authorised

nodes. This issue can be resolved either by assigning static priorities to ensemble

nodes or considering latest request as having the highest priority [147].

4.4.2.2 Immediate Mode

An immediate mode change can be requested by an authorised node at any time

during a cluster cycle. Contrary to a deferred mode change, an immediate change

applies right after the end of a slot in which the immediate mode change was

requested [147]. The issues associated with a deferred mode change such as priori-

tising the mode change requests is not a problem with immediate mode as change

to a new mode will take place immediately [147]. Similarly, this mode does not re-

quire to maintain information regarding pending mode change requests. Handling

of immediate mode changes is easier than deferred mode change, as the system

does not need to be in a ground state when immediate mode change applies [147].

Therefore, when an immediate mode change is invoked, all the tasks executing on

the nodes in the ensemble must be aborted immediately [147]. However, this will



Dynamic TT Communication 96

not leave the system in an undefined state, as tasks pertaining to the new mode

will commence.

4.5 Summary

Dependable safety-critical real-time (SCRT) communication protocols are becom-

ing increasingly important and are being used in more complex applications. An

example application of SCRT communication protocols we discussed is a self-

driving car, where the protocol should have the ability to transfer a relatively

large amount of safety-critical data (e.g. video) in real-time between various com-

ponents of an autonomous vehicle.

The TTA approach for SCRT protocols has been to keep the protocol simple and

inflexible, to achieve predictability and dependability. However, such an approach

results in protocols that suffer from poor bandwidth and channel utilisation, partic-

ularly for increasingly complex, safety-critical payload. Attempts have been made

to increase flexibility in these protocols, e.g. FlexRay and TTCAN, however, this,

so far, has only been possible for information that is not safety-critical.

In this chapter, INCUS was designed to improve the channel utilisation by allow-

ing the slot length of nodes to be configured in accordance with the actual payload

requirements of these nodes inside a TDMA round. While my proposed approach

is based on the traditional TDMA scheme utilised in the Time Triggered Architec-

ture, it significantly improves bandwidth utilisation over the traditional schemes.

The analyses performed in this chapter have shown that INCUS reduces the gross

overhead time by almost 90%, improving overall bandwidth utilisation efficiency

almost twofold in a typical automotive brake-by-wire system scenario.

INCUS+ with further enhancements in the INCUS, significantly improves channel

utilisation over FlexRay, while guaranteeing atomicity and safety at the protocol

level. INCUS+ achieves increased channel utilisation by allowing the slot length of



Dynamic TT Communication 97

each node to be configured in accordance with its actual transmission payload re-

quirements for each TDMA round of a cluster cycle. This eliminates node slot idle

times for all nodes, hence reduces transmission overhead. Compared to FlexRay

which is a TTA-based communication protocol for safety-critical real-time sys-

tems, this significantly improves bandwidth utilisation. In the analysis, we have

seen that this kind of flexibility makes it possible to reduce the gross overhead

time by almost 99%, improving overall bandwidth utilisation efficiency almost

nine times compared to FlexRay in an autonomous vehicle system case study. An

implementation of multiple operational modes each with different communication

schedule further enhances the flexibility of INCUS+. Despite the added flexibility,

the same level of predictability (predefined schedules for channel access) has been

maintained. This is crucial to ensure the safety of the system at the communica-

tion protocol level, and for implementing critical services such as the membership

service and clock synchronisation. My approach not only increases flexibility and

channel utilisation for safety-critical payload, but also maintains the ability to han-

dle faults in a fail-silent way, at the same level as FlexRay and other TTA-based

protocols.



Chapter 5

Software Architecture Design and

Implementation

Engineering real-time communication protocols is a complex task, particularly

in the safety-critical domain. Current protocols exhibit a strong tradeoff be-

tween flexibility and the ability to detect and handle faults in a deterministic

way. Model-driven engineering promises a high level design of verifiable and di-

rectly runnable implementations. Arrangements of Logic-Labelled Finite-State

Machines (LLFSMs) allow the implementation of complex system behaviours at a

high level through a subsumption architecture with clear execution semantics. In

this chapter, it is shown that the ability of LLFSMs to handle elaborate hierar-

chical module interactions can be utilised towards the implementation of testable,

safety-critical real-time communication protocols. This chpater presents an effi-

cient implementation and evaluation of INCUS+, a time-triggered protocol for

safety-critical real-time communication that transcends the rigidity imposed by

existing real-time communication systems through the use of a high-level sub-

sumption architecture.

98



Logic-Labelled Finite-State Machines and Subsumption Architecture 99

5.1 Engineering a Software Architecture for

Safety-Critical Real-Time Systems

Nowadays, a model-driven software development approach is widely used by de-

velopers in contrast to lower level implementation approaches, as it assists in

developing, faster and simpler modules and applications [149]. Finite State Ma-

chines (FSMs) or Behaviour Trees are used to represent high level specifications of

behaviours. This kind of modelling approach fulfills the agenda of Model Driven

Engineering [150–153] for software development. In contrast to other, more tra-

ditional implementation approaches, Logic-Labelled Finite-State Machines (LLF-

SMs) [154] allow translating requirements into high-level, executable models [155–

157]. These are less susceptible to implementation errors as models can be directly

interpreted, simulated, verified, and executed on a large number of platforms, in-

cluding embedded control systems [158–160].

In control systems, where different modules are interacting with each other, it

becomes very important to predict the results and shield the details of one mod-

ule from others. To solve this problem, the subsumption architecture [161] has

proposed behaviour-based decomposition of such complex systems into layers of

increasing level of abstraction, where high level layers can subsume the lower level

layers. Several other similar approaches [162–164] were developed, but one big

advantage of the subsumption architecture is the ability to cater for the evolution

of the complexity of a control system by accretion of higher-level layers. This

approach allows the incremental development of a control system, as the addition

of each new layer provides a new additional behaviour to the controller. Further

layers can be added on top of the existing layers without affecting their behaviours.

This way, a functional controller will always be available with each new behaviour

throughout the development process. So far, the subsumption architecture has

largely been used to build complex embedded systems, such as robotic control

systems [165–171].



Logic-Labelled Finite-State Machines and Subsumption Architecture 100

In this chapter, LLFSMs are used as a modelling tool, where transitions from one

state to another state are based on expressions in logic rather than events. This not

only reduces the overhead significantly as, for example, no memory allocations are

required for event queues, but also makes system performance fully predictable.

Although modelling with LLFSMs is a very effective approach as shown in the

literature [172, 173], to my knowledge, no attempts have been made to date to use

them towards the implementation of a safety-critical, hard real-time system. This

chapter not only discuss the implementation of proposed protocol using LLFSMs,

but also shows how the subsumption architecture helps prevent design issues and

how an arrangement of LLFSMs has proven a better technique that enables to

design and develop a more complex protocol faster.

Figure 5.1: Transmission behaviour of INCUS+ using an individual LLFSM.
This machine contains around 50 states (not all are shown here) without the im-
plementation of other protocol services such as behaviour for the node start-up
and reintegration, clock synchronisation, the membership service, mode changes,

and other FTAMs.

5.2 Executable Communication Model

When implementing a communication protocol, a key design decision is the choice

of tools and the level of modelling for this implementation. The prototype software

for TTP/C, for example, was designed at a low, procedural level and implemented

using a mix of C++ and assembly language [15]. While this approach certainly



Logic-Labelled Finite-State Machines and Subsumption Architecture 101

offers predictable, high performance (short only, perhaps, of a direct hardware

implementation), a key disadvantage is the design and development effort (sev-

eral man years) required by such an approach. Moreover, low-level software is

often wedded to a specific hardware and difficult to port to a different platform.

Nevertheless, to date, the rigorous timing requirements that need to be modelled

early on in the design process has made it difficult to model verifiable executable

real-time behaviour at a high level [16]. These and other difficulties often encoun-

tered with high level engineering of software has often prompted the question of

whether it makes sense to engineer software, and hence, there is now a trend to

view engineering as craft supported by theory, leading to best practices in soft-

ware engineering [174]. A common element in software architectures in general,

but particularly in control software, are finite-state machines. In fact, the most

commonly used artifact for the description of software behaviour in UML are

state diagrams [175, 176]. Logic-labelled finite-state machines (LLFSMs) are tur-

ing complete, making them fundamentally equivalent to any mechanism to model

system behaviour, with key advantages [16] that shall make them the preferred

model here. First, they offer a very clear semantics of concurrency, tremendously

simplifying the cognitive burden for the developer [16]. Importantly, though, their

execution semantics much more closely resembles the principles of the TTA [177]

and is in direct contrast with the optimistic best-effort approach of event-driven

systems [16]. INCUS+ is implemented through executable models using LLF-

SMs, and so far, this is the first attempt at implementing software suitable for

safety-critical hard real-time systems using this approach.

5.2.1 LLFSM Design of INCUS+

In the first iteration, all the lower level and higher level implementation details are

embedded in a single LLFSM. To this end, INCUS+ is modelled in stages, starting

from the very basic functionality of the protocol, i.e., transmit and receive message

at a pre-defined point of time, following the time-triggered approach [178] of the

specification. Then, basic fault tolerance algorithms and mechanisms (FTAMs)



Logic-Labelled Finite-State Machines and Subsumption Architecture 102

were added, e.g. the Cyclic Redundancy Check (CRC) whether a received message

is corrupted. Step by step, incrementally added additional behaviours required

by the protocol to take it towards the full specification. Each of the steps was

designed using MiCASE [179] and compiled to an executable that was run, tested,

and verified using clfsm [179]. What is important to note is that, since LLFSMs

represent executable models, each of these steps, despite not yet implementing

the full specification, gave a fully functioning, executable prototype that made it

possible to simulate, exectute, test, and validate.

The complete INCUS+ specification is described in Chapter 4, but here, the focus

will be on one key aspect and briefly discuss the implementation of the transmission

behaviour of INCUS+ using a single LLFSM as shown in Figure 5.1. In the

Initial state, all the necessary parameters are initialised such as the Message

Descriptor List (MEDL) that holds the time schedule for the data transmission

and reception phase for all nodes. Each node has an identical copy of the MEDL.

All nodes starts from slot zero as their first slot in the Set Slot state, then

transitioning straight to the Slot Pos state. In this slot, each node will check

the MEDL to figure out whether it needs to act as a sender node or receiver node

according to the current slot position. Note that, this section discusses the message

transmission mechanism of INCUS+, and ignores the receiver part (as a receiver

node) in this example, but the receiver follows analog steps to the transmitter

states discussed below. So if, in the current slot, the node is meant to act as

a sender node, a corresponding transition is made from the Slot Pos state to

the CState S state. The Controller State (C-State) is initialised in this state so

that CRC value can be calculated over the C-State. This allows a message to be

rejected as incorrect, not only if there is a physical transmission error, but also if

there is any other fault that causes C-State disagreement [15].

After initialisation of the C-State, the node transitions to the next state

CRC CState S. From there, it takes a byte at a time and calculates the CRC on each

individual bit of that byte and when finished, takes the next byte. This continues

until there are no more data left for transmission. This whole procedure is achieved

through the state transitions from the CRC CState S, CRC CState Next Bit S, and



Logic-Labelled Finite-State Machines and Subsumption Architecture 103

CRC CState Next Byte S states. The next state after the CRC calculation is the

Wait Send state, from which a transition is made to the Send Data state, only once

the time at sender node is equal to the time defined in the MEDL for the actual

message transmission. This time is termed the slot start time and implements the

essential trigger time for the sender node.

It is important to note that, other than the conditional transitions shown in the

figure, there is no conditional code here, making, together with the deterministic

scheduling of clfsm [16], the execution time of the compiled code extremely pre-

dictable in correspondence with the structure of the high-level model. In fact, as a

consequence, the worst-case execution time (WCET) is guaranteed to be the same

as the best-case execution time, minimising the temporal jitter of the transmission

start state. In this state, the Send Data state, the original message and number

of bytes of the message are fetched from the MEDL and then the next state is the

Send Byte state. This state takes one byte of the message at a time, and transmits

it bit by bit (through the Clock Low S, Write Bit, and Clock High S states, also

updating the CRC at each step), and then looks for the next byte (Next Byte S).

Once no bytes are left to transmit (nd->bytes == 0), the sender transitions to

the Send CRC state, where all the bytes of the CRC are transmitted. The mech-

anism of CRC transmission is same as the transmission of the original message

and the states used for transmitting CRC value (CRC CLK Low S, Write CRC Bit,

Clock High S CRC, and Next Bit S CRC), have analogous functionality to the data

transmission states above, but transmit the CRC instead. The Finish S state con-

cludes the cycle, incrementing the MEDL slot position and transitioning straight

back to Slot Pos if there are more MEDLs slots to operate on, or back to Initial,

if the end of the TDMA cycle has been reached and the above steps repeat from

the beginning of the MEDL (slot zero).

One pattern that becomes apparent in this initial design is a replication of con-

cerns. In other words, despite the fact that the above description only details the

transmission phase of the protocol, this already has replicated the relevant states

used in message transmission, i.e., the states required for transmitting the CRC



Logic-Labelled Finite-State Machines and Subsumption Architecture 104

essentially mirror the states used for transmitting the message payload. The states

representing the receiver very much mirror the sequence described above, with only

minor differences, such as the provision of a small receive window to compensate

for clock drift and jitter. Up to this point, the complete LLFSM, including the

receiver, already contains fifty states and it has not yet implemented important

parts of the communication protocol specification, such as the behaviour for the

node start-up and reintegration, clock synchronisation, the membership service,

mode changes, and other FTAMs such as the detection of transmit and receive

errors on the basis of different timeout parameters. As this single LLFSM grows

bigger, it becomes more complex and was nearly impossible to add remaining be-

haviours of the protocol by adding and replicating more states. We will discuss

how this has been addressed through subsumption in the next section.

Nevertheless, this initial implementation already serves as a very important proof

that it is not only possible to implement a protocol for safety-critical real-time

systems using LLFSMs, but also that this design and implementation process can

be done much more rapidly (several weeks vs. a few man-years) at a high level,

yet yielding fully executable models at every stage. This leads to the next stage of

considering a refined approach that greatly enhances the modularity of the design.

5.3 INCUS+ Subsumption

To reduce the complexity of the overall design and increase the modularity, my

implementation follows the principles of the subsumption architecture [161], which

allows to split out functionality into modules that can hierarchically be subsumed

by higher level modules. Arrangements of LLFSMs allow the implementation

of a subsumption architecture by integrating a number of different finite-state

machines, each forming a component or module that can be deactivated using a

suspend operation or activated using a resume or restart operation1 [173].

1With LLFSMs, the restart operation simply restarts the machine from its Initial state,
while the resume operation resumes from the previously active state.



Logic-Labelled Finite-State Machines and Subsumption Architecture 105

Figure 5.2: This figure shows the subsumption architecture of INCUS+ where
single machine is splitted into number of multiple LLFSMs

State machine vectors formed by an arrangement of LLFSMs make the decompo-

sition of sub-behaviours into modules particularly straightforward. This process

already identifies repetitive the sub-behaviours, such as the transmission of CRC

vs. payload data. Splitting these elements out into individual modules is as simple

as factoring out those states into an individual sub-machine. A decomposition

of the earlier, single LLFSM implementation of INCUS+ into the following four

sub-LLFSMs is shown in Figure 5.2:

1. INCUS+ MAIN LLFSM

2. INCUS+ CRC LLFSM

3. INCUS+ SENDER LLFSM

4. INCUS+ RECEIVER LLFSM

The INCUS+-MAIN-LLFSM module acts as a high-level master-LLFSM that ac-

tually controls the behaviour of the other sub-LLFSMs. These sub-machines are

composed of the CRC-LLFSM, SENDER-LLFSM, and RECEIVER-LLFSM ma-

chines. The Main LLFSM runs concurrently with the sub-LLFSMs and only has

the principle purpose of implementing the high-level stages of the protocol and

to suspend and restart the sub-machines. These sub-machines are the modules



Logic-Labelled Finite-State Machines and Subsumption Architecture 106

Figure 5.3: INCUS+ MAIN LLFSM: This figure shows Main LLFSM of IN-
CUS+. This only invokes Sender and CRC machines.

in the subsumption architecture that implement the corresponding underlying be-

haviours, when required.

In the previous section( 5.2.1), the example of message transmission in INCUS+

using a single LLFSM was used to highlight the issue of design complexity. In the

following section, I will demonstrate how this complexity issue is tackled by imple-

menting the message transmission behaviour of INCUS+ using the subsumption

architecture.

5.3.1 Tackling Design Complexity using Subsumption

The implementation of the transmission behaviour of INCUS+ using the subsump-

tion architecture is done by decomposing the single LLFSM from Figure 5.1 into

the three sub-LLFSMs 1–4, i.e., INCUS+ MAIN-LLFSM, INCUS+ CRC-LLFSM,

INCUS+ SENDER-LLFSM, and INCUS+ RECEIVER-LLFSM. Figure 5.3 shows

the main machine. The main machine acts as a master LLFSM and can run concur-

rently with the sub-LLFSMs. While the subsumption architecture allows multiple



Logic-Labelled Finite-State Machines and Subsumption Architecture 107

Figure 5.4: INCUS+ CRC LLFSM: This Machine is used to calculate the CRC
value before transmitting and after receiving a frame to and from a communi-
cation channel. This machine is invoked by Main LLFSM machine at different

instants.

sub-machines to operate concurrently, and while the execution semantics of LLF-

SMs is clearly defined to avoid concurrency issues or temporal inconsistencies [16],

this approach deliberately kept the design of the INCUS+ implementation simple,

not requiring the concurrent operation of multiple sub-machines at the same time.

This greatly simplifies WCET measurement and further reduces the design and

validation complexity of the system.

The overall transmission mechanism follows the steps discussed in Section 5.2.1.

After initialising the relevant protocol parameters in its Initial state and veri-

fying, in the Chk Slot Pos state, whether the current node is the sender node. If

the node is the current transmitter, it transitions to the new state CRC CState S.

To perform the CRC calculations over the local C-State prefixing the payload

transmitted in the message, the main LLFSM will now activate the CRC module

(Figure 5.4) by using restart at(machine id+NODE CRC).

The CRC LLFSM runs concurrently with the main machine and performs the

CRC calculation over the data referenced by the main LLFSM. In the case of the

CRC CState S state of the main machine, the CRC data reference points to the

C-State that the CRC shall be calculated over. The states of the CRC LLFSM



Logic-Labelled Finite-State Machines and Subsumption Architecture 108

are same the ones described in Section 5.2.1, but the clear advantage here is, that

there is no need to replicate these states multiple times, whenever it is required to

perform a CRC calculation. In fact, this calculation is irrespective of the node’s

current role as a sender or receiver, and thus, unlike in the previous implementa-

tion, no further replication is necessary.

While the main machine technically runs concurrently with the CRC module, ac-

tivating the CRC module does not require any concurrent operation, so the main

LLFSM simply transitions to the Wait CRC CState S F state (through the tran-

sition labelled is running at (machine id+NODE CRC)) where it waits for sub-

machine completion through use of the is suspended at(machine id+NODE CRC)

predicate. To notify completion through this predicate, the CRC LLFSM will

simply suspend itself by using suspend self() in its CRC Done state after having

completed calculating the CRC value. This is semantically equivalent to subsump-

tion akin to the UML sub-machine notation [173].

As soon as the CRC calculation has concluded, the main machine transitions to

the Wait to Send state, where it waits for the arrival of the transmission slot

action time. To transmit the message, the main LLFSM now activates the sender

LLFSM (Figure 5.5), while again simply waiting for completion by sitting idle in

the Wait Send Data F state until the sender LLFSM has completed and suspended

itself. Unlike the example from Section 5.2.1, where the transmission logic had

to be replicated for transmitting the message CRC, the same sender LLFSM can

now be used and will be restarted by the main machine when in order to send

the CRC value as implemented by the Send CRC and Wait Send CRC F states in

the main LLFSM. So contrary to the implementation of transmission behaviour

using the single LLFSM, the subsumption architecture eliminates the complexity

imposed by state-replication, while maintaining the ability to implement real-time

behaviour following the same, conceptual design principles.



Logic-Labelled Finite-State Machines and Subsumption Architecture 109

Figure 5.5: INCUS+ Sender LLFSM: This figure shows the implementation
of a Sender machine. This machine is used to transmit data frame and its CRC
value. This machine is invoked by Main LLFSM machine at different instants.

5.3.2 Adding new Behaviours using the Subsumption Ar-

chitecture

This section will now briefly describe the subsequent, iterative steps that were

conducted using the subsumption approach. It would have been hard to continue

the modelling of INCUS+ using a single LLFSM due to the complexity explosion

alluded to earlier. In the following analysis I will show how straightforward it

now is to add a new behaviour while retaining all the functionality of the existing

behaviours of INCUS+ using the subsumption architecture and arrangements of

LLFSMs.

5.3.2.1 Start-up and Re-integration of nodes

So far, it was assumed in the implementation that all nodes successfully resolved

their start-up collision scenario [8] and they are in the state where they have

synchronised clocks and are ready to transmit/receive messages. To implement



Logic-Labelled Finite-State Machines and Subsumption Architecture 110

Figure 5.6: This figure shows the addition of new behaviour using subsump-
tion architecture in INCUS+.

system startup and reintegration in accordance with the INCUS+ specification,

this need to add another sub-LLFSM as shown in Figure 5.6. This machine is

named RE INTEGRATION LLFSM in a sense that this LLFSM is, in the fault-

free case, used only once to run the start-up scenario when all the nodes are

turned-on initially. After this, the main LLFSM is used most of the time, but

has the ability to trigger a restart to re-integrate a lost node to the cluster of

nodes in case of a fault that requires re-integration. The re-integration LLFSM

acts as a master-LLFSM only when all nodes are turned-on the first time. It

will suspend all other sub-LLFSMs and runs the node start-up algorithm. Once

all the nodes are up, the RE INTEGRATION-LLFSM will suspend itself after

starting the main LLFSM. Now the sphere of control shifts to the main machine

as above, which will perform the normal operation of the protocol as described.

Importantly, a comparison between Figure 5.2 and Figure 5.6 shows that addition

of this new behaviour has been achieved by just adding a single new layer on top

of INCUS+ MAIN LLFSM. Most importantly, the main machine did not require

any modification or change to the structure of the previously existing layers of



Logic-Labelled Finite-State Machines and Subsumption Architecture 111

LLFSMs.

5.4 Summary

This chapter presented my design and implementation of INCUS+. Initially, I de-

signed the protocol without using a subsumption architecture. One pattern that

became apparent in this initial design is a replication of concerns. A single LLFSM

is used to implement the transmitter and receiver functionality. This replicated

the relevant states used in message transmission, i.e., the states required for trans-

mitting the CRC essentially mirror the states used for transmitting the message

payload. The states representing the receiver very much mirror the sequence de-

scribed above, with only minor differences, such as the provision of a small receive

window to compensate for clock drift and jitter. As this single LLFSM grows

bigger, it becomes more complex, making it nearly impossible to implement more

complex behaviours of the protocol by adding and replicating more states. This

also made debugging and validation nearly impossible. Due to this complexity,

some simple errors, for example, statements written mistakenly at OnEntry of a

state instead at OnExit and vice versa, took weeks to be detected. This lead to

the consideration of a refined approach that greatly enhances the modularity and

decomposability of the design. In summary, my implementation has shown that a

high-level implementation of a communication protocol for safety-critical real-time

systems based on the subsumption architecture is not only possible, but facilitates

the incremental development of the system using executable models throughout.

This shows that with INCUS+ implementation, based on an arrangement of multi-

ple LLFSMs, the scope of the subsumption architecture is not limited to modelling

the behaviours of traditional control systems, but this can also be used to develop

finite-state machines with predictable execution semantics and timing. This chap-

ter demonstrated that LLFSMs support system development of INCUS+ in an

iterative way or in stages, where it can execute, test and refine a safety-critical

real-time system at a given level before starting a new level. This made it possible

to ultimately implement a more flexible communication protocol in comparison



Logic-Labelled Finite-State Machines and Subsumption Architecture 112

with existing TTA based communication protocols, where the implementation,

refinement, and validation was a lot more complex. The modelling technique pre-

sented in this chapter has been shown to make feasible designing flexibility into

communication protocols with the strict predictability and timing required by de-

pendable real-time systems. Furthermore, this has shown that the complexity of

state-replication can be avoided very effectively by using the subsumption archi-

tecture provided by arrangements of LLFSMs when developing a communication

system, without losing the fundamental properties of predictable real-time perfor-

mance. The subsumption architecture made it possible to incrementally refine the

implementation by adding, modifying, or changing the behaviour of a sub-system

without interfering with unaffected components of the system.



Chapter 6

Ensuring Fail-Silence

As INCUS+ is built on the broadcast semantics of the Time-Triggered Architec-

ture [6], nodes need to cooperate to ensure collision-free communication. There-

fore, it is imperative for any Safety-Critical distributed Real-Time (SCRT) sys-

tem to prevent the communication channel from being monopolised by a faulty

node [180][8]. My protocol is based on a time-triggered communication schedule,

where each node broadcasts its messages according to a pre-determined transmis-

sion pattern. Therefore, a faulty node can corrupt the communication over the

communication channel by transmitting its messages out of schedule, at arbitrary

points in time [180]. This can lead to a babbling idiot failure [180]. To prevent

possibility of such a failure, I propose a bus guardian approach that introduces an

independent arbiter [180] for bus access. In a bus topology, the bus guardian is a

device attached with each node in the SCRT system, whereas in a star topology,

a redundant bus guardian pair can be installed to shield the whole system from

babbling idiot faults [8]. In this chapter, a bus guardian approach is presented to

enforce a fail-silent behaviour of the participating nodes in the time domain. A

formal verification model is used to verify the transmission window timings of a

transmitter node along with its bus guardian and receiver windows. In particular,

I will formally verify that the design rules for the timing parameters of transmis-

sion windows used in INCUS+ enforce the required temporal properties. This

further verifies that a message transmitted by a non-faulty transmitter can never

113



Bus Guardians and Formal Verification 114

be blocked by a non-faulty bus guardian and will be accepted by a non-faulty

receiver. Any transmission slot overlap is also ruled out through this model.

6.1 Introduction

In a distributed real-time system using a broadcast mechanism for communication,

a node that is transmitting at arbitrary points in time can pose a serious threat

of communication failure [181]. Nodes that exhibit such behaviour are known

as babbling idiots [180][182]. These faulty nodes are not obeying the medium

access rules imposed by the underlying communication network and consequently

corrupt the transmitted frames by non-faulty nodes [180][182]. The operation of an

SCRT system under the presence of these babbling idiot faults can lead to lack of

dependability and a high cost of point-to-point network topologies [182]. An ideal

case would be if a node exhibited only a single failure mode. A node is considered

fail-silent only if it either produces a correct result or no result at all [183]. A

node can be regarded as a separate fault containment region through its fail-silent

behaviour, which means that a fault produces by a node in the system cannot

propagate to other nodes in the system [184]. In a time-triggered environment,

channel access is based on the progression of a global timebase, where clocks of

all participating nodes are synchronised with each other [177]. A transmission

slot is allocated to each node and it has an exclusive access to the communication

channel during this allocated time window [6]. The channel access pattern of each

node in a time-triggered communication is defined in the time domain and thus,

a node that violates this access pattern is termed a babbling idiot, as it may talk

over the transmission of a node that is legitimately scheduled to transmit at the

point in time of the faulty node’s interference [8, 180].

Time-triggered communication uses a communication schedule with slots held by

each node in advance [6]. This schedule records the identity of the transmitter

node for each slot as well as the slot length and transmission start time [8]. The

transmitter node starts its transmission some time after the slot start time and



Bus Guardians and Formal Verification 115

finishes its transmission some time before the slot duration has elapsed [180][8].

The receiver nodes start listening for incoming traffic at the beginning of the

slot and ends when the slot duration has expired [180][8]. The timings of the

communication activities both at transmitters and receivers are driven by their

respective local clocks[8][68]. However, these clocks are synchronised among the

participating nodes within some precision threshold [180]. It is impossible for

these nodes to exhibit the exact same clock value at every given instant [180].

Therefore, a clock skew may cause a transmitter to transmit before some receivers

start listening to the network or finish its transmission when some receivers already

have stopped listening to the traffic on the network [180]. This could lead to a

failure where some nodes accept the transmission while other rejects it [180][8]. To

avoid such failures, slot timing parameters for transmitter and receiver nodes must

be chosen with care to prohibit such failure scenarios[8]. Typically, this is achieved

by introducing a small window of tolerance that accounts for the jitter introduced

by the fundamental limits of precision in clock synchronisation[8]. In addition to

this, bus guardian windows must be set so they will block the faulty transmitter

from transmitting outside its allocated slot timings[8]. We will formally verify

the slot timing parameters for transmitters, receivers, and bus guardians in this

chapter.

6.2 Bus Guardian

The Bus Guardian (BG) is an autonomous subsystem that protects the commu-

nication channels from temporal transmission failures [8]. Additionally, the BG

can serve to protect the bus against transmissions that are apt to lead to ambigu-

ous results at the receivers (so-called ‘slightly-off-specification’ faults) [8]. The

BG functionality may be implemented locally or centrally, but importantly the

BG needs to be independent from the node(s) it protects[8]. In any case, a node

must have a BG to achieve fail-silence in the temporal domain [8]. Such a local

BG only has the knowledge of its node‘s schedule (sending slot) and must use an

independent external clock source [8, 185].



Bus Guardians and Formal Verification 116

Figure 6.1: Independent Bus Guardian and Communication Controller

The issue of babbling idiot faults is handled with independent bus arbitration,

where each node is equipped with an independent BG in a bus topology [8].1

6.2.1 Bus Guardian Architecture

The design of a BG requires that no common mode of failure can occur between

the guardian and the node it is protecting [185]. A common mode of failure

means both the node and its BG fail at the same time and thus, there would

be no protection provided by such BGs [185][8]. Therefore, implementing a BG

as a separate device with no hardware dependency can avoid common mode of

failures [185]. There are number of BG architectures in the literature specified as

follows:

1Please note that while a bus topology is used here, at a protocol level it only require broadcast
semantics. Therefore, the same applies to other topologies with equivalent semantics, such as a
star topology.



Bus Guardians and Formal Verification 117

6.2.1.1 Closely coupled bus guardian

In this architecture, the BG is used to prevent the node from transmitting too

frequently on the communication channel [185]. The BG is using additional logic

to prevent a faulty node to transmit outside its schedule window [185]. However,

this type of guardian provides the actual interface to the network and therefore,

a fault in BG itself cannot protect from babbling idiot failures [185]. This issue is

tackled through redundancy but independence cannot be guaranteed as both are

closely coupled[186]. This architecture is used in Delta-4 [183] and CAN [187].

6.2.1.2 Loosely coupled bus guardian

In this architecture, a node is listening to the channel but message transmission is

only allowed if the associated BG permits the node to transmit over the commu-

nication channel [185]. Bus drivers are disabled and a node has to inform the BG

before attempting to transmit on the bus [185]. If the BG agrees with the node’s

request, then it will enable the bus driver [185]. This BG architecture is used in

TTP [181] and FTMP [188]. However, these guardians are not using independent

clocks, which can lead to a common mode of failure.

6.2.1.3 Independent bus guardian

The previously existing communication protocols can use a simple design of bus

guardians, and even dumb guardians that only listen to transmission patterns at

the beginning and then follow the same patterns, as the communication schedule

does not change during the entire operation. Here, I propose an approach that

is using an independent BG design as shown in Figure 6.1. This design, impor-

tantly, has its own clock and a copy of the complete transmission schedule for all

TDMA rounds as well as different operational modes defined in Mode Descriptor

List (MODL) for its respective node, and listens for the incoming traffic at specific

instants (defined in the Message Descriptor List (MEDL)). The guardian prevents

the bus from monopolisation by a sending node which is trying to transmit more



Bus Guardians and Formal Verification 118

often than it is scheduled for during a TDMA round. This also prevents the Com-

munication Controller (CC) from transmitting outside its allocated transmission

window. The bus guardian is a completely separate device that is directly con-

nected to the bus. While this leads to a more complex design, crucially, it supports

the flexibility of dynamic communication schedules. Lets have a look at the differ-

ent types of incoming traffic and evaluate how the independent bus guardian can

perform when listening to it.

1. Listening to a transmission pattern in the first few TDMA rounds:

These types of bus guardians are known as dumb guardians. They just lis-

ten to the traffic in the first few TDMA rounds and configure their window

accordingly. This approach can work well if an SCRT system only supports

static and equal length time slots for all nodes. This approach can support

INCUS only in a bus topology where a guardian node can learn the trans-

mission pattern of its associated node and the same pattern repeats in other

TDMA rounds. Please note INCUS supports variable slot lengths inside a

TDMA round, but this pattern can be learnt.

2. Listening to transmission patterns defined in a single MEDL: These

bus guardians have a copy of the MEDL and have complete knowledge of

the communication schedule. These bus guardians can work with INCUS

as well as its enhanced version INCUS+ with single mode of operation, but

with different schedules and in different TDMA rounds. This approach can

work well if nodes are successfully integrated into the cluster and follow

the predetermined transmission patterns. To support full functionality of

INCUS+ bus guardians need to listen different types of frames as discussed

in the previous chapter.

3. Listening to Initialisation Frames (I-frame): Bus guardians have

knowledge of the MEDL, but in case a node is lost it gets reintegrated

into the cluster by successfully listening to an I-frame. This is necessary

as a re-integrating node must know about the current TDMA round and

slot position. Similarly, if a bus guardian is lost and re-starts itself in a



Bus Guardians and Formal Verification 119

healthy state then it must reinitialise itself with the current slot position

and TDMA round. This is only possible if the bus guardian is listening to

I-frames. However, this mechanism does not support the full functionality of

INCUS+, when using different operational modes with different transmission

patterns. Please note, the fail-silence behaviour is ensured by a redundant

bus guardian if a bus guardian fails. Please see the details in Section 6.2.2.

4. Listening to full traffic: The bus guardian is configured to listen to all

the incoming traffic to support the full functionality of INCUS+. As in

INCUS+ different modes of operations are supported and each mode can

support different communication schedule, this means just listening to I-

frames is not enough. A mode change request can be launched at any time.

This can be an immediate or a deferred mode change, as discussed in the

previous chapter. This mode change request will be embedded in the header

of a normal frame. The Controller State (CState) [8] of a requesting node

will inform the other node during a normal operation about the mode change

request. To simplify the design, only specific nodes in the cluster are allowed

to make such a request. Before agreeing on the requested mode, all the

receiver nodes perform a check to determine if the requesting node is allowed

to make such a request. If the result is negative then the request is ignored

and the requesting node is removed from membership. Bus guardians cannot

protect the channel if they are unable to listen the full incoming traffic if the

timing of transmission depends on the operational mode. This design is more

costly if a bus topology is used, where each node needs to have a completely

independent guardian and a redundant guardian for the second bus as well to

avoid a single point of failure. However, this can be implemented in a more

cost-effective way by using a star topology with a central and independent

bus guardian along with a redundant guardian to avoid single point of failure.



Bus Guardians and Formal Verification 120

6.2.2 Fail-Silence through redundancy in different network

topologies

In the previous section, we saw that there is a possibility that a bus guardian

itself gets faulty and thus, becomes unable to protect the communication channel

from babbling idiots. To avoid such conditions, different topologies can be used

with reduced to full redundancy levels [8]. Figure 6.2 shows the architecture of

maximum redundancy in a bus topology,

Figure 6.2: Bus Guardian layout in bus topology with full redundancy

Figure 6.3: Bus Guardian layout in bus topology with reduced redundancy

where each bus is protected from each node by a separate BG. In case of a BG

failure, a node is still able to transmit on the other channel. However, since critical

nodes have to be replicated to avoid a single point of failure, a simpler design can

then be used, where only a single BG is used for each node over the redundant

communication channels as shown in Figure 6.3.

In a star topology, by comparison, a single BG for all nodes as shown in Figure 6.4,

would introduce a single point of failure and in-case of a fault in the guardian,

traffic on both channels would be interrupted. Therefore, the required architecture

would be star couplers in a redundant star topology as shown in Figure 6.5.



Bus Guardians and Formal Verification 121

Figure 6.4: Bus Guardian layout in star topology with reduced redundancy

Figure 6.5: Bus Guardian layout in star topology with full redundancy

A bus guardian in the bus topology, that only uses a periodic signal from its respec-

tive node to synchronise its clock with the CC, can prevent the node from sending

more than once in a TDMA round but fails to stop it from sending outside it

scheduled transmission time (only if the CC’s clock get faulty) where transmission

slots are non-uniform. However, as mentioned in Section 4.3.2.3, each node is syn-

chronising its clock with all other nodes using fault-tolerant average algorithm [59].

The BG has that same input from other nodes as well, and can synchronise its

clock accordingly [8]. In the worst case, where the node’s clock get faulty and the

BG’s clock has adjusted itself with the node’s clock, this may result in a single

bus access outside the node’s scheduled time. This fault can be identified by using

the membership service and such a node will be cut off from the rest of the cluster



Bus Guardians and Formal Verification 122

until it restarts itself in a healthy state and reintegrates into the cluster again. The

BG must allow the CC to transmit at the correct time and should not block the

full transmission of its frame within the correct transmission boundary as defined

in the MEDL. Therefore, in order to tolerate the timing differences between the

BG and the CC, the BG will open its gate to the bus a little earlier than the actual

transmission time and closes a little later than the scheduled time [8] as shown in

Figure 6.6. Further details are specified in the next section where slot timings of

a transmitter, BG, and receiver nodes are formally verified.

Figure 6.6: Bus Guardian Window

6.3 Formal verification of slot timing

Rushby [10] has published a formal verification for a TTA-based communication

protocol, i.e. TTP. This thesis will build on Rushby’s model for formal verification.

However since Rushby’s model only works for fixed and equal-length node slots in

each TDMA round, there is a need to modify and extends this for my proposed

approach. In INCUS+, the slot length of each node in each TDMA round is



Bus Guardians and Formal Verification 123

configured according to its transmission payload. Hence, the transmission slot

length of a node can vary in different TDMA rounds. INCUS+ also supports

dynamic communication schedules in different operational modes, which means

the length of a cluster cycle can also vary in different operational modes. I have

extended Rushby’s model to formally verify the flexibility in slot window timings

for each node in different TDMA rounds as well as in different operational modes.

This section will now formally verify the window timings of each slot of a node

in different TDMA rounds of the cluster cycle, as well as in different operational

modes. The basic pattern of communication is based on the global schedule,

which holds the information about slot positions of transmitters, as well as slot

start times and durations. A transmitter will start its frame transmission after

some delay from its slot start time and finish the transmission some time before

the allowed slot duration has elapsed. Similarly, a receiver starts listening for a

frame at the beginning of its receive window time, and closes its receive window

when the frame receive duration has expired. All the events are controlled at each

node through its clock. Clocks in different nodes will deviate from each other but

must be syncronised within a small threshold pertaining to the precision of clock

synchronisation. As a consequence, if nodes did not account for that, it would be

possible that a transmitter starts its frame transmission before some receiver starts

listening for the frame, or finish its transmission when some receivers have already

stopped listening for the frame. This situation would lead to inconsistencies among

participating nodes, creating different cliques among nodes. Therefore, care must

be taken while selecting parameters for window timings of transmitters, receivers,

as well as bus guardians (responsible to block any transmission outside allocated

time slot).

6.3.1 Parameters used for Formal Verification

The parameters used in the formal verification model are shown in Table 6.1. The

values of these parameters, as shown in Figure 6.7, need to satisfy the following

requirements:



Bus Guardians and Formal Verification 124

Figure 6.7: Slot Window Timing Parameters for formal verification extended
from [10]

Table 6.1: Definition of the parameters used in the formal verification model

Parameter Description
Slotst Time to start the node slot
Slotlen Length of the node slot
FtS Maximum time to start frame transmission
FtE Time to end frame transmission
GS Time to open bus guardian window
GB Time to block the transmission
GE Time to shut bus guardian window
RwS Time when receiver open its window to receive the frame
RwE Time when receiver closes its window

� Agreement: If a frame transmission over a non-faulty communication chan-

nel is received by any non-faulty receiver then all non-faulty receivers must

receive the transmission.

� Validation: If a frame is transmitted by a non-faulty transmitter over a

non-faulty communication channel then all non-faulty receivers must receive

the transmitted frame.

6.3.2 Requirements and assumptions

Before starting the analysis, here is a recap of the requirements and assumptions

of my INCUS+ model which are as follows:



Bus Guardians and Formal Verification 125

1. INCUS+ does not use multiplexed slots, which means one slot per node in

a TDMA round.

2. Slot duration (Slotlen) of a node is configured according to its transmission

payload in each TDMA round.

3. One frame is transmitted per slot.

4. Each operational mode may have a different communication schedule, i.e. du-

ration of TDMA rounds and Cluster Cycles can vary in different operational

modes.

6.3.3 Hierarchy of communication

The hierarchy of communication is as follows:

Transmitter →Bus Guardian→Receivers

Thus the validity requirement is decomposed into two sub-requirements which are:

1. Frame transmission timing from the transmitter to its bus guardian.

2. Timing from the bus guardian to the receivers.

Here, we build on and extend Rushby’s [10] model as follows:

The notion C is used for local clock time of each node. Uppercase letters are used

for clock time quantities while lowercase letters are used to represent real-time

quantities. Therefore we can say that Ci,j
s (t) is the value of s ’s clock at real-time

t in slot i of round j. For any participating node in a cluster, whether it is acting

as a sender node s or as a receiver node r in any slot i of TDMA round j, their

clocks are synchronised if the reading of the clocks of both nodes are within a

precision Π. Therefore, according to clock synchronisation, we get:



Bus Guardians and Formal Verification 126

Clock Sysnchronisation:

∣∣Ci,j
s (t)− Ci,j

r (t)
∣∣ ≤ Π (6.1)

The same needs to be true for any mode σi and therefore, we can say that for any

participating node in a cluster, acting as a sender node s or as a receiver node

r in any slot i of TDMA round j, their clocks are synchronised if the reading of

the clocks of both nodes are within precision Π. Therefore, according to clock

synchronisation, we get:

∣∣Ci,j
s (t)− Ci,j

r (t)
∣∣
σi
≤ Π (6.2)

6.3.4 Requirement R1

If a frame is transmitted by a communication controller of a non-faulty transmitter

then its non-faulty bus guardian must also allow the transmission.

6.3.4.1 Proof

Let us assume a node slot i start at Slotist where the length of the slot is exactly

configured according to the transmission payload or frame size in that slot of a

TDMA round. Therefore, we can say that the slot length for frame f in slot i of a

TDMA round j should be (Sloti,jlen(f)). The same will be the case for every mode

σi. It is assumed that a transmitter starts its transmission at some offset FtS after

the start of the slot and ends the frame transmission at some offset FtE after the

time needed to transmit the frame. The associated BG also opens its window at

some offset GS after the start of the slot and closes its window at some offset GE

after the time needed to transmit the frame.

If s is a transmitter node at a point t1 in real-time then the transmission start

time for its frame f in its allocated slot i of TDMA round j will be:



Bus Guardians and Formal Verification 127

Ci,j
s (t1) = Sloti,jst (f) + FtS (6.3)

For a mode σi the corresponding start time will be:

∣∣Ci,j
s (t1)

∣∣
σi

=
∣∣Sloti,jst (f) + FtS

∣∣
σi

(6.4)

At this point, the BG for node s must already have opened its window in trans-

mission slot i of round j to allow the transmitter to transmit its frame f, therefore,

we need:

Ci,j
bg (t1) ≥ Sloti,jst (f) +GS (6.5)

Similarly, the BG for node s must already have opened its window in transmission

slot i of round j in mode σi to allow the transmitter to transmit its frame f,

therefore;

∣∣Ci,j
bg (t1)

∣∣
σi
≥
∣∣Sloti,jst (f) +GS

∣∣
σi

(6.6)

Clocks of s and its BG must obey

− Π ≤ Ci,j
bg (t1)− Ci,j

s (t1) ≤ Π (6.7)

By using Equation (6.3) we get

Ci,j
bg (t1) ≥ Sloti,jst (f) + FtS − Π (6.8)

To satisfy Equation (6.5) we must have

FtS ≥ GS + Π (6.9)



Bus Guardians and Formal Verification 128

For mode σi, Clocks of s and its BG must obey

− Π ≤
∣∣Ci,j

bg (t1)− Ci,j
s (t1)

∣∣
σi
≤ Π (6.10)

By using Equation (6.4) we get

∣∣Ci,j
bg (t1)

∣∣
σi
≥
∣∣Sloti,jst (f) + FtS − Π

∣∣
σi

(6.11)

To satisfy Equation (6.6) we must have

|FtS|σi ≥ |GS + Π|σi (6.12)

and this is clearly prove by the fact that parameters selected for window timing

are FtS = 2Π and GS = Π.

Let us assume t2 is the physical point in time where s starts transmitting its frame

(FtE ≥ FtS); hence we can say that

Ci,j
bg (t2) = Sloti,jst (f) + Sloti,jlen(f) + FtE (6.13)

At this point in time the transmitter BG window Ci,j
bg (t2) must open, therefore

Ci,j
bg (t2) ≤ Sloti,jst (f) + Sloti,jlen(f) +GE (6.14)

According to clock synchronisation this is within

− Π ≤ Ci,j
bg (t2)− Ci,j

s (t2) ≤ Π (6.15)

Therefore, we can say that



Bus Guardians and Formal Verification 129

Ci,j
bg (t2) ≤ Sloti,jst (f) + Sloti,jlen(f) + FtE + Π (6.16)

To satisfy Equation (6.16), GE ≥ FtE + Π has to be satisfied. As parameters

selected for window timings (see Figure 6.7) can illustrate that (FtE = FtS)

therefore we can say that

GE ≥ GS + 2Π (6.17)

Equation (6.17) can clearly be proven by the fact that (GS = Π) and (GE = 3Π).

Now for a mode σi, let us assume t2 is the physical time where s is transmitting

its frame (FtE ≥ FtS); hence we can say that

∣∣Ci,j
bg (t2)

∣∣
σi

=
∣∣Sloti,jst (f) + Sloti,jlen(f) + FtE

∣∣
σi

(6.18)

At this point in time the corresponding BG window
∣∣Ci,j

bg (t2)
∣∣
σi

must be open,

therefore it should be

∣∣Ci,j
bg (t2)

∣∣
σi
≤
∣∣Sloti,jst (f) + Sloti,jlen(f) +GE

∣∣
σi

(6.19)

According to clock synchronisation this is within

− Π ≤
∣∣Ci,j

bg (t2)− Ci,j
s (t2)

∣∣
σi
≤ Π (6.20)

Therefore, we can say that

∣∣Ci,j
bg (t2)

∣∣
σi
≤
∣∣Sloti,jst (f) + Sloti,jlen(f) + FtE

∣∣
σi

+ Π (6.21)



Bus Guardians and Formal Verification 130

To satisfy Equation (6.21), |GE|σi ≥ |FtE|σi +Π has to be satisfied. As parameters

selected for window timings (see Figure 6.7) can satisfy that (|FtE|σi = |FtS|σi)

therefore we can say that

|GE|σi ≥ |GS|σi + 2Π (6.22)

Equation (6.22) can clearly be proven by the fact that (|GS|σi = Π) and (|GE|σi =

3Π).

6.3.5 Requirement R2

If a non-faulty BG passes a frame then the frame will be received by all non-faulty

receivers.

6.3.5.1 Proof

For a frame f of a transmitter in its node slot i of TDMA round j, let us assume the

BG opens its window GS clock units after the slot start time for its receptive node

and closes the window at (Sloti,jst (f) + Sloti,jlen(f) + GE). Let us assume receiver

nodes are ready to listen for a frame at RwS units after the slot start time of the

transmitter node and stop receiving the frame at (Sloti,jst (f) + Sloti,jlen(f) +RwE).

Let us assume at physical time t1:

Ci,j
bg (t1) = Sloti,jst (f) +GS (6.23)

At time t1 when BG opens its window, the receiver r must already open its window

to listen for a frame f, therefore, we can say that

Ci,j
r (t1) ≥ Sloti,jst (f) +RwS (6.24)



Bus Guardians and Formal Verification 131

For the receiver at instant t1 and by using the clock synchronisation rule, we

satisfy

− Π ≤ Ci,j
r (t1)− Ci,j

bg (t1) ≤ Π (6.25)

By using Equation (6.23), this transforms to

Ci,j
r (t1) ≥ Sloti,jst (f) +GS − Π (6.26)

and to prove Equation (6.24) we need GS ≥ RwS + Π and this can be proved by

substituting the values of parameters shown in Figure 6.7.

At any physical time t2 when the BG window is still open to allow the transmission

such that

Ci,j
bg (t2) = Sloti,jst (f) + Sloti,jlen(f) +GE (6.27)

Therefore, the receiver window must be open at t2.

Ci,j
r (t2) ≤ Sloti,jst (f) + Sloti,jlen(f) +RwE (6.28)

According to clock synchronisation, it has

Ci,j
r (t2) ≤ Sloti,jst (f) + Sloti,jlen(f) +GE + Π (6.29)

To validate Equation (6.28), we need RwE ≥ GE + Π and this can be proven by

substituting the values of parameters GE and RwE.

Let us assume the current operational mode is σi. For a frame f of a trans-

mitter in its node slot i of TDMA round j, the BG opens its window GS clock

units after the slot start time for its respective node and closes the window at



Bus Guardians and Formal Verification 132

(
∣∣Sloti,jst (f) + Sloti,jlen(f) +GE

∣∣
σi

). Receiver nodes are ready to listen for a frame

at RwS units after the slot start time of the transmitter node and stop receiving

the frame at (
∣∣Sloti,jst (f) + Sloti,jlen(f) +RwE

∣∣
σi

).

Let us assume at physical time t1:

∣∣Ci,j
bg (t1)

∣∣
σi

=
∣∣Sloti,jst (f) +GS

∣∣
σi

(6.30)

At time t1 when the BG opens its window, the receiver r must already open its

window to listen for a frame f, therefore, we can say that

∣∣Ci,j
r (t1)

∣∣
σi
≥
∣∣Sloti,jst (f) +RwS

∣∣
σi

(6.31)

For the receiver at instant t1 and by using the clock synchronisation rule we satisfy

− Π ≤
∣∣Ci,j

r (t1)− Ci,j
bg (t1)

∣∣
σi
≤ Π (6.32)

By using Equation (6.30), we get

∣∣Ci,j
r (t1)

∣∣
σi
≥
∣∣Sloti,jst (f) +GS

∣∣
σi
− Π (6.33)

and to prove Equation (6.31) we need GS ≥ RwS + Π and this can be proved by

substituting the values of parameters shown in Figure 6.7.

At any physical time t2 when the BG window is still open to allow the transmission

such that

∣∣Ci,j
bg (t2)

∣∣
σi

=
∣∣Sloti,jst (f) + Sloti,jlen(f) +GE

∣∣
σi

(6.34)

Therefore, the receiver window must be open at t2.



Bus Guardians and Formal Verification 133

∣∣Ci,j
r (t2)

∣∣
σi
≤
∣∣Sloti,jst (f) + Sloti,jlen(f) +RwE

∣∣
σi

(6.35)

According to clock synchronisation, we get

∣∣Ci,j
r (t2)

∣∣
σi
≤
∣∣Sloti,jst (f) + Sloti,jlen(f) +GE

∣∣
σi

+ Π (6.36)

To validate Equation (6.35), we need RwE ≥ GE + Π and this can be proven by

substituting the values of parameters GE and RwE.

The validation property is clearly proven by the requirements R1 and R2. The

first requirement (R1) ensures that a frame transmitted by a non-faulty transmitter

will be passed by its non-faulty BG whereas the second requirement (R2) makes

sure that a frame passed by a non-faulty BG should be received by all non-faulty

receivers.

For the agreement property, the R2 proves that a frame transmitted by a non-

faulty transmitter must be passed by its non-faulty BG, which ensures that all

non-faulty receivers will receive the frame. If this is taken in other way round,

where a faulty transmitter is trying to transmit a frame then it may attempt to

transmit the frame at an incorrect time. If so, then its BG will block such a

transmission, if it falls entirely outside the allowed transmission window, or it will

truncate the frame if it falls partially outside the transmission window. Therefore,

if a transmission was blocked by a BG then it will not be observed by any receiver.

Similarly, if a transmission is truncated by a BG, then all the non-faulty receivers

will reject such a transmission.

6.3.6 Prevention of slot overlapping

So far, the model assures that a non-faulty transmitter must transmit its frame

within its slot boundaries and its non-faulty BG must allow that transmission.

Another issue that needs to be tackled is overlapping slots. A frame transmitted



Bus Guardians and Formal Verification 134

by a non-faulty transmitter must not interfere with the next transmitter opening

its transmission window.

The design rule to prevent such erroneous scenarios [10] is:

� The next transmission takes place no earlier than 4Π after the end of the

previous transmission.

Please note that INCUS+ is using a slot length configuration of a node on the

basis of its payload in different TDMA rounds as well as in different operational

modes, but we still only transmit one frame per slot. If a frame f is transmitted

in slot i of round j then the next slot should be (i+1,j ). Therefore, the above

design rule can be formalised in INCUS+ as follows:

Sloti+1,j
st (f) ≥ Sloti,jst (f) + Sloti,jlen(f) + 4Π (6.37)

Similarly for a mode σi, we get:

∣∣Sloti+1,j
st (f)

∣∣
σi
≥
∣∣Sloti,jst (f) + Sloti,jlen(f)

∣∣
σi

+ 4Π (6.38)

6.3.7 Requirement R3

The window of one communication controller must not overlap with the window

of the next communication controller in the subsequent slot. Therefore, we can

say that a non-faulty communication controller of a transmitter node must finish

its transmission before the next node’s non-faulty BG opens its window for the

next slot.



Bus Guardians and Formal Verification 135

6.3.7.1 Proof

Let us assume at real time t, a communication controller of a transmitter node s

ends its transmission for a frame f in its slot i of round j, therefore

Ci,j
s (t) = Sloti,jst (f) + Sloti,jlen(f) + FtE (6.39)

Now, node s ’s bus guardian Cbg window should be open for the next slot (i,j+1 )

no earlier than t with

Ci,j+1
bg (t) ≤ Sloti,j+1

st (f) +GS (6.40)

As clock synchronisation requires

− Π ≤ Ci,j+1
bg (t)− Ci,j

s (t) ≤ Π (6.41)

By using Equation (6.39), we get

Ci,j+1
bg (t) ≤ Sloti,jst (f) + Sloti,jlen(f) + FtE + Π (6.42)

To satisfy Equation (6.40), we need

Sloti,j+1
st (f) ≥ Sloti,jst (f) + Sloti,jlen(f) + FtE + Π−GS (6.43)

This satisfies Equation (6.37) by using the values of FtE = 2Π and GS = Π

Let us assume current operational mode is σi, and at real time t, a transmitter

node s ends its transmission for a frame f in its slot i of round j, therefore

∣∣Ci,j
s (t)

∣∣
σi

=
∣∣Sloti,jst (f) + Sloti,jlen(f) + FtE

∣∣
σi

(6.44)



Bus Guardians and Formal Verification 136

Now, that node’s bus guardian Cbg window should be open for the next slot (i,j+1 )

in the same operational mode no earlier than t

∣∣Ci,j+1
bg (t)

∣∣
σi
≤
∣∣Sloti,j+1

st (f) +GS
∣∣
σi

(6.45)

As clock synchronisation requires

− Π ≤
∣∣Ci,j+1

bg (t)− Ci,j
s (t)

∣∣
σi
≤ Π (6.46)

By using Equation (6.44), we get

∣∣Ci,j+1
bg (t)

∣∣
σi
≤
∣∣Sloti,jst (f) + Sloti,jlen(f) + FtE

∣∣
σi

+ Π (6.47)

To satisfy Equation (6.45), we need

∣∣Sloti,j+1
st (f)

∣∣
σi
≥
∣∣Sloti,jst (f) + Sloti,jlen(f) + FtE

∣∣
σi

+ Π− |GS|σi (6.48)

This satisfies Equation (6.38) by using the values of FtE = 2Π and GS = Π

Slot overlapping may also occur because of a faulty BG, that may result in a

potential transmission collision. The design rule to prevent such issues in INCUS+

is as follows:

� No transmission is allowed if a transmitter does not start its transmission

within the boundary of Sloti,jst (f) + FtS within an operational mode.

As INCUS+ now uses variable slot lengths for each node in each TDMA round of

an operational mode, the above requirement R3 to prevent slot overlapping would

not be sufficient for all scenarios such as a BG and the transmitting node agreeing

on their slot positioning, but assumed to be in different TDMA rounds. The bus



Bus Guardians and Formal Verification 137

guardian parameter GB serves to overcome such an issue. To this end, we have

the following requirement.

6.3.8 Requirement R4

If a transmitter node is trying to transmit its frame in the allocated slot, but after

its FtS has elapsed, then its bus guardian must block such a transmission.

6.3.8.1 Proof

Let us suppose s is a transmitter node in slot i of round j to transmit its frame f

at physical time t where FtS has already elapsed, therefore

Ci,j
s (t) > Sloti,jst (f) + FtS (6.49)

At this point, the bus guardian for s must already block the controller from trans-

mission. Therefore

Ci,j
bg (t) = Sloti,jst (f) +GB (6.50)

Again, clock synchronisation requires

− Π ≤ Ci,j
bg (t)− Ci,j

s (t) ≤ Π (6.51)

Therefore, we can say that

Ci,j
bg (t) < Sloti,jst (f) + FtS + Π (6.52)

To satisfy Equation (6.50), we must have

GB < FtS + Π (6.53)



Bus Guardians and Formal Verification 138

and this is clearly proven by the fact that GB = 2Π and FtS = 2Π.

For an operational mode σi, let us assume s is a transmitter node in slot i of

round j to transmit its frame f at physical time t where FtS has already elapsed,

therefore

∣∣Ci,j
s (t)

∣∣
σi
>
∣∣Sloti,jst (f) + FtS

∣∣
σi

(6.54)

At this point, bus guardian for s must already block the controller from transmis-

sion. Therefore ∣∣Ci,j
bg (t)

∣∣
σi

=
∣∣Sloti,jst (f) +GB

∣∣
σi

(6.55)

Again, clock synchronisation requires

− Π ≤
∣∣Ci,j

bg (t)− Ci,j
s (t)

∣∣
σi
≤ Π (6.56)

Therefore, we can say that

∣∣Ci,j
bg (t)

∣∣
σi
<
∣∣Sloti,jst (f) + FtS

∣∣
σi

+ Π (6.57)

To satisfy Equation (6.55), we must have

|GB|σi < |FtS|σi + Π (6.58)

and this is clearly proven by the fact that |GB|σi = 2Π and |FtS|σi = 2Π.

6.4 Protocol Behaviour under Faults

In the formal verification model, the timing constraints are proven by assuming

that all the participating nodes (transmitters, receivers, and bus guardians) are



Bus Guardians and Formal Verification 139

non-faulty. For example, a frame transmitted by a non-faulty node should be

passed through its non-faulty bus guardian. Now, let us analyse different fault

scenarios and examine the behaviour of INCUS+ to detect such errors in both the

time and value domains. Please note that as with all TTA-based Safety-Critical

Real-Time (SCRT) protocols, the fault hypothesis is to handle a single fault at a

time.

6.4.1 What if the transmitter fails?

There are multiple reasons for a transmitter to fail and this section will discuss

multiple failure scenarios and protocol behaviour against these scenarios. As we

have to guarantee fail-silence, we will focus on fail-silence violations.

6.4.1.1 Completely off the scheduled frame transmission

It is quite possible for a faulty node to transmit in an interval that is not scheduled

for its frame transmission. In this case it will violate Equation (6.3) of R1 which

requires:

Ci,j
s (t1) = Sloti,jst (f) + FtS (6.59)

This will be handled by Equation (6.5), that is:

Ci,j
bg (t1) ≥ Sloti,jst (f) +GS (6.60)

As the bus guardian has a copy of the MEDL, it exactly knows the transmission

scheduled for its node. The bus guardian window will remain closed outside these

intervals therefore any such transmission attempt by the associated node will fail

and no other node will be able to receive such a transmission, or have their own

transmission interfered with.



Bus Guardians and Formal Verification 140

6.4.1.2 Transmitter transmitting longer than expected

A faulty node may try to occupy the communication channel longer than its allo-

cated slot length. By the end of the allocated slot, the bus guardian will already

shut it window such that:

Ci,j
bg (t) ≥ Sloti,jst (f) + Sloti,jlen(f) +GE (6.61)

Therefore, such a transmission will be truncated by the bus guardian (as the bus

guardian window will be closed after the allowed transmission time (defined in

MEDL) has been elapsed). The resulting, truncated frame still be received by the

receivers, however, this incorrect frame will be detected by other protocol services

in the value domain. In particular, the CRC check on the received frame will fail

at non-faulty receivers. As a consequence, all the non-faulty receivers will discard

such a frame and they will remove the transmitter from their membership list.

6.4.1.3 Transmission slot position is incorrect

Another fault scenario may arise where the transmitter node assumes itself in a

different slot than the actual slot. For example, the actual slot position of a node is

slot i of round j, but the node is considering itself in a slot i of round j+1. Unlike

the existing TTA-based approaches, the slot length of the node in INCUS+ may

vary in different TDMA rounds, therefore, further failure scenarios may arise out

of this.

1. The slot length of a node in round j+1 is less than the slot length in round

j i.e. (Sloti,jlen(f) > Sloti,j+1
len (f)). In this case, the bus guardian window,

which is greater than its window in round j+1 will allow the transmitter to

to transmit its frame. While that means, in the time domain, this error will

not be detected, at receivers, this error will be detected in the value domain

due to the Cyclic Redundancy Check (CRC) checksum of the Controller

State (CState) for the transmitter being different from the rest of the nodes.



Bus Guardians and Formal Verification 141

Therefore, such frames will be rejected by the receivers and the transmitter

node will not be acknowledged in subsequent slots. This will cause trans-

mitter to lose its membership, restart after one round, and reintegrate with

the cluster.

2. The slot length of a node in round j+1 is greater than the slot length in round

j (i.e. Sloti,jlen(f) < Sloti,j+1
len (f)). In this case, the bus guardian window,

which is less than its window in round j+1 will truncate the frame as the

transmitter will try to transmit outside the allowed duration. At this instant,

bus guardian will shut its window

Ci,j
bg (t) ≥ Sloti,jst (f) + Sloti,jlen(f) +GE (6.62)

Therefore, such transmissions will be truncated by the bus guardian (as the

bus guardian window will be shut after the actual transmission time defined

in the MEDL for slot i of round j has elapsed). This truncated frame will still

be received by the receivers, however, truncated frames are already rejected

by other protocol services in the value domain, such as the CRC check. The

CRC check on the received frame will fail, and as a consequence, all non-

faulty receivers will discard such a frame and will remove the transmitter

from their membership list.

6.4.1.4 Transmitter assumes itself in a completely different operational

mode

Another fault scenario may arise where the transmitter node assumes itself in a

different operational mode than the actual mode. For example, the actual slot

position of a node is slot i of round j in an operational mode σi while the node

considers itself in slot i of round j of operational mode σi+1. Unlike the existing

TTA-based approaches, the slot length of the node in INCUS+ may vary in dif-

ferent TDMA rounds as well as in different operational modes, therefore, further

failure scenarios may arise out of this.



Bus Guardians and Formal Verification 142

1. The length of a slot i of a node in round j of an operational mode σi+1

is less than the slot length i in round j of an operational mode σi i.e.

(
∣∣Sloti,jlen(f)

∣∣
σi
>
∣∣Sloti,jlen(f)

∣∣
σi+1

). In this case, the bus guardian window,

which is greater than its window in slot i of round j in mode σi+1 will allow

the transmitter to to transmit its frame. While that means, in the time do-

main, this error will not be detected, at receivers, this error will be detected

in the value domain due to the Cyclic Redundancy Check (CRC) checksum

of the Controller State (CState) for the transmitter being different from the

rest of the nodes. Therefore, such frames will be rejected by the receivers

and the transmitter node will not be acknowledged in subsequent slots of

mode σi. This will cause the transmitter to lose its membership, restart

after one round, and reintegrate with the cluster.

2. The length of a slot i of a node in round j of an operational mode σi+1

is greater than the slot length i in round j of an operational mode σi, i.e.

(
∣∣Sloti,jlen(f)

∣∣
σi
<
∣∣Sloti,jlen(f)

∣∣
σi+1

). In this case, the bus guardian window,

which is less than its window in slot i of round j in operational mode σi+1

will truncate the frame as the transmitter will try to transmit outside the

allowed duration. At this instant, the bus guardian will shut its window

∣∣Ci,j
bg (t)

∣∣
σi
≥
∣∣Sloti,jst (f) + Sloti,jlen(f) +GE

∣∣
σi

(6.63)

Therefore, such transmissions will be truncated by the bus guardian (as the

bus guardian window will be shut after the actual transmission time defined

in the MEDL for slot i of round j in operational mode σi has elapsed). This

truncated frame will still be received by the receivers, however, truncated

frames are already rejected by other protocol services in the value domain,

such as the CRC check. The CRC check on the received frame will fail, and

as a consequence, all non-faulty receivers will discard such a frame and will

remove the transmitter from their membership list.



Bus Guardians and Formal Verification 143

6.4.2 What if the Bus Guardian fails?

In the previous scenario, a faulty transmitter is discussed and now, we will discuss

what happens if a bus guardian fails. There are multiple failure scenarios for a bus

guardian and each will be discussed one by one in the remainder of this section.

6.4.2.1 Bus guardian blocks correct transmission

If a bus guardian gets faulty and blocks the correct transmission from its respective

transmitter node. This will violate Equation (6.23) of R2 which is:

Ci,j
bg (t1) = Sloti,jst (f) +GS (6.64)

In this case none of the receivers will receive the expected frame. Therefore, in

the value domain this will be detected by the membership service and all the non-

faulty receivers will remove the transmitter from their membership vector, which

will force the node to restart and attempt to reintegrate.

6.4.2.2 The Bus guardian truncates a correct transmission

If the bus guardian gets faulty in such a way that it truncates a correct frame,

then in the value domain, again the CRC checksum at receivers will be detected as

incorrect and all the receivers will discard such a frame and remove the transmitter

from their membership list. The transmitter will detect such an error when it finds

its CState not being consistent with the majority of the nodes in the cluster.

6.4.2.3 The slot positioning for a Bus guardian is incorrect

A fault scenario may arise when a bus guardian assume itself in a different slot

than the actual slot. For example, the actual slot position of a guardian is slot i of

round j while the bus guardian is considering itself in a slot i of round j+1. Unlike



Bus Guardians and Formal Verification 144

the existing TTA based approaches, the slot length of the node in INCUS+ may

vary in different TDMA rounds and so would the bus guardian window. Therefore,

further failure scenarios may arise out of this.

1. The slot length of a node in round j+1 is less than the slot length in round

j. In this case, the bus guardian window which should be less than its

window in round j will be truncating the correct frame, which again violates

R2. Therefore, the CRC check on the receiving frame will fail at non-faulty

receivers. As a consequence, all the non-faulty receivers will discard such

a frame and will remove the transmitter from their membership list. This

then will force the transmitter to restart and attempt to reintegrate into the

cluster.

2. The slot length of a node in round j is less than the slot length in round

j+1, the bus guardian window, which should be greater than its window in

round j will allow the transmitter to transmit its frame (if the transmitter

starts transmission within the boundary of Sloti,jst (f) +FtS). This error will

be detected in subsequent rounds where the bus guardian window starts

truncating the correct frame when its window opens for less time than the

required time to transmit a frame, as per the previous scenario. In the worst

case scenario, it may take up to a full cluster cycle time to detect such an

error.

3. The slot length of a node in round j is less than the slot length in round

j+1, the bus guardian window would be greater than its window in

round j, which will again allow the transmitter to to transmit its frame.

As the bus guardian window would be open longer than it should be,

frame transmission could be thought to overlap with the next slot (if trans-

mission starts after Sloti,jst (f)+FtS). But this would violate the R4, which is:

Ci,j
s (t) ≤ Sloti,jst (f) + FtS (6.65)



Bus Guardians and Formal Verification 145

Therefore, the bus guardian will shut its window at this instant such that:

Ci,j
bg (t) = Sloti,jst (f) +GB (6.66)

This means the bus guardian will block any transmission that starts after

Sloti,jst (f) + FtS.

6.4.2.4 The Bus guardian assumes itself in a completely different op-

erational mode

A fault scenario may arise when a bus guardian assume itself in a different op-

erational mode than the actual mode. For example, the actual slot position of a

guardian is slot i of round j in mode σi while the bus guardian is considering itself

in a slot i of round j in mode σi+1. Unlike the existing TTA-based approaches,

the slot length of the node in INCUS+ may vary in different operational modes

and so does the bus guardian window. Therefore, further failure scenarios may

arise out of this.

1. Lets say the slot length i of a node in round j during an operational mode

σi+1 is less than the slot length i in round j during the operational mode

σi . In this case, the bus guardian window, which should be less than its

window in mode σi will be truncating the correct frame, which again violates

R2. Therefore, the CRC check on the receiving frame will fail at non-faulty

receivers. As a consequence, all the non-faulty receivers will discard such

a frame and will remove the transmitter from their membership list. This

then will force the transmitter to restart and attempt to reintegrate into the

cluster.

2. If the slot length i of a node in round j during the operational mode σi

is less than the slot length i in round j during the operational mode σi+1,

the bus guardian window which should be greater than its window in mode

σi will allow the transmitter to transmit its frame (if the transmitter starts



Bus Guardians and Formal Verification 146

transmission within the boundary of
∣∣Sloti,jst (f) + FtS

∣∣
σi

). This error will be

detected in subsequent rounds where bus guardian window starts truncating

the correct frame when its window opens for less time than the required time

to transmit a frame, as per the previous scenario. In the worst case scenario,

it may take up to a full cluster cycle time to detect such an error.

3. If the slot length i of a node in round j during the operational mode σi is

less than the slot length i in round j during the operational mode σi+1, the

bus guardian window would be greater than its window in mode σi, which

will again allow the transmitter to transmit its frame. As the bus guardian

window would be open longer than it should be, the frame transmission

can be considered to overlap with the next slot (if transmission starts after∣∣Sloti,jst (f) + FtS
∣∣
σi

). But this will violate R4, which is:

∣∣Ci,j
s (t)

∣∣
σi
≤
∣∣Sloti,jst (f) + FtS

∣∣
σi

(6.67)

Therefore, the bus guardian will shut its window at this instant such that:

∣∣Ci,j
bg (t)

∣∣
σi

=
∣∣Sloti,jst (f) +GB

∣∣
σi

(6.68)

This means the bus guardian will block any transmission that starts after∣∣Sloti,jst (f) + FtS
∣∣
σi

.

6.5 Summary

This chapter presented the enforcement of fail-silent behaviour of INCUS+ using

a special independent device known as a bus guardian. A bus guardian is added to

each node to protect the communication channel from a node’s transmission at ar-

bitrary points in time. According to my proposed protocol, each node is allowed to

access the communication channel at pre-defined points in time which are held by

a data structure called the MEDL. Different types of bus guardians were presented



Bus Guardians and Formal Verification 147

in this chapter, but in order to support the flexibility of INCUS+ which allows

dynamic communication schedules with variable slot lengths in different TDMA

rounds as well as in different operational modes, only independent bus guardians

with the capability of listening to full incoming traffic will offer a solution. This

may be a more expensive approach in a bus topology with full redundancy, but

should be a feasible approach if guardians are used as star couplers. In a practical

application, I would expect the additional costs to be more than offset by the addi-

tional efficacy of bus utilisation. A formal verification model was also used in this

chapter to verify the adherence to fail-silent behaviour of the INCUS+ in the time

domain. The timing parameters for a transmitter, receiver, and bus guardian were

formally verified in the time domain. The bahaviour of the protocol was analysed

under different faults. We saw that the proposed approach can handle most faults

in the time domain, and that those faults that cannot be detected in the time

domain are tackled in the value domain by using protocol services such as the

CRC check and the membership service.



Chapter 7

Conclusion and Future Work

This thesis explored how flexibility needed for today’s application can be achieved

for safety-critical real-time systems. Two major existing TTA-based communi-

cation protocols were TTP/C and FlexRay. These protocols are widely used in

safety-critical real-time systems as they are tilted heavily towards the reliability re-

quired for such dependable systems. The big disadvantage of TTA-based protocols

is the lack of flexibility. They do not support dynamic communication schedules

for safety-critical information. In this thesis, I have presented the need of flexible

communication schedules for safety-critical real-time systems through representa-

tive case studies such as brake-by-wire systems and autonomous vehicles. It was

argued that the functionality of each node connected in such systems is different

and so are their payload requirements. Therefore, the existing systems that as-

sign equal-length time slots to all nodes result in poor channel utilisation. This

severely impacts achievable channel utilisation for safety-critical real-time systems.

Here, I have presented an iterative approach to overcome these deficiencies in a

systematic way. As a first iteration in my approach, INCUS was designed as a

communication protocol that uses a flexible communication schedule (time slots)

for each node based on the node’s transmission requirements. Thus, I was able to

achieve a length of a time slot for each node that was different from that of the

other nodes inside a TDMA round. My protocol, INCUS, achieves almost twofold

the transmission efficiency in a typical automotive brake-by-wire system scenario.

148



Summary of the thesis 149

In subsequent design iterations, I was able to expand the span of communication

schedules over a number of TDMA rounds, leading towards an even more flexible

approach called INCUS+. For validation, a number of use-cases such as Advanced

Driver Assistance Systems (ADAS) in an autonomous vehicle, Unmanned Aerial

Vehicles (UAVs), and healthcare systems based on Internet-of-Things (IoT) were

investigated and shown to exhibit the need for different transmission slot lengths

of a node during different TDMA rounds of a cluster cycle. This demonstrated

that the length of TDMA rounds can also vary during an entire cluster cycle (over

multiple TDMA rounds). INCUS+ significantly improved channel utilisation over

TTA-based protocols, while guaranteeing atomicity and all required safety features

at the protocol level. Slot length configurations of each node in accordance with

its actual transmission payload requirements in each TDMA round of a cluster

cycle eliminated node slot idle times for all nodes and hence, significantly reduced

transmission overhead time. Compared to FlexRay, this significantly improved

bandwidth utilisation. In my analysis, I have shown that this kind of flexibility

makes it possible to reduce the gross overhead time by almost 99%, improving

overall bandwidth utilisation efficiency almost nine times compared to FlexRay in

an autonomous vehicle system case study. Furthermore, flexibility was enhanced

by allowing different operational modes with different communication schedules.

This additional flexibility was achieved by switching between different operational

modes at run time.

A crucial next step was to ensure the same level of dependability is maintained

with this gained level of flexibility, most notably the prevention of a single point

of failure and to guarantee fail-silence. To this end, the bus guardian mech-

anism [181] had to be extended to prevent the bus from monopolisation of a

sending node that was trying to transmit outside its allocated transmission win-

dows. The bus guardian mechanism of existing TTA-based communication pro-

tocols [7, 33, 80, 81, 92] were not capable of handling the flexible communication

schedules introduced here, as it was designed to work with static and equal-length

time slots for all nodes. I, therefore designed an independent bus guardian ap-

proach that has full knowledge of the transmission schedules and actively listens



Summary of the thesis 150

to the full traffic over the communication channel. This made it possible to handle

babbling idiot-faults with my flexible communication schedules. This thesis also

used formal verification to ensure the correctness of the proposed protocol and its

bus guardians. Protocol behaviour under different faults was analysed and verified

by using a formal verification model. Under the fault hypothesis, the transmitters

and bus guardian nodes were analysed and my formal verification showed that the

proposed protocol along with its bus guardians can successfully handle all of these

faults.

Next, I needed to investigate the emergent complexity when implementing my

flexible protocol for today’s applications. The existing protocols for safety-critical

real-time systems such as TTP/C [33] and FlexRay [7] were designed at a low,

procedural level. A key disadvantage of such an implementation was the design

and development effort, which can take up to several man-years. The rigorous

timing requirements that need to be modelled early on in the design process has

made it difficult to model verifiable executable real-time behaviour at a high level.

When designing my initial version of INCUS+ without using a subsumption archi-

tecture, one pattern that become apparent in this initial design was a replication

of concerns. This lead me to a refined modelling approach that greatly enhances

the modularity of the design. I was able to show that a high-level implementa-

tion of a communication protocol for safety-critical real-time systems based on the

subsumption architecture was not only possible, but facilitates the incremental

development of the system using executable models throughout. The modelling

technique presented in this thesis allows designing flexibility into communication

protocols while retaining the strict predictability and timing required by depend-

able real-time systems. This ensures the development of a communication sub-

system without losing the fundamental properties of predictable real-time perfor-

mance. The subsumption architecture made it possible to incrementally refine the

implementation by adding, modifying, or changing the behaviour of a sub-system

without interfering with unaffected components of the system.



Summary of the thesis 151

7.1 Future Work

This thesis has provided flexible communication mechanisms for safety-critical

real-time systems. A useful addition in the proposed research work would be

to use the same communication medium such as bus to transmit both safety-

critical and non safety-critical information. FlexRay used the same channel for

safety-critical and non safety-critical information however, they implemented fixed

length communication schedules for safety-critical part of information. The key

challenge to design and implement such an approach with flexible communica-

tion schedules will be to guarantee the timeliness for safety-critical information

while maintaining the same level of fault-tolerance (used in proposed approach)

at protocol level. Another interesting idea will be the design and implementation

of a gateway node that can be used as an interface between safety-critical and

non-safety-critical real-time communication. Designing a system completely as a

safety-critical system without the requirement of safety-critical services in every

step may lead to an inflexible system and an expensive one too. A consequence

of this part of research will be to provide a gateway node between safety-critical

and non-safety-critical real-time systems. Communication protocols from both do-

mains exist but they are not capable of operating in a hybrid environment because

they are designed to operate in a homogenous environment only. Functionality of

communication protocols, such as Transmission Control Protocol (TCP) or User

Datagram Protocol (UDP) that can be used for non-safety-critical systems is not

providing any support for safety-critical real-time systems. But combining both

kind of systems through an gateway node can have the advantage of resolving

real world problems. The role of a gateway node will be to firewall the safety-

critical information from non safety-critical information. The key challenges for

a gateway node is to ensure the timeliness for safety-critical part of the commu-

nication. For this, the gateway node must be aware of the complete transmission

schedule of safety-critical information so that it can block any transmission from

non safety-critical real-time systems that can interrupt the communication from

safety-critical real-time systems. Other challenges may include reliable delivery



Summary of the thesis 152

of safety-critical information in-case of failure of the gateway node. The gateway

idea can further be extended to develop Intelligent Transportation Systems. It can

be used to link safety-critical clusters of a wired network with a wireless network

such as V2X (Vehicle to everything) architecture to exchange the information on

road infrastructure, congestion, and the like.



Appendix A

List of Publications

Parts of this thesis have been accepted and published in the following International

Conferences and Journals.

1. F. R. Raja, D. Chen, R. Hexel, “A Flexible Communication Protocol with

Guaranteed Determinism for Distributed, Safety-Critical Real-Time Sys-

tems,” IEEE Access (10) 2022, pp. 48049-48070.

My Contribution: Design and Implementation of INCUS+ and literature

review. The part of this work is presented in Chapter 4 and Chapter 6.

2. D. Chen, R. Hexel, and F. R. Raja, “Engineering real-time communication

through time-triggered subsumption,” in Proceedings of the 11th Interna-

tional Conference on Evaluation of Novel Software Approaches to Software

Engineering. ENASE, 2016, pp. 272–281.

My Contribution: Design and Implementation of the protocol using LLFSMs

and literature review. The part of this work is presented in Chapter 5.

3. D. Chen, R. Hexel, and F. R. Raja, “INCUS: A communication protocol

for safety critical distributed real time systems,” in The 20th Asia-Pacific

Conference on Communication (APCC2014). IEEE, 2014, pp. 309–314.

My Contribution: Design and Implementation of INCUS and literature re-

view. The part of this work is prsented in Chapter 4.

153



References

[1] “Real time systems.” http://retis.sssup.it/~giorgio/rts-MECS.html.

Accessed: 2021-09-09.

[2] H. Kopetz, Real-time systems: design principles for distributed embedded

applications. Springer, 2011.

[3] R. Obermaisser, Time-Triggered Communication. CRC Press, 2011.

[4] H. Kopetz, “A communication infrastructure for a fault-tolerant distributed

real-time system,” Control Engineering Practice, vol. 3, no. 8, pp. 1139–1146,

1995.

[5] H. Kopetz, “The time-triggered model of computation,” in Proceedings 19th

IEEE Real-Time Systems Symposium (Cat. No. 98CB36279), pp. 168–177,

IEEE, 1998.

[6] C. Scheidler, G. Heiner, R. Sasse, E. Fuchs, H. Kopetz, and C. Temple,

“Time-triggered architecture (TTA),” Advances in Information Technolo-

gies: The Business Challenge, pp. 758–765, 1997.

[7] F. Consortium et al., “FlexRay communications system-protocol specifica-

tion,” Version, vol. 2, no. 1, pp. 198–207, 2005.

[8] “Time-triggered protocol TTP/C high-level specification, document protocol

version 1.1, TTTech document number d-032-s-10-028,” 2004.

[9] S. Ramberger, W. Herzner, E. Schoitsch, and W. Kubinger, “Ttipp3-a fault-

tolerant time-triggered platooning demonstrator,” in Intelligent Solutions in

Embedded Systems, 2008 International Workshop on, pp. 1–11, IEEE, 2008.

154

http://retis.sssup.it/~giorgio/rts-MECS.html


[10] J. Rushby, “Formal verification of transmission window timing for the time-

triggered architecture,” Technical Report Deliverable 24b, SRI Pro. . . ject

11003, 2001.

[11] K. Juvva, “Real-time systems,” Topics in Dependable Embedded Systems,

no. 28, 1998.

[12] H. Kopetz, “Event-triggered versus time-triggered real-time systems,” in

Operating Systems of the 90s and Beyond, pp. 86–101, Springer, 1991.

[13] ANSI / IEEE Carrier Sense Multiple Access with Collision Detection (CS-

MA/CD) Access Method and Physical Layer Specification. 345 East 47th

Street, New York NY 10017: The Institute of Electrical and Electronic En-

gineering, Inc., 1985.

[14] I. . W. Group et al., “Ieee standard for information technology–

telecommunications and information exchange between systems local and

metropolitan area networks–specific requirements part 11: Wireless lan

medium access control (mac) and physical layer (phy) specifications,” IEEE

Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793, 2012.

[15] H. Kopetz, R. Hexel, A. Krüger, D. Millinger, R. Nossal, A. Steininger,

C. Temple, T. Führer, R. Pallierer, and M. Krug, “A prototype implemen-

tation of a TTP/C controller,” in Proc. of the SAE Congress 1997, (Detroit,

MI, USA), Society of Automotive Engineers, SAE Press, Feb. 1997. SAE

Paper No. 970296.

[16] V. Estivill-Castro and R. Hexel, “Simple, not simplistic — the middleware

of behaviour models,” in ENASE 10 International Conference on Evaluation

of Novel Approaches to Software Engineering, (Barcelona, Spain), INSTCC,

April 2015.

[17] N. Navet, Y.-Q. Song, and F. Simonot, “Worst-case deadline failure prob-

ability in real-time applications distributed over controller area network,”

Journal of systems Architecture, vol. 46, no. 7, pp. 607–617, 2000.



[18] SAE, “Glossary of vehicle networks for multiplexing and data communica-

tions, SAE recommended practice, J1213/1,” tech. rep., Society of Automo-

tive Engineers, September 1997.

[19] I. Broster, Flexibility in dependable real-time communication. PhD thesis,

University of York, 2003.

[20] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area net-

work (CAN) message response times,” Control Engineering Practice, vol. 3,

no. 8, pp. 1163–1169, 1995.

[21] S. Punnekkat, H. Hansson, and C. Norstrom, “Response time analysis under

errors for CAN,” in Real-Time Technology and Applications Symposium,

2000. RTAS 2000. Proceedings. Sixth IEEE, pp. 258–265, IEEE, 2000.

[22] L. M. P. de Almeida, Flexibility and timeliness in fieldbus-based real-time

systems. 1999.

[23] J. P. Thomesse, “A review of the fieldbuses,” Annual reviews in Control,

vol. 22, pp. 35–45, 1998.

[24] A. Burns and A. J. Wellings, Real-time systems and programming languages.

Addison-Wesley, 1998.

[25] N. A. A. B. M. Richardson and A. Wellings, “Hard real-time scheduling: The

deadline-monotonic approach1,” in Proceedings of the 8th IEEE Workshop

on Real-time Operating Systems and Software, Citeseer, 1991.

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming

in a hard-real-time environment,” Journal of the ACM (JACM), vol. 20,

no. 1, pp. 46–61, 1973.

[27] G. K. Manacher, “Production and stabilization of real-time task schedules,”

Journal of the ACM (JACM), vol. 14, no. 3, pp. 439–465, 1967.

[28] P. Richards, “Timing properties of multiprocessor systems. tech nical paper

rep. no,” tech. rep., TD-B60-27. Tech. Operations, Inc., Burlington, Mas-

sachusetts, 1960.



[29] B. Hedenetz and R. Belschner, “Brake-by-wire without mechanical backup

by using a TTP-communication network,” tech. rep., SAE Technical Paper,

1998.

[30] S. Amberkar, F. Bolourchi, J. Demerly, and S. Millsap, “A control system

methodology for steer by wire systems,” tech. rep., SAE Technical Paper,

2004.

[31] A. Avizienis, J.-C. Laprie, and B. Randell, “Fundamental concepts of de-

pendability,” Department of Computing Science Technical Report Series,

2001.

[32] Wikipedia, “Dependability — Wikipedia, the free encyclopedia,” 2022. [On-

line; accessed 02-January-2022].

[33] H. Kopetz and G. Grunsteidl, “TTP – a protocol for fault-tolerant real-time

systems,” Computer, vol. 27, no. 1, pp. 14–23, 1994.

[34] H. Kopetz, “Should responsive systems be event-triggered or time-

triggered?,” IEICE Transactions on Information and Systems, vol. 76,

pp. 1325–1332, 1993.

[35] R. Obermaisser, Event-triggered and time-triggered control paradigms,

vol. 22. Springer Science & Business Media, 2004.

[36] L. Lamport, “Using time instead of timeout for fault-tolerant distributed

systems.,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 6(2), pp. 254–280, 1984.

[37] P. Bosch, “50, d-700 stuttgart 1,” CAN Specification version 2.0 edition,

1991.

[38] I. Standard, “11898: Road vehicles interchange of digital information con-

troller area network (CAN) for high-speed communication,” International

Standards Organization, Switzerland, 1993.

[39] “Devicenet specifications, 2nd. ed. boca raton, 1997.”



[40] H. Zeltwanger, CANopen. VDE-Verlag, 2001.

[41] I. ISO, “Iec 7498-1 information technology-open systems interconnection-

basic reference model: The basic model,” International, Organization for

Standardization, vol. 2, 1994.

[42] P. Boait, Open Systems Interconnection. Macmillan International Higher

Education, 1988.

[43] C. Specification, “Version 2.0,” Robert Bosch GmbH, vol. 27, 1991.

[44] I. Standard, “11898: Road vehicles— interchange of digital information—

controller area network (can) for high-speed communication,” International

Standards Organization, Switzerland, 1993.

[45] T. Schumann, “Canopen in industrial vehicles,” tech. rep., SAE Technical

Paper, 2002.

[46] L.-B. Fredriksson, “A can kingdom,” Mölndal, Sweden: Kvaser AB, 1995.

[47] N. Navet, “Controller area network [automotive applications],” IEEE Po-

tentials, vol. 17, no. 4, pp. 12–14, 1998.

[48] A. E. E. Committee et al., “ARINC 629: IMA multi-transmitter databus

parts 1-4,” Aeronautical radio, Inc., Annapolis, Maryland.–Octobre, 1990.

[49] A. Specification, “651: Design guidance for integrated modular avionics,

ser,” ARINC report. Airlines Electronic Engineering Committee (AEEC)

and Aeronautical Radio Inc, 1991.

[50] S. Berger, “Arinc 629 digital communication system application on the 777

and beyond,” Microprocessors and Microsystems, vol. 20, no. 8, pp. 463–471,

1997.

[51] J. Azevedo and N. Cravoisy, “The worldfip protocol,” WorldFIP Organisa-

tion, 1996.

[52] P. Nutzerorganisation eV, “Profibus technology and application-system de-

scription,” 2002.



[53] AEEC, “Design guidance for integrated modular avionics,” ARINC 651 Re-

port, 1997.

[54] J. Azevedo and N. Cravoisy, “The worldfip protocol,” J. De Azevedo (Ver-

sion1), N. Cravoisy (Version 2), vol. 2, 1998.

[55] N. C. Audsley and A. Grigg, “Timing analysis of the arinc 629 databus for

real-time applications,” Microprocessors and Microsystems, vol. 21, no. 1,

pp. 55–61, 1997.

[56] H. Koptez, “Real-time systems: design principles for distributed embedded

applications,” 1997.

[57] H. Kopetz and K. Kim, “Temporal uncertainties in interactions among real-

time objects,” in Proceedings Ninth Symposium on Reliable Distributed Sys-

tems, pp. 165–174, IEEE, 1990.

[58] K. Kim and H. Kopetz, “A real-time object model rto. k and an exper-

imental investigation of its potentials,” in Proceedings Eighteenth Annual

International Computer Software and Applications Conference (COMPSAC

94), pp. 392–402, IEEE, 1994.

[59] H. Kopetz and W. Ochsenreiter, “Clock synchronization in distributed real-

time systems,” Computers, IEEE Transactions on, vol. 100, no. 8, pp. 933–

940, 1987.

[60] J. Rushby, “An overview of formal verification for the time-triggered archi-

tecture,” in International Symposium on Formal Techniques in Real-Time

and Fault-Tolerant Systems, pp. 83–105, Springer, 2002.

[61] H. Kopetz and R. Nossal, “The cluster compiler a tool for the design of time-

triggered real-time systems,” in Proceedings of the ACM SIGPLAN 1995

workshop on Languages, compilers, & tools for real-time systems, pp. 108–

116, 1995.

[62] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of

the IEEE, vol. 91, no. 1, pp. 112–126, 2003.



[63] H. Kopetz, F. Lohnert, W. Merker, and G. Pauthner, “An architecture for

a maintainable real time system (MARS),” tech. rep., Technical Report TU

Berlin, 1982.

[64] H. Curtis and R. France, “Time triggered protocol (TTP/C): A safety-

critical system protocol,” EE382C Literature Survey, vol. 24, 1999.

[65] SAE, “Class c application requirement considerations, SAE recommended

practice, J2056/1,” tech. rep., Society of Automotive Engineers, June 1993.

[66] F. Seidel, “X-by-wire,” in Operation Systems, Chemnitz University of Tech-

nology, In seminar Transportation Systems, 2009.

[67] S. Poledna, W. Ettlmayr, and M. Novak, “Communication bus for automo-

tive applications,” in Solid-State Circuits Conference, 2001. ESSCIRC 2001.

Proceedings of the 27th European, pp. 482–485, IEEE, IEEE.

[68] H. Kopetz and G. Grunsteidl, “Ttp-a time-triggered protocol for fault-

tolerant real-time systems,” in FTCS-23 The twenty-third international sym-

posium on fault-tolerant computing, pp. 524–533, IEEE, 1993.

[69] Kopetz, H. and Hexel, R. and Krüger, A. and Millinger, D. and Nossal, R.

and Pallierer, R. and Steininger, A. and Temple, C. and Führer, T. and

Krug, M., “A prototype implementation of a TTP/C controller,” tech. rep.,

SAE Technical Paper, 1997.

[70] B. Andersson, E. Tovar, and N. Pereira, “Analysing tdma with slot skip-

ping,” in Real-Time Systems Symposium, 2005. RTSS 2005. 26th IEEE In-

ternational, 2005.

[71] C. Li, M. Nicholas, and Q. Zhou, “A new real-time network protocol - node

order protocol,” in Proceedings of 11th Real Time Linux Workshop, 2009.

[72] Berwanger, “et al. FlexRay the communication system for advanced auto-

motive control systems,” SAE Transactions, vol. Vol. 110(7), pp. SAE Press,

pp. 303–314, 2001.



[73] J. Berwanger, M. Peller, and R. Grießbach, “Byteflight a new protocol for

safety critical applications,” in Proceedings of the 28th FISITA World Au-

tomotive Congress. Seoul, Korea: FISITA, 2000.

[74] H. Kopetz, “A comparison of TTP/C and FlexRay,” Inst. for Computer

Eng., Vienna, 2001.

[75] T. Pop, P. Pop, P. Eles, Z. Peng, and A. Andrei, “Timing analysis of

the FlexRay communication protocol,” Real-time systems, vol. 39, no. 1-

3, pp. 205–235, 2008.

[76] Y. Wang, Y. Xu, and Y. Xu, “Efficient utilization of flexray network using

parameter optimization method,” International Journal of Engineering and

Technology, vol. 8, no. 6, 2016.

[77] J. Dvořák and Z. Hanzálek, “Using two independent channels with gate-

way for flexray static segment scheduling,” IEEE Transactions on Industrial

Informatics, vol. 12, no. 5, pp. 1887–1895, 2016.

[78] T.-Y. Lee, I.-A. Lin, J.-J. Wang, and J.-T. Tsai, “A reliability scheduling

algorithm for the static segment of flexray on vehicle networks,” Sensors,

vol. 18, no. 11, p. 3783, 2018.

[79] N. Kumar and A. Mondal, “Timing analysis of precedence constraint mes-

sages scheduled with slot multiplexing over dynamic segment of flexray,”

IEEE Transactions on Automation Science and Engineering, vol. 17, no. 1,

pp. 222–236, 2019.

[80] I. ISO, “11898-4-road vehicles-controller area network (can)-part 4: Time-

triggered communication,” International Standard Organization, pp. 11898–

4, 2000.

[81] S. AS6802, “Time-triggered ethernet,” SAE International, 2011.

[82] H. Yin, H. Jia, H. Qi, X. Ji, X. Xie, and W. Gao, “A hardware-efficient

multi-resolution block matching algorithm and its vlsi architecture for high



definition mpeg-like video encoders,” IEEE TRANSACTIONS on circuits

and systems for video technology, vol. 20, no. 9, pp. 1242–1254, 2010.

[83] ”Institute of Electrical and Electronics Engineers, Audio/Video Bridging”,

in The Audio/Video Bridging Task Group, IEEE, 2011. [Online]. Available:

http : //www.ieee802.org/1/pages/tsn.html.

[84] “”audio video bridging (avb)”, arista networks, tech. rep., 2009.,” tech. rep.

[85] I. . W. Group et al., “Ieee standard for local and metropolitan area networks

timing and synchronisation for time sensitive applications in bridged local

area networks,” tech. rep., IEEE Std 802.1AS, 2011.

[86] I. . W. Group et al., “Ieee standard for local and metropolitan area networks

virtual bridged local area networks amendment 14: Stream reservation pro-

tocol (srp),” tech. rep., IEEE Std 802.1Qat Pages (1-119), 2010.

[87] I. . W. Group et al., “Ieee standard for local and metropolitan area networks

virtual bridged local area networks amendment 12: Forwarding and queuing

enhancement for time sensitive streams,” tech. rep., IEEE Std 802.1Qav,

2010.

[88] I. . W. Group et al., “Ieee standard for local and metropolitan area networks

audio video bridging (avb) systems,” tech. rep., IEEE Std 802.1BA Pages

(1-45), 2011.

[89] ”Institute of Electrical and Electronics Engineers, IEEE 1588 Standard for

a Precision Clock Synchronization Protocol for Networked Measurement and

Control Systems”, IEEE, 2008. [Online]. Available: https : / / standards .

ieee.org/findstds/interps/1588-2008.html.

[90] L. Zhao, F. He, and J. Lu, “Comparison of afdx and audio video bridging

forwarding methods using network calculus approach,” in 2017 IEEE/AIAA

36th Digital Avionics Systems Conference (DASC), pp. 1–7, IEEE, 2017.



[91] E. Heidinger, F. Geyer, S. Schneele, and M. Paulitsch, “A performance study

of audio video bridging in aeronautic ethernet networks,” in 7th IEEE Inter-

national Symposium on Industrial Embedded Systems (SIES’12), pp. 67–75,

IEEE, 2012.

[92] ”Institute of Electrical and Electrnoics Engineers, Time Sensitive Network-

ing”, in Time-Sensitive Networking Task Group, IEEE 2017. [Online].

Avaibale: http://www.ieee802.org/1/pages/tsn.html.

[93] P. Meyer, T. Steinbach, F. Korf, and T. C. Schmidt, “Extending ieee 802.1

avb with time-triggered scheduling: A simulation study of the coexistence of

synchronous and asynchronous traffic,” in 2013 IEEE Vehicular Networking

Conference, pp. 47–54, IEEE, 2013.

[94] ”Institute of Electrical and Electrnoics Engineers, Time Sensitive Net-

working, Inc. 802.1Qbv - Enhancement for Scheduled Traffic”, in Time-

Sensitive Networking Task Group., IEEE, 2016. [Online]. Avaibale:

http://www.ieee802.org/1/pages/802.1bv.html.

[95] S. S. Craciunas, R. S. Oliver, M. Chmeĺık, and W. Steiner, “Scheduling

real-time communication in ieee 802.1 qbv time sensitive networks,” in Pro-

ceedings of the 24th International Conference on Real-Time Networks and

Systems, pp. 183–192, 2016.

[96] ”Institute of Electrical and Electrnoics Engineers, Time Sensitive Network-

ing, Inc. 802.1AS-Rev - Timing and Synchronisation for Time-Sensitive Ap-

plications”, in Time-Sensitive Networking Task Group., IEEE, 2017. [On-

line]. Avaibale: http://www.ieee802.org/1/pages/802.1AS-rev.html.

[97] M. Pahlevan, “Time sensitive networking for virtualized integrated real-time

systems,” 2020.

[98] A. Nasrallah, A. S. Thyagaturu, Z. Alharbi, C. Wang, X. Shao, M. Reisslein,

and H. Elbakoury, “Performance comparison of ieee 802.1 tsn time aware

shaper (tas) and asynchronous traffic shaper (ats),” IEEE Access, vol. 7,

pp. 44165–44181, 2019.



[99] L. Zhao, P. Pop, and S. S. Craciunas, “Worst-case latency analysis for ieee

802.1 qbv time sensitive networks using network calculus,” Ieee Access, vol. 6,

pp. 41803–41815, 2018.

[100] ”Institute of Electrical and Electrnoics Engineers, Inc. 802.1Qci - Per stream

Filtering and Policing”, in Time-Sensitive Networking Task Group., IEEE,

2016. [Online]. Avaibale: http://www.ieee802.org/1/pages/802.1ci.html.

[101] ”Institute of Electrical and Electrnoics Engineers, Inc. 802.1CB

- Frame Replication and Elimination for Reliability”, in Time-

Sensitive Networking Task Group., IEEE, 2017. [Online]. Avaibale:

http://www.ieee802.org/1/files/private/cb-drafts/d2/802-1CB-D2-9.pdf.

[102] I. . W. Group et al., “Ieee standard for local and metropolitan area network

bridges and bridged networks,” tech. rep., Technical Report Std 802.1 Q-

2018. IEEE. 1–1993 pages.(Revision of IEEE Std), 2018.

[103] I. . W. Group et al., “Ieee standard for local and metropolitan area networks

frame replication and elimination for reliability,” tech. rep., Technical Report

IEEE Std 802.1CB-2017 pages.(1-102), 2017.

[104] ”Institute of Electrical and Electrnoics Engineers, Inc. 802.1Qca - Path Con-

trol and Reservation”, in Time Sensitive Networking Task Group, IEEE,

2015.

[105] P. Pop, M. L. Raagaard, S. S. Craciunas, and W. Steiner, “Design optimi-

sation of cyber-physical distributed systems using ieee time-sensitive net-

works,” IET Cyber-Physical Systems: Theory & Applications, vol. 1, no. 1,

pp. 86–94, 2016.

[106] L. Bingqian and W. Yong, “Hybrid-ga based static schedule generation for

time-triggered ethernet,” in 2016 8th IEEE International Conference on

Communication Software and Networks (ICCSN), pp. 423–427, IEEE, 2016.

[107] A. M. Kentis, M. S. Berger, and J. Soler, “Effects of port congestion in

the gate control list scheduling of time sensitive networks,” in 2017 8th



International Conference on the Network of the Future (NOF), pp. 138–140,

IEEE, 2017.

[108] V. Gavriluţ, L. Zhao, M. L. Raagaard, and P. Pop, “Avb-aware routing and

scheduling of time-triggered traffic for tsn,” Ieee Access, vol. 6, pp. 75229–

75243, 2018.

[109] F. Smirnov, M. Glaß, F. Reimann, and J. Teich, “Optimizing message rout-

ing and scheduling in automotive mixed-criticality time-triggered networks,”

in 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC),

pp. 1–6, IEEE, 2017.

[110] E. Schweissguth, P. Danielis, D. Timmermann, H. Parzyjegla, and G. Mühl,

“Ilp-based joint routing and scheduling for time-triggered networks,” in Pro-

ceedings of the 25th International Conference on Real-Time Networks and

Systems, pp. 8–17, 2017.

[111] J. Falk, F. Dürr, and K. Rothermel, “Exploring practical limitations of joint

routing and scheduling for tsn with ilp,” in 2018 IEEE 24th International

Conference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA), pp. 136–146, IEEE, 2018.

[112] N. G. Nayak, F. Dürr, and K. Rothermel, “Time-sensitive software-defined

network (tssdn) for real-time applications,” in Proceedings of the 24th In-

ternational Conference on Real-Time Networks and Systems, pp. 193–202,

2016.

[113] E. Kyriakakis, J. Sparsø, and M. Schoeberl, “Implementing time-triggered

communication over a standard ethernet switch,” in Proceedings of the Work-

shop on Fog Computing and the IoT, pp. 21–25, 2019.

[114] R. Ghosh, R. Pragathi, S. Ullas, and S. Borra, “Intelligent transportation

systems: A survey,” in 2017 International Conference on Circuits, Controls,

and Communications (CCUBE), pp. 160–165, IEEE, 2017.



[115] A. Luckow and K. Kennedy, “Data infrastructure for intelligent transporta-

tion systems,” in Data Analytics for Intelligent Transportation Systems,

pp. 113–129, Elsevier, 2017.

[116] M. Alam, J. Ferreira, and J. Fonseca, “Introduction to intelligent trans-

portation systems,” in Intelligent transportation systems, pp. 1–17, Springer,

2016.

[117] F. Arena and G. Pau, “An overview of vehicular communications,” Future

Internet, vol. 11, no. 2, p. 27, 2019.

[118] K. Kiela, V. Barzdenas, M. Jurgo, V. Macaitis, J. Rafanavicius, A. Vas-

janov, L. Kladovscikov, and R. Navickas, “Review of v2x–iot standards and

frameworks for its applications,” Applied Sciences, vol. 10, no. 12, p. 4314,

2020.

[119] Q. Pei, B. Kang, L. Zhang, K.-K. R. Choo, Y. Zhang, and Y. Sun, “Secure

and privacy-preserving 3d vehicle positioning schemes for vehicular ad hoc

network,” EURASIP Journal on Wireless Communications and Networking,

vol. 2018, no. 1, pp. 1–12, 2018.

[120] Z. El-Rewini, K. Sadatsharan, D. F. Selvaraj, S. J. Plathottam, and P. Ran-

ganathan, “Cybersecurity challenges in vehicular communications,” Vehicu-

lar Communications, vol. 23, p. 100214, 2020.

[121] “Standard for information technology - telecommunications and information

exchange between systems - local and metropolitan area networks - specific

requirements - part 11: Wireless lan medium access control (mac) and phys-

ical layer (phy) specifications..”

[122] “802.11p part 11: Wireless lan medium access control (mac) and physical

layer (phy) specifications: Amendment 7: Wireless access in vehicular envi-

ronment..”

[123] K. Bilstrup, E. Uhlemann, E. Ström, and U. Bilstrup, “On the ability of

the 802.11 p mac method and stdma to support real-time vehicle-to-vehicle



communication,” EURASIP Journal on Wireless Communications and Net-

working, vol. 2009, pp. 1–13, 2009.

[124] K. Sjoberg, E. Uhlemann, and E. G. Strom, “How severe is the hidden

terminal problem in vanets when using csma and stdma?,” in 2011 IEEE

vehicular technology conference (VTC Fall), pp. 1–5, IEEE, 2011.

[125] N. Suri, C. J. Walter, and M. M. Hugue, Advances in ultra-dependable dis-

tributed systems. IEEE Computer Society Press, 1994.

[126] J. Lee and H. Shin, “A variable bandwidth allocation scheme for ethernet-

based real-time communication,” in Proc. of the First International Work-

shop on Real-Time Computing Systems and Applications, pp. 28–32, 1994.

[127] F. Heilmann and G. Fohler, “Impact of time-triggered transmission window

placement on rate-constrained traffic in ttethernet networks,” ACM SIGBED

Review, vol. 15, no. 3, pp. 7–12, 2018.

[128] V. Eramo, F. G. Lavacca, F. Valente, A. Pisculli, and S. Caporossi, “Sim-

ulation and experimental evaluation of a flexible time triggered ethernet

architecture applied in satellite nano/micro launchers,” Aerospace, vol. 5,

no. 3, p. 84, 2018.

[129] M. Sugihara, “Dynamic slot multiplexing under operating modes for tdma-

based real-time networking systems,” Electronics, vol. 9, no. 2, p. 224, 2020.

[130] R. M. Vaz, K. N. Hodel, M. M. Santos, B. A. Arruda, M. L. Netto, and J. F.

Justo, “Vehicular communications,” 2020.

[131] P.-S. Murvay and B. Groza, “Efficient physical layer key agreement for

flexray networks,” IEEE Transactions on Vehicular Technology, vol. 69,

no. 9, pp. 9767–9780, 2020.

[132] J. Falk, F. Dürr, and K. Rothermel, “Time-triggered traffic planning for

data networks with conflict graphs.,” in RTAS, pp. 124–136, 2020.



[133] K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Volp, and G. Fohler, “Ran-

domization as mitigation of directed timing inference based attacks on time-

triggered real-time systems with task replication,” LITES: Leibnitz Trans-

actions on Embedded Systems, 2021.

[134] E. Kyriakakis, J. Sparsø, P. Puschner, and M. Schoeberl, “Synchronizing

real-time tasks in time-triggered networks,” in 2021 IEEE 24th Interna-

tional Symposium on Real-Time Distributed Computing (ISORC), pp. 11–19,

IEEE, 2021.

[135] N. Ragesh, “Data traffic in new generation vehicles,” CSI Communications,

vol. 35, p. 12, 2012.

[136] O. El Marai and T. Taleb, “Smooth and low latency video streaming for

autonomous cars during handover,” IEEE Network, vol. 34, no. 6, pp. 302–

309, 2020.

[137] N.-S. N. Ismail, F. Yunus, S. H. Ariffin, A. Shahidan, R. A. Rashid, W. Em-

bong, N. Fisal, and S. Yusof, “Mpeg-4 video transmission using distributed

tdma mac protocol over ieee 802.15. 4 wireless technology,” in 2011 Fourth

International Conference on Modeling, Simulation and Applied Optimiza-

tion, pp. 1–6, IEEE, 2011.

[138] L. R. Pinto, L. Almeida, H. Alizadeh, and A. Rowe, “Aerial video stream

over multi-hop using adaptive tdma slots,” in 2017 IEEE Real-Time Systems

Symposium (RTSS), pp. 157–166, IEEE, 2017.

[139] D. Saxena and V. Raychoudhury, “Design and verification of an ndn-based

safety-critical application: A case study with smart healthcare,” ieee trans-

actions on systems, man, and cybernetics: systems, vol. 49, no. 5, pp. 991–

1005, 2019.

[140] D. Chen, R. Hexel, and F. R. Raja, “Incus: A communication protocol

for safety critical distributed real time systems,” in The 20th Asia-Pacific

Conference on Communication (APCC2014), pp. 309–314, IEEE, 2014.



[141] G. Bauer and M. Paulitsch, “An investigation of membership and clique

avoidance in ttp/c,” in Proceedings 19th IEEE Symposium on Reliable Dis-

tributed Systems SRDS-2000, pp. 118–124, IEEE, 2000.

[142] H. Pfeifer, D. Schwier, and F. W. von Henke, “Formal verification for time-

triggered clock synchronization,” in Dependable Computing for Critical Ap-

plications 7, pp. 207–226, Jan 1999.

[143] T. Hase, W. Hintermaier, A. Frey, T. Strobel, U. Baumgarten, and E. Stein-

bach, “Influence of image/video compression on night vision based pedes-

trian detection in an automotive application,” in Vehicular Technology Con-

ference (VTC Spring), 2011 IEEE 73rd, pp. 1–5, IEEE, 2011.

[144] W. Kubinger, H. Hemetsberger, and J. Kogler, “Platooning platform for

analyzing embedded control algorithms,” Annals of DAAAM & Proceedings,

pp. 211–213, 2005.

[145] J.-E. Kallhammer, D. Eniksson, G. Granlund, M. Felsberg, A. Moe, B. Jo-

hansson, J. Wiklund, and P.-E. Forssén, “Near zone pedestrian detection

using a low-resolution fir sensor,” in Intelligent Vehicles Symposium, 2007

IEEE, pp. 339–345, IEEE, 2007.

[146] D. Chen, R. Hexel, and F. R. Raja, “Engineering real-time communication

through time-triggered subsumption,” in Proceedings of the 11th Interna-

tional Conference on Evaluation of Novel Software Approaches to Software

Engineering, pp. 272–281, SCITEPRESS-Science and Technology Publica-

tions, Lda, 2016.

[147] H. Kopetz, R. Nossal, R. Hexel, A. Krüger, D. Millinger, R. Pallierer,

C. Temple, and M. Krug, “Mode handling in the time-triggered architec-

ture,” Control Engineering Practice, vol. 6, no. 1, pp. 61–66, 1998.

[148] M. Ahuja, A. D. Kshemkalyani, and T. Carlson, “A basic unit of computa-

tion in distributed systems.,” in ICDCS, pp. 12–19, 1990.



[149] V. Estivill-Castro and R. Hexel, “Module isolation for efficient model check-

ing and its application to FMEA in model-driven engineering,” in ENASE

8th International Conference on Evaluation of Novel Approaches to Software

Engineering, (Angers Loire Valley, France), pp. 218–225, INSTCC, July 4th-

6th 2013.

[150] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”

IEEE Computer, vol. 39, no. 2, pp. 25–31, 2006.

[151] A. Bucchiarone, J. Cabot, R. F. Paige, and A. Pierantonio, “Grand chal-

lenges in model-driven engineering: an analysis of the state of the research,”

Software and Systems Modeling, vol. 19, no. 1, pp. 5–13, 2020.

[152] A. Idani, Y. Ledru, and G. Vega, “Alliance of model-driven engineering

with a proof-based formal approach,” Innovations in Systems and Software

Engineering, vol. 16, pp. 289–307, 2020.

[153] C. D. N. Damasceno and D. Strüber, “Quality guidelines for research arti-

facts in model-driven engineering,” in 2021 ACM/IEEE 24th International

Conference on Model Driven Engineering Languages and Systems (MOD-

ELS), pp. 285–296, IEEE, 2021.

[154] V. Estivill-Castro and R. Hexel, “Correctness by construction with logic-

labeled finite-state machines – comparison with Event-B,” in Proc. 23rd

Australian Software Engineering Conference (ASWEC), pp. 38–47, IEEE,

2014.

[155] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Requirements

engineering via non-monotonic logics and state diagrams,” in Evaluation of

Novel Approaches to Software Engineering (ENASE selected papers), vol. 230

of Communications in Computer and Information Science, (Athens, Greece),

pp. 121–135, Springer Verlag, 22-24 July 2011.

[156] V. Estivill-Castro, R. Hexel, and M. McColl, “High-level executable models

of reactive real-time systems with logic-labelled finite-state machines and



fpgas,” in 2018 International Conference on ReConFigurable Computing and

FPGAs (ReConFig), pp. 1–8, IEEE, 2018.

[157] F. Grubb, V. Estivill-Castro, and R. Hexel, “Llfsms on the pru: Executable

and verifiable software models on a real-time microcontroller,” in Interna-

tional Conference On Systems Engineering, pp. 391–402, Springer, 2021.

[158] V. Estivill-Castro, R. Hexel, and D. A. Rosenblueth, “Efficient modelling of

embedded software systems and their formal verification,” in The 19th Asia-

Pacific Software Engineering Conference (APSEC 2012) (K. R. Leung and

P. Muenchaisri, eds.), (Hong Kong), pp. 428–433, IEEE Computer Society,

Conference Publishing Services, December 2012.

[159] M. Lindgren, “Practical verification of stateful embedded c code using finite

state machines and vcc,” 2020.

[160] N. Krafczyk and J. Peleska, “Exhaustive property oriented model-based test-

ing with symbolic finite state machines,” in International Conference on

Software Engineering and Formal Methods, pp. 84–102, Springer, 2021.

[161] R. Brooks et al., “A robust layered control system for a mobile robot,” IEEE

Journal of Robotics and Automation, vol. 2, no. 1, pp. 14–23, 1986.

[162] L. P. Kaelbling, “An architecture for intelligent reactive systems,” in Morgan

Kaufmann, Proceedings of the 1986 Workshop: Reasoning about Actions and

Plans, Editors: Georgeff, M, Lansky, A, vol. 30, pp. 395–410, 1987.

[163] D. W. Payton, “An architecture for reflexive autonomous vehicle control,” in

Proc. IEEE International Conference on Robotics and Automation., vol. 3,

pp. 1838–1845, IEEE, 1986.

[164] R. C. Arkin, “Motor schema based navigation for a mobile robot: An ap-

proach to programming by behavior,” in Robotics and Automation. Pro-

ceedings. 1987 IEEE International Conference on, vol. 4, pp. 264–271, Mar

1987.



[165] J. Connell, “Creature design with the subsumption architecture.,” in IJCAI,

vol. 87, pp. 1124–1126, 1987.

[166] R. A. Brooks, J. Connell, and P. Ning, “Herbert: A second generation mobile

robot,” MIT AI Memo 1016, 1988.

[167] M. J. Mataric, “Qualitative sonar based environment learning for mo-

bile robots,” in Proc. Advances in Intelligent Robotics Systems Conference,

pp. 305–315, International Society for Optics and Photonics, 1990.

[168] R. A. Brooks, “Micro-brains for micro-brawn: Autonomous microbots,” in

IEEE Micro Robots and Teleoperators Workshop: An investigation of mi-

cromechanical structures, actuators and sensors, Hyannis, MA, 1987.

[169] P. Ögren and C. I. Sprague, “Behavior trees in robot control systems,” An-

nual Review of Control, Robotics, and Autonomous Systems, vol. 5, 2021.

[170] K. Othman, Towards the vision of a social robot in every home: A navi-

gation strategy via enhanced subsumption architecture. PhD thesis, Applied

Sciences: School of Mechatronic Systems Engineering, 2020.

[171] Z. Chu, “Development of hybrid control architecture for a small autonomous

underwater vehicle,” in Fundamental Design and Automation Technologies

in Offshore Robotics, pp. 161–175, Elsevier, 2020.

[172] D. Billington, V. Estivill-Castro, R. Hexel, and A. Rock, “Requirements

engineering via non-monotonic logics and state diagrams,” in Evaluation of

Novel Approaches to Software Engineering, pp. 121–135, Springer, 2011.

[173] V. Estivill-Castro and R. Hexel, “Arrangements of finite-state machines

semantics, simulation, and model checking,” in International Conference

on Model-Driven Engineering and Software Development MODELSWARD

(S. Hammoudi, L. Ferreira Pires, J. Filipe, and R. César das Neves, eds.),

(Barcelona, Spain), pp. 182–189, SCITEPRESS Science and Technology

Publications, 19-21 February 2013.



[174] I. Jacobson and E. Seidewitz, “A new software engineering: What happened

to the promise of rigorous, disciplined, professional practices for software

development?,” ACM-Queue, vol. 12, October 2014.

[175] J. Erickson and K. Siau, “Can UML be simplified? practitioner use of UML

in separate domains,” in proceedings EMMSAD, vol. 7, pp. 87–96, 2007.

[176] G. Reggio, M. Leotta, F. Ricca, and D. Clerissi, “What are the used UML

diagrams? A preliminary survey,” in Proceedings of the 3rd International

Workshop on Experiences and Empirical Studies in Software Modeling co-

located with 16th International Conference on Model Driven Engineering

Languages and Systems (MoDELS 2013) (M. R. V. Chaudron, M. Genero,

S. Abrahão, and L. Pareto, eds.), vol. 1078 of CEUR Workshop Proceedings,

pp. 3–12, October 1st 2013.

[177] H. Kopetz and G. Bauer, “The time-triggered architecture,” Proceedings of

the IEEE, vol. 91, no. 1, pp. 112–126, 2003.

[178] D. Chen, R. Hexel, and F. R. Raja, “INCUS: A communication protocol for

safety-critical distributed real-time systems,” in proceedings of 20th Asia-

Pacific Conference on Communications (APCC), Pattaya, Thailand, Octo-

ber 2014.

[179] V. Estivill-Castro, R. Hexel, and C. Lusty, “High performance relaying of

C++11 objects across processes and logic-labeled finite-state machines,” in

Simulation, Modeling, and Programming for Autonomous Robots - 4th Inter-

national Conference, SIMPAR 2014 (D. Brugali, J. F. Broenink, T. Kroeger,

and B. A. MacDonald, eds.), vol. 8810 of Lecture Notes in Computer Science,

(Bergamo, Italy), pp. 182–194, Springer, October 20th-23rd 2014.

[180] H. Kopetz, Real-Time Systems. Kluwer Academic Publishers, 1997.

[181] C. Temple, “Avoiding the babbling-idiot failure in a time-triggered commu-

nication system,” in Digest of Papers. Twenty-Eighth Annual International

Symposium on Fault-Tolerant Computing (Cat. No. 98CB36224), pp. 218–

227, IEEE, 1998.



[182] O. Daniel and O. Roman, “Fault injection framework for assessing fault con-

tainment of ttethernet against babbling idiot failures,” in 2018 IEEE/ACM

26th International Symposium on Quality of Service (IWQoS), pp. 1–6,

IEEE, 2018.

[183] D. Powell et al., Delta-4, A generic architecture for dependable distributed

computing, vol. 199. Springer, 1991.

[184] H. Kopetz, “Fault containment and error detection in the time-triggered

architecture,” in The Sixth International Symposium on Autonomous De-

centralized Systems, 2003. ISADS 2003., pp. 139–146, IEEE, 2003.

[185] I. Broster and A. Burns, “An analysable bus-guardian for event-triggered

communication,” in RTSS 2003. 24th IEEE Real-Time Systems Symposium,

2003, pp. 410–419, IEEE, 2003.

[186] J. Almeida, J. Ferreira, and A. S. Oliveira, “A medium guardian for en-

hanced dependability in safety-critical wireless systems,” IEEE Transactions

on Intelligent Transportation Systems, vol. 19, no. 3, pp. 965–976, 2018.

[187] C. Specification, “Bosch,” Robert Bosch GmbH, Postfach, vol. 50, 1991.

[188] A. L. Hopkins, T. B. Smith, and J. H. Lala, “Ftmp, a highly reliable fault-

tolerant multiprocess for aircraft,” Proceedings of the IEEE, vol. 66, no. 10,

pp. 1221–1239, 1978.


	Abstract
	Statement of Originality
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 Introduction
	1.1 Challenges
	1.2 Research Question
	1.3 Contribution of the Thesis
	1.4 Thesis Outline

	2 Real-Time Systems
	2.1 Real-time Systems
	2.1.1 Soft Real-Time Systems
	2.1.2 Hard Real-Time Systems
	2.1.3 Distributed Real-Time Systems

	2.2 Real-time Communication
	2.2.1 Timeliness
	2.2.2 Dependability
	2.2.3 Flexibility

	2.3 Communication Architectures
	2.3.1 Event-Triggered Communication
	2.3.1.1 Characteristics of Event-Triggered Communications

	2.3.2 Time-Triggered Communication
	2.3.2.1 Characteristics of Time-Triggered Communications

	2.3.3 Discussion


	3 Real-Time Communication Protocols
	3.1 Controller Area Network (CAN)
	3.2 ARINC-629
	3.3 Time-Triggered Model
	3.4 The Time-Triggered Protocol
	3.4.1 TTP-Internal Operation
	3.4.1.1 Node start-up and reintegration
	3.4.1.2 Clock Synchronisation
	3.4.1.3 Membership Service
	3.4.1.4 Message Descriptor List-MEDL
	3.4.1.5 Communication Network Interface-CNI

	3.4.2 Reliability and Fault-Tolerance in TTP

	3.5 FlexRay
	3.6 Time Triggered CAN (TTCAN)
	3.7 Time Triggered Ethernet (TTEthernet)
	3.8 Audio/Video Bridging and Time Sensitive Networking
	3.9 Wireless communication for safety-critical clusters

	4 Dynamic Time-Triggered Communication
	4.1 Motivation
	4.2 Payload based slot lengths inside a TDMA round
	4.2.1 Brake-by-Wire Case Study
	4.2.2 Node Startup and Resynchronisation
	4.2.3 Membership Service
	4.2.4 Clock Synchronisation
	4.2.5 Efficiency Analysis for Channel Utilisation
	4.2.5.1 Traditional slot allocation approach
	4.2.5.2 INCUS approach
	4.2.5.3 System-Level Analysis


	4.3 Flexible communication schedules in different TDMA rounds
	4.3.1 Why dynamic communication over different TDMA rounds?
	4.3.2 The INCUS+ Protocol
	4.3.2.1 Membership service and implicit acknowledgment
	4.3.2.2 Clique avoidance 
	4.3.2.3 Clock Synchronisation

	4.3.3 Autonomous vehicle case study
	4.3.3.1 Camera
	4.3.3.2 Sensor Fusion Node
	4.3.3.3 Vehicle Controller Node

	4.3.4 Performance Comparison
	4.3.4.1 FlexRay slot allocation
	4.3.4.2 INCUS+ slot allocation
	4.3.4.3 Impact of flexibility on overhead time
	4.3.4.4 Impact of flexibility on Channel Utilisation


	4.4 Flexible operational modes
	4.4.1 Multiple operational modes
	4.4.1.1 Implementation of multiple modes

	4.4.2 Mode handling
	4.4.2.1 Deferred Mode
	4.4.2.2 Immediate Mode


	4.5 Summary

	5 Software Architecture Design and Implementation
	5.1 Engineering a Software Architecture for Safety-Critical Real-Time Systems
	5.2 Executable Communication Model
	5.2.1 LLFSM Design of INCUS+

	5.3 INCUS+ Subsumption
	5.3.1 Tackling Design Complexity using Subsumption
	5.3.2 Adding new Behaviours using the Subsumption Architecture
	5.3.2.1 Start-up and Re-integration of nodes


	5.4 Summary

	6 Ensuring Fail-Silence
	6.1 Introduction
	6.2 Bus Guardian
	6.2.1 Bus Guardian Architecture
	6.2.1.1 Closely coupled bus guardian
	6.2.1.2 Loosely coupled bus guardian
	6.2.1.3 Independent bus guardian

	6.2.2 Fail-Silence through redundancy in different network topologies

	6.3 Formal verification of slot timing
	6.3.1 Parameters used for Formal Verification
	6.3.2 Requirements and assumptions
	6.3.3 Hierarchy of communication
	6.3.4 Requirement R1
	6.3.4.1 Proof

	6.3.5 Requirement R2
	6.3.5.1 Proof

	6.3.6 Prevention of slot overlapping
	6.3.7 Requirement R3
	6.3.7.1 Proof

	6.3.8 Requirement R4
	6.3.8.1 Proof


	6.4 Protocol Behaviour under Faults
	6.4.1 What if the transmitter fails?
	6.4.1.1 Completely off the scheduled frame transmission
	6.4.1.2 Transmitter transmitting longer than expected
	6.4.1.3 Transmission slot position is incorrect
	6.4.1.4 Transmitter assumes itself in a completely different operational mode

	6.4.2 What if the Bus Guardian fails?
	6.4.2.1 Bus guardian blocks correct transmission
	6.4.2.2 The Bus guardian truncates a correct transmission
	6.4.2.3 The slot positioning for a Bus guardian is incorrect
	6.4.2.4 The Bus guardian assumes itself in a completely different operational mode


	6.5 Summary

	7 Conclusion and Future Work
	7.1 Future Work

	A List of Publications
	Bibliography



