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Abstract—Computational simulations of wild�re spread typi-
cally employ empirical rate-of-spread calculations under various
conditions (such as terrain, fuel type, weather). Small per-
turbations in conditions can often lead to signi�cant changes
in �re spread (such as speed and direction), necessitating a
computationally expensive large set of simulations to quantify
uncertainty. Model emulation seeks alternative representations
of physical models using machine learning, aiming to provide
more ef�cient and/or simpli�ed surrogate models. We propose
a dedicated spatio-temporal neural network based framework
for model emulation, able to capture the complex behaviour
of �re spread models. The proposed approach can approximate
forecasts at �ne spatial and temporal resolutions that are often
challenging for neural network based approaches. Furthermore,
the proposed approach is robust even with small training sets,
due to novel data augmentation methods. Empirical experiments
show good agreement between simulated and emulated �refronts,
with an average Jaccard score of 0.76.

Index Terms—forecasting, wild�re, emulation, approximation,
surrogate model, spatio-temporal, machine learning.

I. I NTRODUCTION

Wild�res pose a serious threat to communities as well
as natural �ora and fauna in many regions throughout the
world [5], [6], [22]. Forecasting spread of wild�res is critical
in �re management, planning, and response efforts. Simulated
(in silico) �res provide valuable data for operational managers
to assess potential impacts on populated or sensitive areas, in
order to guide active management, mitigation and evacuation
efforts.

Several �re behaviour characteristic models have been
developed [8], [18], [26]. Such models are generally com-
putationally expensive as they may be based on complex
methodologies such as the level-set method [18]. This can
hinder their applicability for decision support, especially when
large scale simulations or numerous ensemble predictions are
required to account for uncertainty.

Model emulation (also known as surrogate modelling) em-
ploys a computationally ef�cient predictive model that approx-
imates a complex physical process model, such as computer
or numerical simulators [3], [21]. Emulation may be able
to overcome some of the limitations of large scale complex
simulations. Early emulation approaches used machine learn-
ing techniques such as Gaussian processes [15], followed by
random forests [9], [17] and deep neural networks [13], [14],
[23]. Neural networks are highly adaptable and have been
successfully implemented in several physical system emulation
problems [14], [23], [25].

Recent reviews on applications of machine learning to wild-
�res cover �re susceptibility prediction, �re spread prediction,
fuel categorisation, �re occurrence detection, and decision
support systems [2], [5], [12]. Deep learning architectures such
as convolutional neural networks (CNNs) [4], [10], [19], and
recurrent neural networks [7] have also been applied.

Within the literature on neural networks related to model
emulation for �re spread and growth prediction, Allaire et
al. [4] present a CNN emulator for hazard assessment in a
contained region of interest. The emulator predicts the amount
of burned land (scalar value). The model does not estimate
�re dynamics. Burge et al. [7] and Hodges et al. [10] propose
CNN emulators for predicting �re dynamics. Both approaches
use a small output array size (< 100 pixels) which limits
the spatial resolution or extent that can be evaluated. Radke
et al. [19] propose a CNN based emulator, which estimates
the likelihood of a pixel outside the �refront burning within
a 24 hour window. Rather than evaluating each pixel, the
likelihoods of a set of sample pixels are generated. The wide
temporal resolution limits the ability of the model to estimate
�ne timescale dynamics of the �re. Sung et al. [24] propose a
neural network model incorporating a U-Net structure [20],
trained with a dataset of daily �re perimeters. The model
estimates the likelihood of the �re reaching a given pixel.
Relatively low accuracy is obtained, possibly due to low
temporal resolution.

In this paper we propose a neural network based emulator
for estimating high resolution �re spread over large spatial
and temporal domains. The model is trained with simulated
data produced using empirical rate-of-spread estimates. The
proposed emulator design is able to incorporate data of varying
spatial and temporal resolutions. Furthermore it is capable of
generating estimates over large spatial extents with varying
shapes, which is often challenging for emulation approaches.
Lastly, the model is robust on small training sets due to
employing novel data augmentation methods.

The architecture of the proposed emulator is overviewed in
Section II, and its design features are covered in Section III.
As there are hyper-parameters that can be adjusted, we provide
an empirical evaluation at various con�gurations in Section IV.
The best performing con�guration has an average Jaccard
score of 0.76, indicating good agreement between simulated
and emulated �refronts. The proposed model provides a tem-
plate upon which further developments can be introduced,
especially methods for uncertainty quanti�cation.
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Fig. 1. The proposed emulator architecture, comprising three main components. The autoencoder (blue) encodes and decodes the �re input state. The outer
component (red) incorporates the autoencoder, as well as encoding spatial, forcing, and weather features. The inner component (orange) handles the dynamics
of the emulator. The latent �re state is updated using information from the spatial and forcing layers, as well as weather feature inputs. These layers are
concatenated and passed through a shallow U-Net structure. The sum of the U-Net output and the input latent �re state produce a new latent �re state estimate.

II. EMULATOR ARCHITECTURE

Fig. 1 shows a simpli�ed schematic of the proposed emula-
tor architecture. There are three main components: autoen-
coder component, outer component, and inner component.
The autoencoder component is trained separately and its
weights are transferred to parts of the outer component. The
outer component is a feature engineering and downsampling
network which passes inputs to the inner component. The outer
component also upsamples the outputs from the inner compo-
nent. Finally, the inner component handles the dynamics of
the system. It forecasts latent �re states based on information
from spatial and temporal features.

There are three types of inputs to the model: �re state
image, spatial data and forcing terms, and �nally weather time
series. Each �re state is an image where pixel values represent
when the �re reached a given location. The spatial data are
images representing heightmaps and land classes (eg. forest,
grassland). The forcing terms are curing and drought factors.
The weather time series include temperature, wind speed, and
relative humidity.

A. Outer Network

The outer components of the model are illustrated by the
red shading in Fig. 1. This component incorporates the �re
state autoencoder. Convolutional layers are used on the spatial
data (heightmap and land class map) for feature extraction;
downscaling is performed by strided convolutional layers. This
encodes the information into a smaller latent representation.
Similarly, forcing inputs (drought and curing factors) are
expanded to have the same spatial extent as the latent spatial
features and are concatenated together.

The downsampling and upsampling of the �re state is
performed by the autoencoder. The latent �re state and latent

spatial features form the state component of the inner network.
Weather features are in the form of time-series data. In-

terpolation via upsampling is performed. Each set of weather
values at a given time are passed through two dense layers for
feature extraction before being expanded to the same spatial
extent as the latent spatial features. These are then passed to
the inner network as inputs.

B. Autoencoder

The purpose of the autoencoder is to encode and decode
the �re state to and from a lower latent dimension. The
autoencoder is represented by joining the blue components
in Fig. 1. The encoding component consists of only linear
transformations to preserve the relative temporal relationships
between pixel values. An average pooling layer is used before
a space to depth transformation. The decoding component
consists of a depth to space transformation followed by a
strided convolutional layers. The autoencoder is trained on �re
state data separately from the full emulator.

C. Inner Network

The inner component of the model incorporates the dy-
namics of the system, taking an initial latent �re state and
producing a new updated estimate. The inner component is
illustrated by the orange shading in Fig. 1. This component is
a one-step ahead forecast module.

The state of the module consists of the latent �re arrival
state. This is updated using dynamic inputs from the latent
weather features and static inputs from the latent spatial and
forcing features. Each successive weather input advances the
�re state forward in time.

The inputs and �re state are concatenated and passed into
a shallow U-Net [20], [27]. U-Nets are formed by join-



ing a contracting path with an expanding path, formed by
down/upsampling convolutional layers. This structure is able
to capture dynamics at various spatial resolutions, with deeper
levels capturing broader interactions. We incorporate a skip
connection between the input latent �re state and the output of
the U-Net. In effect the U-Net only needs to learn the change
or residualbetween successive latent �re states.

III. D ESIGN FEATURES

In this section we will brie�y discuss some of the unique
challenges that inform our choice of emulator design. Broadly,
we want an emulator that is agnostic to temporal and spatial
resolutions and is able to generate high resolution outputs.

In order to achieve a model that can incorporate various spa-
tial and temporal resolutions we express features like distance,
height, and wind speed in unit-less terms. For example, wind
speed is converted from meters per second into pixel lengths
per interval. In this way a different dataset operating with a
different spatial (or temporal) resolution can be re-sampled to
be compatible with the model inputs.

A further challenge is that the training data often consists of
large sized image arrays (> 1000 px). Furthermore, the image
arrays can have varying sizes. To address this we choose a
fully convolutional network, and encode the spatial data into
a smaller latent representation through strided convolutional
operations. This reduces the complexity of the representation
and allows the model to take arbitrarily sized inputs. This is
performed by the outer component of the model (Section II-A).
In addition, the inner component (Section II-C) employs a
shallow U-Net structure. This allows for long range interac-
tions between pixels to be considered by the model using only
a modest overhead of complexity.

The inner component of the emulator deals with the dy-
namic changes to the �re arrival state. To ensure that the
outer model does not produce any dynamic changes, we use
an autoencoder. The autoencoder is trained on the �re arrival
state. Once trained, the autoencoders' weights are frozen. The
autoencoder is then used by the outer network to encode and
decode the �re arrival state.

Wild�re spread is an inherently stochastic process. In some
cases an estimate may incorrectly place the �re slightly ahead
of an obstacle such as a body of water. If we consider this
as the source of a new �refront propagating through open
terrain, then the burned area by the new front will increase
quadratically in time [28]. By training the model over a single
time interval we limit the training penalty of these mismatches.

As an additional step to the training process, each sample
is cropped around a point on the �re's perimeter. This reduces
the spatial extent of each sample and generates a uniform size.
This allows for batch processing as well as greatly reducing
the memory requirements for training.

Using cropping and single intervals for model training
represents a novel method of data augmentation. A single �re
can produce numerous semi-independent training samples by
using various cropping locations and time intervals. Further

data augmentation was performed using rotation, re�ection and
transposition transformations.

A drawback the cropping approach is that cropping removes
some information about the �re's position as a whole. The like-
lihood of �re `entering' a cropped region cannot be inferred
during training. To account for this we pad each sample. In this
padded region, each pixel value is assigned to the maximum
of the predicted or target values. This removes the loss penalty
when the presence of �re is not correctly inferred around the
border of a region.

IV. EMPIRICAL EVALUATION

In this section we �rst overview the evaluation dataset, and
then present an empirical evaluation using several con�gura-
tions of hyper-parameters in the proposed emulator.

A. Dataset

We use a dataset of 195 simulated �res generated via the
SPARK �re simulation platform [18]. 155 �res are used as
the training set; 40 �res are reserved for validation. During
training and validation the regions are cropped and only a
single interval is used. Furthermore, we use a prediction
set, composed of the 40 validation �res, but no cropping is
performed and the entire duration of the �re is considered.
This set is not used in training, but is used to evaluate the
performance of the emulator across the full scope of a �re
scenario.

The location of the �res is representative of regional
South Australia. Land classi�cation maps1, topology data2,
and weather conditions3 are sampled to re�ect realistic re-
gional conditions. There is a large bias in land classi�cation
towards grassland (78.8%), mallee-heath shrubland (10.5%),
water/unburnable (6.27%). The weather is representative of
high �re risk conditions, often consisting of high temperatures,
low humidity, and moderate to high winds.

Spatial data is converted into the same coordinate reference
system and has a resolution of 30 meters. The height map is
converted intox andy gradient maps. Weather data is polled
from weather stations every 30 minutes (one interval). The
weather values are interpolated (upscaled) into 4 slices for
the majority of our trials. Values are scaled by maximum and
minimum values in the training set. Wind speed and direction
are converted intox andy components. Finally there are two
forcing terms that the model incorporates:drought factorand
curing factor. These terms depend on long term weather trends
that are considered �xed for the duration of the �re.

1Land classi�cation datasets derived from Department of Agriculture and
Water Resources (ABARES) Land Use of Australia 2010-11 dataset. Data is
publicly available under Creative Commons Attribution 3.0 Australia Licence.

2Topography data sets derived from Geoscience Australia SRTM-derived
1 Second Digital Elevation Models Version 1.0. Data is publicly available
under Creative Commons Attribution 4.0 International Licence.

3Meteorological time series data sets derived from Bureau of Meteorology
automated weather station data.



Fig. 2. Evolution of �refront contours for a trial, shown over four panels (left-
to-right, top-to-bottom). Emulator (red), simulation (blue) and ignition point
(green) are overlaid over land classes. Dominant land classes are grassland
(yellow), mallee-heath shrubland (orange), and water (blue). The wind initially
drives the �re south, before turning west. Map size is 46.1 km� 46.1 km,
30 meter resolution.

Fig. 3. The difference between predicted and target �re arrival times
(measured in 30 minute intervals) for the same test sample as illustrated
in Fig. 2. Positive values (red) indicate false-positives while negative values
(blue) represent false-negatives. The Jaccard score for this trial is 0.81.

Fig. 4. Evolution of �refront contours for a trial, shown over four panels (left-
to-right, top-to-bottom). Emulator (red), simulation (blue) and ignition point
(green) are overlaid over land classes. Dominant land classes are grassland
(yellow), mallee-heath shrubland (orange), and water (blue). The wind initially
drives the �re south-east, before turning north. Map size is 46.1 km� 38.4 km,
30 meter resolution.

Fig. 5. The difference between predicted and target �re arrival times
(measured in 30 minute intervals) for the same test sample as illustrated
in Fig. 4. Positive values (red) indicate false-positives while negative values
(blue) represent false-negatives. The Jaccard score for this trial is 0.90.



B. Metrics and Loss

For evaluation metrics we choose the Jaccard score, also
known as intersection over union (IOU) score. While this
straightforward metric may not capture the whole `goodness
of �t', it nevertheless provides a basic grounding [11].

The autoencoder component is trained using mean absolute
error (MAE) loss. For training the emulator we introduce a
custom loss function, which evaluates how well the predictions
perform against a benchmark trivial prediction (where the
output is the same as the input). Letyi , yt , andyp be the initial
�re state, target �re state, and predicted �re state respectively.
Furthermore, let MAE(a; b) be the mean absolute error across
corresponding pixels in imagesa and b. The lossL of �re
stateP is de�ned as:

L (P) = log 10

�
MAE( yp; yt ) + �
MAE( yi ; yt ) + �

�
: (1)

Small �re growth results in only a small set of pixels indicating
burns, which in turn leads to very small MAE(yp; yt ). To
address this, MAE(yi ; yt ) is used as a normalisation factor.
Furthermore,� = 10 � 12 is used to remove singularities that
arise if either MAE values approach zero.

C. Evaluation

We implemented the emulator in TensorFlow [1], using the
Adamoptimiser [16] with a batch size of 16. The autoencoder
was trained for 20 epochs and returned an MAE loss of2:1�
10� 3. The emulator was trained for 50 epochs using the loss
function in Eqn. (1).

We train the emulator under several con�gurations of hyper-
parameters. Speci�cally, we test variously sized cropping
windows (c), U-Net depths (d), and padding values (p). The
number of interpolation slices per interval is 4.

Table I shows the average loss and Jaccard (IOU) scores for
the training and validation sets, as well as for the prediction
set. The prediction results are split into two parts. The �rst
part is when the emulator is run over the entire duration of
the prediction set (intervals 0-22). The second part is when
the emulator begins with the �re in progress (intervals 5-22).
Furthermore, two Jaccard scores are shown: the top value
represents an unweighted score averaged over all samples,
while the lower bracketed value shows the score weighted by
burned area over all samples.

Direct comparison between con�gurations of loss values is
not possible due to differences in how padding and cropping
sizes affect the loss function de�ned in Eqn. (1). We note that
the differences in loss and Jaccard scores between training
and evaluation sets are small. This indicates that the model is
generalising well to the entire dataset.

The prediction set shows how well the model performs
across the full spatial and temporal extents of each sample.
The best performance is found for larger cropping sizes (512
pixels). The prediction Jaccard scores of the smaller cropped
samples are signi�cantly lower than that found during training
and evaluation. There does not appear to be a signi�cant dif-
ference between depth 1 and 2 U-Net con�gurations. Finally,

TABLE I
MODEL LOSS AND EVALUATION METRICS. EACH CONFIGURATION

COMPRISESc, d, p COMPONENTS, WHERE c IS SIZE OF THE CROPPING
WINDOW, d IS THE DEPTH OF THEU-NET COMPONENT, AND p IS THE

AMOUNT OF PADDED PIXELS.

Con�guration Train.
loss

Val.
loss

Train.
Jacc.

Val.
Jacc.

Pred. Jacc.
(0-22)

Pred. Jacc.
(5-22)

512c, 1d, 32p -1.43 -1.43 0.78 0.79
0.76

(0.80)
0.79

(0.83)

512c, 1d, 64p -1.47 -1.48 0.79 0.79
0.71

(0.74)
0.77

(0.74)

512c, 2d, 32p -1.43 -1.45 0.78 0.79
0.71

(0.74)
0.77

(0.81)

512c, 2d, 64p -1.55 -1.51 0.81 0.80
0.69

(0.70)
0.71

(0.76)

256c, 1d, 32p -1.61 -1.73 0.81 0.83
0.64

(0.67)
0.69

(0.72)

256c, 1d, 64p -1.88 -1.92 0.86 0.86
0.71

(0.72)
0.72

(0.77)

256c, 2d, 32p -1.64 -1.67 0.82 0.82
0.67

(0.74)
0.71

(0.77)

256c, 2d, 64p -1.98 -1.93 0.87 0.86
0.65

(0.68)
0.68

(0.74)

128c, 1d, 32p -1.91 -1.92 0.86 0.86
0.42

(0.43)
0.45

(0.45)

128c, 2d, 32p -1.77 -1.82 0.84 0.85
0.52

(0.52)
0.53

(0.55)

the model performs better when using a 32 pixel padding
distance. A number of trials were also performed using 6
interpolation slices per interval rather than 4; only a very
marginal improvement in Jaccard scores was observed.

Figs. 2 and 3 illustrate the emulator performance on a
sample �re. There is close agreement between simulated and
emulated �res for much of the duration. The largest disagree-
ment occurs as the �re passes through a region containing
small bodies of water. The emulator fails to �nd a similar
pathway to the original Spark simulation.

Figs. 4 and 5 show the emulator performance on another
sample �re. In this example there is also good agreement
between simulated and emulated �res. To the west an early
under-estimation by the emulator leads to a large under-
estimation as the wind changes and pushes the �re north.

These types of behaviour are typical of many samples
that have been manually inspected. Small differences between
emulator and simulation are often exaggerated over time.
Nonetheless, the overall dynamics of the emulator appear to
be in line with expected �re behaviour.

V. CONCLUSION

In this paper we have shown how convolutional networks
can be constructed in order to closely emulate wild�re spread
from the Spark simulator, resulting in an average Jaccard
(IOU) score of 0.76 for up to 11.5 hour �re duration. Qualita-
tively, the emulator makes predictions that exhibit very similar
behaviour to that of the targeted simulations. The stochastic
nature of wild�res means that large discrepancies are often
the result of small differences being exaggerated, rather than
a fundamental problem in the emulation estimate.



The proposed approach has several features that make it
versatile. It is able to work using variable spatial extents and
resolutions, variable temporal extents and resolutions, as well
as being able to incorporate various types of spatial, temporal
and scalar features.

We use a novel approach to model training. This approach
incorporates transfer learning as well as data augmentation in
the form of targeted cropping and the use of single intervals
for training (rather than full duration trials). Additionally, we
use a custom loss function that is designed to operate well for
this speci�c class of problem.

A promising future area of exploration is using ensemble
simulations as training data for emulators. These ensembles
would be constructed to generate likelihood estimates of �re
locations. Using this data, an emulator could be trained to
estimate ensemble predictions using only a single run.

A further area of interest is to take data from real world
samples and use these to `�ne tune' the model parameters. In
this way it may be possible to use relatively sparse real world
data to improve model performance, and potentially infer �re
dynamics directly.

The �exibility of the modelling approach also means that it
should be possible to incorporate new features into the model
without needing to fully retrain the model. For example, if
a new land class is added, then it is possible that only the
�rst few downsampling convolutional layers would need to be
retrained.

As a �nal remark we note that the proposed approach is not
inherently speci�c to wild�re prediction. Similar geo-spatial
modelling problems such as pollutant spread, pest spread, or
disease spread may also be well represented by a similar
emulation approach.
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