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ARTICLE

An in vivo gene ampli� cation system for high level
expression inSaccharomyces cerevisiae
Bingyin Peng 1,2,3,4� , Lygie Esquirol 1,5, Zeyu Lu1,3,4, Qianyi Shen1,3,4, Li Chen Cheah 1,3,

Christopher B. Howard1, Colin Scott 2,6, Matt Trau 1,7, Geoff Dumsday8 & Claudia E. Vickers 2,3,4,5�

Bottlenecks in metabolic pathways due to insuf� cient gene expression levels remain a sig-

ni� cant problem for industrial bioproduction using microbial cell factories. Increasing gene

dosage can overcome these bottlenecks, but current approaches suffer from numerous

drawbacks. Here, we describe HapAmp, a method that uses haploinsuf� ciency as evolutionary

force to drive in vivo gene ampli� cation. HapAmp enables ef� cient, titratable, and stable

integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The

method is exempli� ed in metabolic engineering to signi� cantly improve production of the

sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene

titre is improved by 20-fold in a single engineering step, delivering� 1 g L� 1 in the � ask culti-

vation. We also show a signi� cant increase in heterologous protein production in yeast.

HapAmp is an ef� cient approach to unlock metabolic bottlenecks rapidly for development of

microbial cell factories.
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To achieve economically viable rates, yields and titres for a
given product in microbial cell factories, it is commonly
necessary to increase expression of introduced genetic

constructs1,2. This is typically achieved by manipulating tran-
scription levels via transcriptional control elements (promoters
and other genetic sequences)3. However, this approach is sub-
ject to thresholds on individual constructs. This often means
that expression levels are insuf� cient for a desired application.
For example, enzymes with poor catalytic properties that cannot
be improved by enzyme engineering represent signi� cant
� ux bottlenecks in metabolic engineering4. In addition, where
extremely high product levels are required (e.g., protein pro-
duction systems), very high expression can deliver a direct
economic bene� t to the bioprocess. Increasing the gene dosage
can be used to overcome transcriptional thresholds and increase
expression levels.

The brewer’s yeastSaccharomyces cerevisiaeis a eukaryotic
model organism and an important industrial microorganism for
production of biofuels, biochemicals, and biopharmaceuticals.
In S. cerevisiae, multi-copy yeast episomal plasmids or genome
integration into ribosomal DNA (rDNA) sites are typically used
to increase gene dosage5–8. However, these approaches are not
stable in the absence of selection pressure, and plasmids can
suffer from copy number instability leading to variable expres-
sion levels5–8. In addition, use of selection systems in industrial
processes adds additional costs and often is not scalable9,10. To
stabilise strains without the need for selective antibiotic or
auxotrophy systems, auto-selection markers such as glycolytic
genes (FBA1, fructose-bisphosphate aldolase;POT1/TPI1, trio-
sephosphate isomerase) can be used5,11,12. However, this
requires the background strains to have the correct genotype for
knock-out. Transposable elements can also be used for multi-
copy integration, however variable copies are integrated at
random loci on genome, which means integrated components
cannot be removed to facilitate future engineering steps (for
example, swapping terpenoid synthases for different terpenoid
production platforms)13–17. A method overcoming all these
limitations is highly desirable.

Gene ampli� cation commonly happens in nature during cell
proliferation, as part of molecular evolution, as well as in some
laboratory experiments2,18–23. In yeast, tandem ampli� cation of
� tness-associated genes on the genome permits improved survival
and propagation of cells under new or changing conditions18–20.
For example, ampli� cation of the xylose isomerase, cellobiose-
utilisation, and copper resistance (CUP1) genes occurs over
prolonged adaptive cultivation on xylose19,20, cellubiose24, and
copper ions25, respectively. Another example is the ampli� cation
of tandem repeated rDNA under some conditions26. These
examples demonstrate that if the expression level of a gene pro-
duct is tightly linked to growth� tness and cannot meet the needs
for maximum growth, gene ampli� cation can occur through
adaptive evolution.

In diploids, haploinsuf� ciency describes a state whereby one
allele at a heterozygous locus provides little or no product, and
the combined product from both alleles is insuf� cient to deliver
the wild type phenotype27. Expression dosage of haploinsuf� cient
genes links tightly with the growth� tness in yeast28. This can be
explored as an evolutionary force to drive gene ampli� cation and
as a selection pressure for maintenance of the ampli� ed con-
structs under normal cultivation conditions.

Here, we design an arti� cial genetic structure that enables
ampli� cation of a haploinsuf� cient gene through tuning of its
promoter strength or translational ef� ciency (HapAmp). This
structure is incorporated into genetic vectors which can be used
to introduce multiple copies of linked heterogeneous genes on the
genome. We exemplify the applications of this technique by

developing yeast factories for improved production of terpenes by
metabolic engineering and for high production of pharmaceuti-
cally relevant proteins.

Results
Construct design for in vivo gene ampli� cation. Two elements
are required for gene ampli� cation to occur: (1) a gene linked to
cell � tness, and (2) homologous DNA sequences to support
recombination20. In addition, a strong replication origin can
promote ampli� cation29–31. These three elements exist in tandem
repeat in the rDNA region and theCUP1region in the yeast
genome (Fig.1a).

We designed a genetic structure for gene ampli� cation in yeast
(Fig. 1b). The construct has recombination arms at each end.
Arm 1 is homologous to the promoter region of a haploinsuf� -
cient gene, and Arm 2 is homologous to the initial part of
the haploinsuf� cient gene open reading frame. This allows
insertion of the construct into the genome by homologous
recombination. Downstream of Arm 1 are a selectable marker for
transformation selection and homologous Arm 3, which is
homologous to the terminator region of the haploinsuf� cient
gene. Between Arm 3 and Arm 2, there are an autonomous
replicating sequence (ARS) and a promoter. The promoter is
weaker than the native promoter of the haploinsuf� cient gene
and positioned such that integration results in substitution of the
native promoter of the haploinsuf� cient gene with the weaker

Tandem repeated CUP1 region
ChrVIII

ChrXII

Tandem repeated rDNA region

a

b

Chr

Homologous
recombination

Tandem amplified region

Chr

Construct

Fig. 1 Design of in vivo gene ampli� cation. aNatural genome structures at
the ribosomal DNA (rDNA) locus on chromosome XII and theCUP1locus
on chromosome VII.b Construct design for in vivo gene ampli� cation
(HapAmp). ARS autonomous replicating sequence.
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promoter. Genes of interest, to be expressed heterologously, can
be inserted between Arm 3 and the weaker promoter.

Driving expression through a weaker promoter attenuates the
protein yield from each copy of the haploinsuf� cient gene. This,
in turn, is expected to decrease the growth rate in yeast. Native
ampli� cation of the region between homologous Arm 3 will then
occur as yeast evolves towards faster growth.

Using RPL25 or SEC23haploinsuf� cient gene loci to drive
ampli� cation. The effect of haploinsuf� cient genes on growth
� tness has been characterised previously28. We used the ribo-
somal 60S subunit protein L25 (RPL25) and the SEC23-
encoding component of the Sec23p-Sec24p heterodimer of the
COPII vesicle coat. These two genes have the strongest� tness
effect in rich medium and in minimal mineral medium28. We
developed four constructs withRPL25as the driving gene,
LEU2as selection marker, and an early-� ring ARSARS30632 to
facilitate ampli� cation; and three constructs withSEC23as the
driving gene, hygromycin B resistant genehphMX as selection
marker, and the strongARS1maxARS33 to facilitate ampli� -
cation (Fig.2a).

To identify promoters with suitable expression strengths,
promoters were selected from the wide variety of promoters we
previously analysed34, to test with each target locus (Fig.2a, d).

For theRPL25constructs we used theYEF3promoter (which has
similar strength to theRPL25promoter; Construct 1) and the
ERG1, PDA1, or BTS1promoters (all with multiple-fold weaker
expression thanRPL25promoter; Constructs 2–4). For theSEC23
constructs, we used theERG1promoter (stronger than theSEC23
promoter; Construct 5), theGLO2 promoter, or the COG7
promoter (both multiple-fold weaker than theSEC23promoter;
Constructs 6 and 7). An eighth promoter construct was designed
and tested later (see below). We used yeast-enhanced green
� uorescent protein (yEGFP) under the control of theTEF1
promoter and theURA3terminator as the gene of interest and as
a reporter for proof of concept.

The seven constructs were transformed intoS. cerevisiae
CEN.PK strains. Transformation plates were screened by imaging
yEGFP� uorescence under blue light (Supplementary Fig. 1a, c)
and colonies were selected for increased� uorescence. For each
construct, six strongly� uorescing clones were selected. Visual
observation after sub-culturing demonstrated an inverse correla-
tion between promoter strength (Fig.2d) and GFP� uorescence
(Supplementary Fig. 1b). Three clones with similar� uorescence
were selected for quantitative characterisation for each construct.

Where promoter strength was similar or greater than the
native promoter, yEGFP was found at a single copy on the
genome (Fig.2c: Constructs 1 and 5), and� uorescence (Fig.2e:

ecnecserou lf 
P

F
G

(f
ol

d 
of

 
ecn ecse roulfot ua

)

Promoter

1.0
1.0

1.0
1.0

Number: ratio 
on EXP & ETH

1.1
1.0

4.8
3.8 11

5.5 37
26

0.65
0.70

3.9
2.3

7.8
6.2

a b

d

RPL25-based constructs

0

0.1

0.2

0.3

0.4

0

500

1000

1500

5500

6000

6500

�
m

ax
 (

h-1
)

G
F

P
 fl

uo
re

sc
en

ce
(f

ol
d 

of
 a

ut
of

lu
or

es
ce

nc
e)

1 1

16
17

92

4
9

13

e

Construct 1 PYEF3

PERG1Construct 2

Construct 3 PPDA1

Construct 4 PBTS1

Construct 5 PERG1

PGLO2Construct 6

Construct 7 PCOG7

Construct 8 PCOG7-3G

c

0

10

20

30

40

50

60

1

11 12

47

1
4

7 9

yE
G

F
P

co
py

 n
um

be
r 

(p
er

 g
en

om
e)

0

20

40

60

80

100

120

140

EXP ETH

SEC23-based constructs

Fig. 2 Design and characterisation of gene ampli� cation constructs for haploinsuf� cient target genes RPL25or SEC23. a Schematic of gene
ampli� cation constructs.b, c, e Maximum growth rate, yEGFP (yeast-enhanced green� uorescent protein) gene copy number, and yEGFP� uorescence in
strains transformed with the constructs ina. Strains were selected by brightness of yEGFP� uorescence (Supplementary Fig. 1).d Promoter
characterisation using yEGFP as the reporter in the cells at the exponential growth phase (EXP) and the post-diauxic-shift growth phase (ETH) when
ethanol was used as the carbon source. Yeast cells were grown in microplates ind and in� asks inb, c, e. yEGFP� uorescence is expressed as percentage of
exponential-phase auto-� uorescence of the reference strain. The numbers were calculated by dividing the mean value forRPL25or SEC23(underlined) by
the mean value. Mean values ± standard deviations are shown (N= 3 independent biological replicates). Source data are provided as a Source Data� le.
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Constructs 1 and 5) was similar to� uorescence we observed
previously in strains with a single copy of thePTEF1-yEGFP-TURA3
construct3. yEGFP gene copy number and� uorescence both
increased where the native promoter was substituted for weaker
promoters (Fig.2c, e: Constructs 2–4, 6, 7). Copy number
increased from 4-fold to 47-fold, whereas� uorescence increase
was 4-fold to 92-fold. There was a strong positive correlation
between copy number and� uorescence (r2 = 0.985), and a weak
negative correlation between� uorescence and promoter strength/
copy number (r2 = 0.376 and 0.694 respectively). The most
remarkable result was where theRPL25promoter was substituted
for the BTS1promoter; this resulted in ~47 copies of yEGFP per
genome and a ~92-fold increase yEGFP� uorescence (Fig.2c, e).

To further increase copy number at theSEC23locus, we
attenuated translation by making a construct with three non-
preferred glycerine codons (GGA) inserted following the start
codon ofSEC23under the control of theCOG7promoter (Fig.2a:
Construct 8), which delivered the most gene ampli� cation in the
� rst round (9 copies). A slight increase in gene copy and
� uorescence was obtained (Fig.2c, e). Translational down-
regulation by use of non-preferred codons provides a second
mechanism to drive an increase in copy number for genes at
haploinsuf� cient gene loci.

In the initial design (Fig.1), we include ARS in the module
basing on the genetic features at naturally ampli� ed genomic loci.
To con� rm the role of ARS in the current system, we removed the
ARS sequence in the Construct 3. The ARS-removed construct
could lead to the formation of the very� uorescent colonies after
transformation (Supplementary Fig. 1). This indicates that ARS
may not be essential for HapAmp.

Increased copy number did not negatively impact the growth
rate of any of the strains except for clones with thePBTS1-RPL25
construct (Fig.2b), which had an exceptionally high integration
copy number (Fig.2c). This strain showed an ~7% decrease in
growth rate (two-tailedt-testp= 0.001).

Long-read sequencing on strains containing Constructs 3 and 4
con� rmed that the constructs were integrated into theRPL25
(YOL127W) locus and thatyEGFP-RPL25sequences were
ampli� ed in tandem repeat structures (Supplementary Figs. 2
and 3–5). The strain expressed the highest level of yEGFP
(Construct 4) was sub-cultured in yeast extract-peptone-glucose
medium for ~48 generations for stability test (Supplementary
Fig. 6). GFP� uorescence levels and population homogeneity did
not change, indicating that HapAmp is genetically stable.

Improving heterologous production of the sesquiterpenetrans-
nerolidol. We examined the performance of the HapAmp
method using sesquiterpene (C15; trans-nerolidol) production.
We used a background strain with an upregulated mevalonate
pathway for production of terpene precursors (o401R)35–38. In
this strain, theGAL80repressor gene is disrupted allowing dia-
uxic induction of GAL promoters, which are used to control
transgenes.

We constructed a reference strain N401-1 harbouring a
multi-copy 2� plasmid pJT9RFR39(Fig.3a) with overexpression
cassettes for farnesyl pyrophosphate synthase (ERG20) and
nerolidol synthase (Ac.NES1). The nerolidol synthase cassette
includes a� uorescence-activating and absorption-shifting tag
(Y-FAST)40 and a 2A peptide from Equine rhinitis B virus
141 fused to the N-terminus of nerolidol synthase. This allows
Y-FAST � uorescence to be used as a proxy for nerolidol
synthase expression39.

The nerolidol synthase expression cassette (Y-FAST-2A-
Ac.NES1) was cloned into theRPL25insertion vector in the
ampli� cation region with three different promoters for replacement

of theRPL25promoter; theERG20expression cassette was cloned
at the non-ampli� cation region (Fig.3b). Colonies with bright
Y-FAST� uorescence were selected from the transformation plates.
This delivered strains N401-2, N401-3, & N401-4 (promoters
PERG1, PPDA1, andPBTS1, respectively).

Compared to the reference strain N401-1, these three strains
exhibited faster growth (Fig.3c, d), higher Y-FAST� uorescence
(Fig.3f), and higher nerolidol production (Fig.3h). TheY-FAST-
2A-Ac.NES1cassette was successfully ampli� ed in vivo in the
three test strains (Fig.3e).

The reference 2� plasmid strain harboured 14 copies of theY-
FAST-2A-AcNES1construct, similar to strain N401-3, and higher
than that in strain N401-2. However, N401-1 had the lowest
Y-FAST� uorescence (Fig.3f). The discrepancy between copy
number and� uorescence was due to lack of induction of Y-FAST
expression in a large proportion of N401-1 cells (Fig.3g). In
contrast to the 2� plasmid strain, the strains harbouring the
in vivo ampli� cation constructs showed better synchronicity for
Y-FAST induction (Fig.3g N401-3; others not shown). This may
contribute to the improved production.

Improving heterologous production of the monoterpene
limonene. We next tested the system on production of mono-
terpenes (C10). Monoterpene production requires introduction
of a dedicated C10 geranyl pyrophosphate (GPP) synthase42. We
have previously used an Erg20pN127Wmutant42, which excludes
the C15 chain from the active site to generate a GPP pool, in
combination with targeted degradation of the endogenous C15
synthase Erg20p via protein degron tags35,39 to decrease com-
petition at the C10 node by Erg20p and redirect GPP towards
monoterpene production. In mevalonate pathway-enhanced
strains, this approach delivered less than 100 mg l� 1 mono-
terpene—an order of magnitude below the levels achieved for
sesquiterpene engineering.

We used a mevalonate pathway-enhanced strain with the
endogenous Erg20p under an auxin-inducible protein degrada-
tion mechanism39 as a background strain to minimise� ux
competition through the native sterol pathway. Two different
promoter constructs were developed for ampli� cation of the
limonene synthetic module (Fig.4a). The ampli� ed region
contained a fusion of multiple genes: Y-FAST-2A39, the
maltose-binding protein fromE. coli for improved solubility43,
a short linker, limonene synthase fromCitrus limon35, a
6*glycerine linker, and the Erg20pN127W F96Wmutant42 (which
has a higher speci� c GPP production rate than the Erg20pN127W

mutant) as a GPP synthase. This fusion construct was under the
control of theGAL2 promoter from S. kudriavzevii44. The two
constructs were transformed into theRPL25 locus in the
background strain, delivering strains LIM141M (PPDA1) and
LIM141MH (PBTS1).

For the reference strain, the construct was introduced into the
background strain via a 2� plasmid (Fig.4a). We characterised
four biological replicates (LIM141R representing three biological
replicates and LIM141R2 representing one biological replicate;
Fig.4). In this case, 2� plasmid delivered ~2 copies per genome of
the limonene synthase/Y-FAST module (shown by Y-FAST copy
number; Fig. 4c). LIM141R, the three biological replicates
produced ~40 mg l� 1 limonene (Fig.4f), the titre same to a
previous strain LIM141 expressing limonene synthase and
Erg20pN127W without gene fusion39. However, one biological
replicate (LIM141R2, Fig.4) produced ~300 mg l� 1 limonene.
LIM141R2 exhibited faster growth and higher Y-FAST� uores-
cence levels than other three biological replicates (LIM141R,
Fig.4b, d, e). The improvement in LIM141R2 may be caused by
unintended genetic variations.
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Harbouring HapAmp limonene synthetic module, both strains
LIM141M and LIM141MH produced an order of magnitude
more limonene than LIM141R and previous efforts using 2µ
plasmids35,39, with the best production, ~0.95 g l� 1 limonene at
96 h, by strain LIM141M (Fig.4f). This titre is 5.6-fold higher
than the previous highest titre ever obtained in yeast45, and ~2-
fold higher than the best titres achieved in batch cultivation inE.
coli46,47. Strain LIM141MH showed a slower exponential growth
and the lower levels of Y-FAST� uorescence compared to strain
LIM141M (Fig. 4b, d, e), despite having more copies of the
limonene synthase/Y-FAST module (shown by Y-FAST copy
number; Fig.4c). Both strains also accumulated ~12 mg l� 1 of the
monoterpene alcohol geraniol, which is commonly produced by
yeast with an increased GPP pool35,39. No farnesol (C15 alcohol)
or geranylgeraniol (C20 alcohol) were accumulated by the strains,
indicating that subcellular pools of FPP and the C20 geranylger-
anyl pyrophosphate (GGPP) were low, and that ampli� cation of
limonene synthetic module led to signi� cant redirection of the
carbon� ux towards monoterpene production.

Improving heterologous tetraterpenoid lycopene production in
yeast. A three-gene lycopene synthetic module controlled byGAL
promoters was previously constructed in a 2� plasmid37 (Fig.5a).
This construct includes the farnesyl pyrophophase mutant gene

ERG20F96C which produces GGPP48, a phytoene synthase49,50,
and a lycopene-forming phytoene desaturase mutant50. This
plasmid was transformed into a mevalonate pathway-enhanced
background strain, generating strain LYC137. This strain accu-
mulated ~5 mg lycopene per gram of biomass in 120-h� ask
cultivation (Fig.5b).

The lycopene synthetic module was sub-cloned into both the
PDA1 and BTS1 promoter RPL25-driving HapAmp vectors
(Fig. 5a). The resulting constructs were transformed into the
same background strain, generating strains LYC4 and LYC5,
respectively. Strain LYC4 (PPDA1-RPL25) accumulated slightly
more lycopene than strain LYC1, although the increase was not
signi� cant (Fig.5b). Strain LYC5 accumulated ~25 mg lycopene
per gram of biomass,� ve-fold higher than strain LYC1
(Fig. 5b).

High-level expression of heterologous proteins in yeast. S. cer-
evisiaecan be used as a platform organism for protein production,
including production of pharmaceutical proteins. However, a
notorious disadvantage is that heterologous proteins production is
not as high as what is achievable withE. coliexpression systems. The
high-level expression inE. colican be attributed to the usage of high-
copy-number plasmids (such as the common pET vectors with copy
number about ~15–20) and the use of a very strong inducible
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promoter51. We used thePBTS1-RPL25-driving HapAmp constructs
to introduce theAeBluechromoprotein gene52 (Fig. 6a) or the
EforRedchromoprotein gene53. Blue or pink colonies were obtained
on the transformation plates (Supplementary Fig. 7), indicating high-
level expression of the chromoproteins.

Having con� rmed that the chromoproteins were effective
markers, we then inserted a human papillomavirus (HPV) 16
major capsid protein L1 gene after the AeBlue expression cassette
(Fig. 6a) to test the system for production of a pharmaceutical
protein. For a reference, we cloned AeBlue-and-HPV16-L1
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expression cassettes into a yeast 2� plasmid (Fig.6a). To compare
the ef� ciency of protein production in different systems, an
empty 2� plasmid, the AeBlue-and-HPV16-L1 2� plasmid, the
RPL25-ampli� able AeBlue construct, and theRPL25-ampli� able
AeBlue-and-HPV16-L1 construct were transformed individually
into CEN.PK (gal80� ). The four resulting strains were grown in
MES-buffered YNB medium with 20 g l� 1 glucose aerobically for

72 h. Cells with multi-copy integration of the AeBlue expression
cassette showed a strong Tibetan blue colour, while cells with an
empty cassette were milky white colour (Fig.6b). The cells with
2� plasmid containing AeBlue+ HPV-L1 expression cassettes
were a faint blue colour, whereas the cells with multi-copy
integration of AeBlue+ HPV-L1 expression cassettes displayed
the strong Tibetan blue colour (Fig.6b). This indicated superior
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expression capacity from the in vivo ampli� cation method for
multi-copy genome integration, compared to conventional 2�
plasmid method.

SDS-PAGE of whole-cell and soluble protein extracts showed
bands at ~25 kD (AeBlue molecular weight) in all samples, with
much stronger bands observed in the multi-copy integration
strain samples than in the 2� plasmid strain samples (Fig.6d). In
the multi-copy integration strains, these bands represented ~3%
of whole-cell protein, suggesting heterologous protein expression
in yeast may reach the levels often obtained inE. coli.

A second strong band at ~50 kD band (HPV16-L1 molecular
weight) was observed in samples from cells expressing HPV-L1,
although it was not as distinct at the putative AeBlue band
(Fig.6d). This may be due to the use of theSe.GAL2promoter,
which is not fully induced in the ethanol phase, in these
constructs compared to the constitutiveALD6 promoter used
for the AeBlue expression cassette. Again, the bands in the
multi-copy integration strain samples were stronger than the 2�
plasmid samples. Surprisingly, considering that HPV16-L1 is a
soluble protein54, these bands were not distinguishable in lysate
supernatant samples.

To fully induce the Se.GAL2 promoter for HPV16-L1
expression, we attempted to grow the plasmid and integration
strains harbouring HPV16-L1 in synthetic minimal medium
(YNB) with ethanol or galactose as the carbon source. However,
these cultivation conditions were lethal for the multi-copy-
integration cells. We then grew the cells in rich (yeast-peptone
(YP)) medium with 20 g l� 1 galactose as the carbon source.
Under these conditions, AeBlue expression from 2� plasmid was
not observable by visual examination (Fig.6b) or SDS-PAGE
(Fig. 6d). This may be due to loss of 2� plasmid in the rich
medium. In contrast, strong AeBlue-speci� c and HPV16-L1-
speci� c bands were seen in whole-cell lysate and lysate super-
natant samples from the cells with multi-copy integration
constructs. This further con� rmed that HPV16 L1 capsid protein
is insoluble in yeast in our system. Attempts to solubilise HPV16-
L1 L1 capsid protein were unsuccessful (data not shown). Despite
being unable to detect HPV16-L1-speci� c bands in lysate
supernatant (Fig.6d), we could still separate properly assembled
virus-like particles (VLPs) by ultracentrifugation of lysate super-
natant (Fig.6c). SDS-PAGE examination of VLP components
puri� ed from ultracentrifugation showed a HPV16-L1-speci� c
band at ~50 kD (Fig.6d; Lane VLPs:4). TEM images of the VLPs
showed their diameter was around 40 nm (Fig.6c), consistent
with previous literature55.

In SDS-PAGE results, we observed strong bands in the lysate
supernatant sample (band d1) and lysate pellet samples (bands
d2, d3, and d4) (Fig.6d). LC-MS/MS-based proteomics was used
to analyse the protein composition in these four bands
(Supplementary Data 1–4). The top hit protein in the ~50 kD
band (band d2) was the HPV16 L1 capsid. Interestingly, the top
hit proteins in other three bands (d1, d3 and d4) were yeast
chaperones. In bands d1 and d3, the top hit proteins were HSP70
family chaperone Ssa1, and in bands d4, the top hit protein was
HSP90 family chaperone Hsc82. We therefore hypothesised that
insoluble expression of HPV16-L1 caused upregulation of yeast
chaperones, and HPV16-L1, HSP70 chaperones, and HSP90
chaperones might exist in insoluble forms. However, it would
require further systematic examination to get a better under-
standing of these phenomena.

In summary, although some insoluble expression of the HPV16
L1 was observed, our results both with chromoprotein AeBlue
and the HPV16 L1 showed that multi-copy gene integration via
HapAmp method can lead to heterologous protein overexpres-
sion in yeast to the high levels that are commonly seen inE. coli
expression systems.

Discussion
Here, we developed a genetic engineering method to integrate
multiple copies of heterologous gene(s) into the yeast genome
using in vivo gene ampli� cation driven by a haploinsuf� cient
gene (HapAmp). The functional strength per copy of a hap-
loinsuf� cient gene is strongly associated with growth� tness,
which can be exploited as an evolutionary force to drive gene
ampli� cation. Decreased expression level provides an evolu-
tionary force that drives ampli� cation of linked haploinsuf� cient
and heterologous genes, so that cells are growth competitive. We
exempli� ed the application of this method to improve production
of different types of terpene products. We also showed that our
method enabled high-level expression of heterologous protein in
yeast, at levels similar to that achieved inE. coli for protein
production.

This method presents three main advantages for the intro-
duction of heterologous genes via genome integration. Firstly,
integration copy number can be titrated by altering expression
dosage per copy of haploinsuf� cient gene. Expression level can be
reduced by a variety of methods. Here, we tested two approaches:
(1) replacing the gene promoter with a weaker promoter
(Figs.2–4), and (2) using non-preferred codons (Fig.2). In these
experiments, we observed a range of between 4 and 47 copies,
with an inverse relationship between promoter strength and copy
number. We characterised a range of weak promoters here
(Supplementary Fig. 8) and in previous work3 that can be applied
to decrease gene dosage. In addition to promoter strength and
codon usage, other approaches could be used to decrease
expression dosage, including engineering the kozak sequence
and/or the 5�-mRNA structure. These genetic tools add engi-
neering � exibility to modify copy number for this HapAmp
method in yeast.

Secondly, the maintenance of integration is auto-selectable:
selection pressure is provided from the dosage sensitivity of the
haploinsuf� cient gene, which is linked to the gene of interest and
is maintained to support normal growth rates. This means that no
antibiotics or modi� cation of other environmental conditions in
the culture are required to provide ongoing selection pressure for
maintenance of the gene of interest. Compared to use of a 2µ
plasmid, this method provides more stable expression of het-
erologous proteins in yeast (Fig.6b). In addition, it does not
require chemical induction for ampli� cation2,15.

Thirdly, the presence of multiple haploinsuf� cient genes means
that many different loci are available for engineering gene
ampli� cation. We demonstrated the method usingRPL25and
SEC23as the driving gene. We further characterised the promoter
strength of � fteen additional haploinsuf� cient genes (Supple-
mentary Fig. 8) that can also be used to drive gene ampli� cation.

Initial integration of the genes of interest uses standard yeast
transformation procedures by selection of an auxotrophic or
antibiotic marker (e.g.LEU2 or hphMax in Figs.2–6). Upon
transformation, we observed a variable proportion of false clones
(not expressing the gene of interest) on the transformation plates
(Supplementary Figs. 1 and 5). We presume that, in these cases,
either spontaneous mutations have provided the yeast an alter-
native mechanism to recover growth rate, or the gene of interest
was not correctly integrated into the target locus. Use of visual
markers (� uorescent proteins or chromoproteins) can facilitate
the selection of correct clones with ampli� ed constructs. In the
absence of such visual markers, characterisation or veri� cation of
a pool of clones would be necessary to select clones with multi-
copy integration of heterologous genes. Further optimising the
genetic background of the yeast strains used, such as eliminating
the non-homologous end joining mechanism to decrease non-
homologous gene integration, might be useful to eliminate rate of
false positives for the current method.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30529-8

8 NATURE COMMUNICATIONS|         (2022) 13:2895 | https://doi.org/10.1038/s41467-022-30529-8 | www.nature.com/naturecommunications



The HapAmp method successfully improved production of
heterologous terpenes including the C15 sesquiterpene nerolidol
(Fig. 3), the C10 monoterpene limonene (Fig.4), and the C40
tetraterpene lycopene (Fig.5). Production of C15 terpenes in yeast
is typically relatively straightforward, with gram per litre titres
achievable39,56. This is likely because the C15 precursor, FPP, is
produced in yeast naturally to deliver sterol pathway products
required for yeast growth. In addition, sesquiterpene synthases
have reasonably good catalytic properties, making them more
competitive to access FPP. Production of C10 monoterpenes,
however, has historically been very challenging. This is due to
both a dearth of C10 precursors57 and the poor catalytic prop-
erties of many monoterpene synthases45,58. These limitations
have previously restricted published titres of monoterpenes to
mg l� 1 in � ask cultivation35,39,45,59. Here, we have achieved g l� 1

titres (Fig.4) in a single engineering step using a high mevalonate
pathway � ux strain with an introduced GPPS and targeted
degradation of FPPS to decrease competition at the C10 pathway
node. We believe this is the highest titre achieved in metabolically
engineered microbes in a� ask cultivation with 20 g l� 1 glucose as
carbon source reported to date.

Interestingly, one replicate of the monoterpene control strain
produced ~300 mg l� 1 limonene, in comparison to the other
three replicates which produced ~40 mg l� 1 limonene, despite the
plasmid copy number being the same in all four replicates
(Fig.4). This suggests that an unintended mutation has arisen in
this strain which affects limonene production positively. The
source of this variation will be examined in future work and may
form the basis of further engineering efforts.

We observed a tight correlation between gene copy number
and GFP� uorescence (Fig.2); however, this relationship breaks
down for the different terpene products, resulting in variable
improvement ratios. This is most likely due to the fact that the
relationship between the GFP peptide and its� uorescence is very
close and does not rely on other factors such as substate and
cofactor availability—whereas the terpene synthases are enzymes
and subject to more in� uences on their behaviour. In addition,
variable metabolic burden caused by overexpression of terpene
synthases or other physiological perturbations in metabolically
engineered systems may affect the relationship between copy
number and product titre. For products, limonene production
improvement was ~24-fold, whereas nerolidol improvement was
1.7-fold, and lycopene improvement was 5-fold. However, we
always obtained a higher titre by in vivo gene ampli� cation. In
particular, for monoterpenes, insuf� cient catalytic ef� ciency of
terpene synthase is a signi� cant bottleneck for production of
heterologous terpenoids in yeast. Increasing copy number via
insertion of tandem repeats at the same locus combined with
screening for improved production56 or introduction of addi-
tional expression cassettes at separate loci43 has been used to
overcome this bottleneck previously. However, these approaches
require complex cloning and extended experimental timelines to
deliver the desired improvements. The HapAmp system provides
a faster and simpler method to achieve superior results.

We tested several constructs ranging up to three expression
cassettes (lycopene pathway: insert size of 7917 bp). We have not
sought to test the maximum cargo size for this approach. How-
ever, we did not observe a clear relationship between size of the
insert (‘cargo’) and copy number ampli� cation, suggesting that
even larger inserts may be possible for the technique.

In addition to its application in metabolic engineering, we also
examined the potential of HapAmp for increasing heterologous
protein production. Using chromoprotein AeBlue and the HPV16
L1 capsid protein as examples (Fig.6), we demonstrated that inS.
cerevisiae, heterologous protein could be produced at levels
commonly seen inE. coli. AeBlue was expressed in soluble form,

whereas HPV16 L1 capsid protein was primarily expressed in
insoluble form. Insoluble expression of HPV16 L1 capsid protein
has been reported inE. coli60–62 but not in S. cerevisiae. In E. coli,
N-terminal truncation60,61, use of a fusion partner61, and over-
expression GroEL/GroES chaperones62 (which accept broader
substrates than cytosolic chaperones inS. cerevisiae63,64),
improved soluble expression of HPV L1 capsid proteins. These
strategies might also improve soluble expression of HPV capsid
proteins in yeast.

The HapAmp method should be applicable in other indust-
rially relevant chassis organisms that have haploinsuf� cient genes.
A potential haploinsuf� cient gene may encode essential compo-
nents of the machineries for protein synthesis and transportation
or other essential cell structures28. Putative haploinsuf� cient
genes can be identi� ed by comparative genomics and con� rmed
by testing growth� tness in association with expression dosage of
a gene. For diploid organisms, this can be done by disrupting one
allele and integrating the ampli� able construct at the other allele
locus, or by simultaneously integrating the ampli� able constructs
at both alleles. In addition, native non-homologous end joining
mechanisms can be diminished/disrupted to improve the suc-
cessful rate of ampli� cation of genes of interests65. A nuclease-
mediated DNA double-chain break like CRISPR66 could also be
used to assist the integration of the ampli� able construct. This
may avoid the use of a selectable marker in the gene ampli� cation
construct.

Methods
Plasmid and strain construction. Plasmids used in this work are listed in Sup-
plementary Data 5, and strains are listed in Supplementary Data 6. Primers used in
polymerase chain reaction (PCR) and PCR performed in this work are listed in
Supplementary Data 7. Plasmid construction processes are listed in Supplementary
Data 8. Yeast strain construction processes are listed in Supplementary Data 9. A
LiAc/SS carrier DNA/PEG method67 was used for yeast transformation.

Yeast cultivation. For characterisation of yEGFP-expressing strains, yeast cells from
glycerol stocks were streaked on YNB-glucose agar, which comprised of 6.9 g l� 1

yeast nitrogen base without amino acids (YNB, FORMEDIUM#CYN0402) with pH
adjusted to 6.0 using sodium hydroxide solution, 20 g l� 1 glucose, and 20 g l� 1 agar.
MES-buffered YNB-glucose medium was used in following cultivation, which com-
prised of 19.5 g l� 1 2-(N-morpholino)ethanesulfonic acid (MES), 6.9 g l� 1 YNB,
20 g l� 1 glucose, and its pH was adjusted to 6.0 with ammonia hydroxide solution.
For the growth in� ask, seed cultures grown to the exponential phase (OD600� 4)
were inoculated into 20 ml MES-buffered YNB-glucose medium in 125 ml Erlen-
meyer� asks to start the cultivation in a 200 rpm 30 °C incubator. For the growth in
96-well microplate, yeast cells were grown in YNB-glucose medium (6.9 g l� 1 YNB,
20 g l� 1 glucose, pH 6.0) for about 20 h to stationary phase in a 350 rpm 30 °C
incubator to prepare seed culture. Seed culture (5� l) was inoculated into 100� l MES-
buffered YNB-glucose medium to prepare Culture 1. Culture 1 (2� l) was inoculated
into 100� l MES-buffered YNB-glucose medium to prepare Culture 2. Culture 2 was
incubated in a 350 rpm 30 °C incubator overnight for analysis of yEGFP� uorescent
in the cells grown to the exponential growth phase, and Culture 1 for two nights for
analysis in the cells grown to the ethanol growth phase.

For characterisation of nerolidol/limonene-producing strains, dodecane-
overlayed two-phase� ask cultivation was used. Yeast cells from glycerol stocks
were streaked on YNB-high-glucose agar, which contained 6.9 g l� 1 YNB (pH 6.0),
200 g l� 1 glucose, and 20 g l� 1 agar. Before initiating the two-phase� ask
cultivation, cells were pre-cultured in MES-buffered YNB-20 g l� 1 glucose to
exponential phase (OD600 between 1 to 4) and collected by centrifugation.
Collected cells were then resuspended in fresh fermentation medium. To initiate
the cultivation, appropriate volumes of pre-cultured cells were transferred to MES-
buffered YNB medium with 20 g l� 1 glucose to an initial OD600 of 0.2 in a total
volume of 23 ml medium in a 250 ml� ask, and 2 ml sterile dodecane was added
after inoculation. In the� rst 12 h of cultivation, 3 ml culture was sampled for
growth curve measurement. Dodecane was sampled and stored at� 80 °C for
terpene analysis.

Flask cultivations for lycopene-producing strains were prepared as the� ask
cultivation used for yEGFP-expressing strains. For chromoprotein/HPV16 L1-
expressing strains, yeast cells grown overnight in 5 ml MES-buffered YNB-glucose
medium were inoculated into 20 ml fresh MES-buffered YNB-glucose medium or
20 ml YP-galactose (20 g l� 1 peptone, 10 g l� 1 yeast extract, and 20 g l� 1 galactose)
to start characterisation cultures.
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Flow cytometry. A BD Accuri™C6 � ow cytometer (BD Biosciences, USA) was
used for� uorescence analysis in single cells. Cells expressing yEGFP were sampled
and directly used for characterisation of the yEGFP� uorescence. Cells expressing
Y-FAST was sampled and mixed with 20� M HMBR (synthesised and prepared in
2 mM stock in dimethyl sulfoxide40) before analysis. Debris particles were excluded
through an FSC.H threshold with the threshold value of 250,000. A 488 nm laser
was used to excite GFP and Y-FAST� uorescence. The detector equipped with a
530/20 bandpass� lter was used to monitor the� uorescence (FL1.A). For each
sample, 10,000 events were recorded. A BD Csampler software (BD Accuri
C6 software version 1.0.264.21) were used to extract mean values of FSC.A, SSC.A,
and FL1.A. The� uorescence level of GFP and Y-FAST was expressed as the fold of
a background� uorescence in the exponential grown phase cells of strain GH43.

Metabolite analysis. HPLC analysis was performed by the Metabolomics Aus-
tralia (Queensland node) using a previously described method68. In brief, an
Agilent 1200 HPLC system and a Thermo Fisher Chromeleon Chromatography
Data System software were used. Dodecane samples in some cases were diluted
with dodecane before HPLC analysis. For HPLC analysis, 5� l dodecane samples
(or standards prepared in dodecane) were mixed with 200� l ethanol, and 20� l
mixture was injected and separated with a guard column (SecurityGuard Gemini
C18, Phenomenex PN: AJO-7597) and a Zorbax Extend C18 column
(4.6 × 150 mm, 3.5 µm, Agilent PN: 763953-902). The mixture of solvent A (water)
and solvent B (45% acetonitrile, 45% methanol, and 10% water) was used to elute
the analytes with a linear gradient (from 0–24 min, 5–100% solvent B; from
24–30 min, 100% solvent B; from 30.1–35 min, 5% solvent B).

For lycopene measurement, yeast cells were collected and resuspended in 200� l
2 M l� 1 sodium hydroxide and vortexed with 200 mg glass bead and 1 ml hexane
for at least 10 min. Lycopene molar extinction coef� cient (182 × 103) at 471 nm was
used to calculate lycopene concentration69. In some cases, lycopene extracts were
diluted with hexane to make the absorbance reading <0.6.

Protein puri� cation. Yeast cells were homogenised by vortexing with glass beads
for 15 min in phosphate-buffered saline (PBS) buffer plus 2 mM ethylenediami-
netetraacetic acid. Whole-cell lysates, lysate supernatants, and lysate pellets were
examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis analysis
on Mini-PROTEAN®Precast Gels (Bio-rad).

The lysis was followed by centrifugation at 18,000 ×g for 30 min to pellet the
cellular debris. The soluble fraction was then loaded on top of a gradient made of
1 ml of 20% Iodixanol/PBS buffer, 1 ml of 30% Iodixanol/PBS and 1 ml of 40%
Iodixanol/PBS in a Thinwall Ultra-Clear Tube (Beckman Coulter, Indianapolis,
USA) and subjected to ultracentrifugation for 2 h 30 min at 150,000 ×gon a SW41
Ti rotor or a using a Beckman Optima L-100XP ultracentrifuge (Beckman Coulter,
Indianapolis, USA). A band containing the VLPs encapsulating protein was
extracted using a 1 ml syringe by poking a whole through the tube. Bradford was
used to measure protein concentration and sample was further examined on TEM
and purity con� rmed on Mini-PROTEAN®Precast Gels (Bio-rad).

Transmission electron microscopy. Samples containing puri� ed VLPs of
0.1 mg ml� 1 were applied to formvar/carbon coated grids (ProSciTech Pty Ltd,
Australia) and incubated for 2 min. Grids were then washed with 40� l of distilled
water for 30 s twice, and then stained with 20 g l� 1 uranyl acetate for 1 min, after
being blotted on� lter paper. Images were taken on a HITACHI HT7700 trans-
mission electron microscope at accelerating voltage of 80 keV at the Centre for
Microscopy and Microanalysis.

Genome sequencing. Yeast genomic DNA was extracted using MagAttract HMW
DNA Kit (Qiangen) with a modi� ed protocol. Yeast cells (20 ml, OD600around 10)
were washed once using PBS buffer and resuspend in 2 ml 1 M sorbitol solution.
Yeast cell walls were digested by adding 30 U Zymolyase-20T (nacalai, Japan; 1 U
per � l in 1* PBS containing 100 mM DTT and 50% v/v glycerol) at 30 °C for
30 min. Yeast protoplast cells were collected and resuspended in 300� l Buffer AL
(MagAttract HMW DNA Kit) by pipetting using wide bore pipette tips, and then
360 buffer ATL (MagAttract HMW DNA Kit) was added and mixed. Following
this, protocol provided in MagAttract HMW DNA Kit (Qiangen) was adopted
including digestion by Proteinase K and Rnase A and puri� cation using magnetic
beads. Genomic DNA was eluted using 400� l Buffer AE (MagAttract HMW DNA
Kit) and treated using 100� l tris-saturated phenol (pH 8.0, Ameresco) by� ickering
and 100� l chloroform was added and mixed. Upper-layer water phase was col-
lected after centrifuging at 17,000 ×g for 5 min and mixed with 1 ml ethanol.
Magnetic beads (MagAttract HMW DNA Kit) were used to purify genomic DNA
with twice 70% ethanol wash and elution in 50� l water. Concentration of genomic
DNA was quanti� ed using Qubit Fluorometer and Qubit dsDNA BR Assay Kit
(Thermo Fisher). Genomic DNA (500 ng) was used to prepare genome sequencing
library using Rapid Barcoding Kit (SQK-RBK004, Oxford Nanopore) and
sequenced using R9� owcell MIN106D and MinION Mk1C (Oxford Nanopore).
High-accurate base-calling was performed using ont-guppy-for-mk1c (version
4.2.3) installed MinION Mk1C (MinKNOW version 20.10.6). Galaxy Australia
online server was used for data processing70. Collapse Collection (Galaxy Version
5.1.0) was used to combine fastq dataset into a single� le. Nanoplot was used for

statistical analysis of MinION reads71. Canu assembler was used for genome
sequence assembly72. Maker (Galaxy Version 2.31.11) was used to collect anno-
tation evidence with input ofS. cerevisiaegene sequences and heterologous gene
sequences as ESTs input� le73. miniMap2 was used to align trimmed reads out-
putted by Canu assembler against contigs outputted by Canu assembler74. JBrowse
(version 1.16.10-desktop)75 and Integrative Genomics Viewer (version 2.8.13)76

were used to illustrate genome structure and read alignment.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
MinION whole genome sequencing raw-read data are achieved in NCBI BioProject
database with submission IDPRJNA688119. Processed data for MinION genome
sequencing are achieved in Zenodo (https://zenodo.org/record/6378077#.YnPhi9rMI2w;
https://doi.org/10.5281/zenodo.6378077). Plasmids used in this study are available on
request or on Addgene (Addgene IDs: 185870-185894) (https://www.addgene.org/
Claudia_Vickers/). Source data are provided with this paper.
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