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Abstract

Previous studies have suggested that the degree of social anhedonia reflects the vul-

nerability for developing schizophrenia. However, only few studies have investigated

how functional network changes are related to social anhedonia. The aim of this fMRI

study was to classify subjects according to their degree of social anhedonia using

supervised machine learning. More specifically, we extracted both spatial and tempo-

ral network features during a social cognition task from 70 subjects, and used support

vector machines for classification. Since impairment in social cognition is well

established in schizophrenia-spectrum disorders, the subjects performed a comic

strip task designed to specifically probe theory of mind (ToM) and empathy

processing. Features representing both temporal (time series) and network dynamics

were extracted using task activation maps, seed region analysis, independent compo-

nent analysis (ICA), and a newly developed multi-subject archetypal analysis (MSAA),

which here aimed to further bridge aspects of both seed region analysis and decom-

position by incorporating a spotlight approach.We found significant classification of

subjects with elevated levels of social anhedonia when using the times series

extracted using MSAA, indicating that temporal dynamics carry important informa-

tion for classification of social anhedonia. Interestingly, we found that the same time

series yielded the highest classification performance in a task classification of the

ToM condition. Finally, the spatial network corresponding to that time series included

both prefrontal and temporal-parietal regions as well as insula activity, which previ-

ously have been related schizotypy and the development of schizophrenia.

K E YWORD S

archetypical analysis, decomposition, functional connectivity, social anhedonia, support vector

classification

1 | INTRODUCTION

In the perspective of schizophrenia as a neurodevelopmental disease,

it is very important to study potential early risk groups (Insel, 2010;

Lewis & Levitt, 2002; Weinberger, 1987). Schizotypy refers to a set of

positive, negative, or disorganized personality traits that are related to

Abbreviations: CSAS, Chapman social anhedonia scale; Emp, empathy; EPI, echo planar

imaging; fMRI, functional magnetic resonance imaging; HSA, high social anhedonia; ICA,

independent component analysis; IPL, inferior parietal lobule; LSA, low social anhedonia;

MCC, Mathews correlation coefficient; mPFC, medial prefrontal cortex; MSAA, multi-subject

archetypal analysis; NVR, Nuisance variable regressors; P/ACC, posterior/anterior cingulate

cortex; PCon, pooled condition analysis; Phy1/2, physical condition 1 and 2; ROI, region of

interest; sMSAA, spotlight MSAA; SPM, statistical parametric mapping; SVC, support vector

classification; ToM, theory of mind; TPJ, temporoparietal junction; wbMSAA, whole

brain MSAA.
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schizophrenia (Ettinger et al., 2015). Individuals with schizotypy are

nonclinical subjects, but they have some psychotic-like experiences,

ranging from few (low schizotypy) to numerous (high schizotypy),

which reflect their vulnerability for developing schizophrenia-

spectrum disorders (Blanchard, Collins, Aghevli, Leung, & Cohen,

2011; Kwapil, 1998; Mason, 2015). The importance of studying

schizotypy is twofold. Firstly, it has been suggested that early detec-

tion and intervention of schizophrenia might yield substantial

improvements in treatment outcome, comparable to what has been

reported in preventive approaches to cardiac death (Insel, 2010). Sec-

ondly, schizotypy studies have shown to increase the understanding

of the psychopathology of schizophrenia.

Anhedonia, which is the reduced capability to experience pleasure

in normal pleasurable situations, is considered as a negative dimension

of schizotypy. High levels of anhedonia have consistently been

reported in patients with schizophrenia (Blanchard et al., 2011; Bora,

Yucel, & Pantelis, 2009) and ultra-high risk groups (Bora & Pantelis,

2013). Furthermore, longitudinal studies have shown that subjects

with a high level of social anhedonia (reduced pleasure experience in

social contexts) are more likely to develop schizophrenia-spectrum

disorders later on, compared to control groups or high scorers on pos-

itive schizotypy (measured by perceptual aberration scale and magical

ideation scale; Blanchard et al., 2011; Kwapil, 1998) (Gooding,

Tallent, & Matts, 2005; Wang et al., 2014). For these reasons, social

anhedonia will be the focus in this study.

On the other hand, the importance of social cognition research in

understanding psychopathology of schizophrenia has been acknowl-

edged (Green, Horan, & Lee, 2015; Penn, Sanna, & Roberts, 2007).

Studies have shown that social cognition is substantially impaired in

patients with schizophrenia and early risk groups (Bora & Pantelis,

2013; Fett, Viechtbauer, Dominguez M de, & Krabbendam, 2011), and

changes have even been reported in subjects with schizotypy

(Blanchard et al., 2011; Morrison, Brown, & Cohen, 2013). Theory of

mind (ToM) is often defined as the ability to attribute mental states to

ourselves and others, and consists of both a cognitive (centered about

processing of knowledge and believes) as well as an affective (emo-

tional processing) component (Sebastian et al., 2012; Shamay-Tsoory,

Harari, Aharon-Peretz, & Levkovitz, 2010). The affective aspect is very

similar to what is often defined as cognitive empathy (Sebastian et al.,

2012), and will for simplicity, be referred to as empathy (Emp) in the

rest of the article. The abnormalities of ToM or empathy ability has

been related to schizotypy (Bora & Pantelis, 2013; Pickup, 2006). In

particular, previous studies consistently suggested an association

between high negative schizotypy and poor metalizing ability mea-

sured by self-report scales (Bedwell et al., 2014; Henry, Bailey, &

Rendell, 2008; Thakkar & Park, 2010; Wang et al., 2013) and behav-

ioral tasks (Pflum & Gooding, 2018; Thakkar & Park, 2010).

Functional imaging studies have correlated the degree of schizotypy

and activity in isolated brain regions reviewed in (Ettinger et al., 2015;

Nelson, Seal, Pantelis, & Phillips, 2013), however, until now, only rela-

tively few studies have investigated how functional connectivity changes

in individuals with schizotypy. Lagioia et al. determined six resting state

networks and found that functional connectivity in the visual and

auditory networks were correlated to the degree of schizotypy (Lagioia,

Van De Ville, Debbané, Lazeyras, & Eliez, 2010). In terms of social anhe-

donia, studies found altered connectivity between the striatal seeds and

the cingulate cortex as well as the insula during resting state (Wang

et al., 2016) and altered functional connectivity of the amygdala during

facial emotion processing task (Wang et al., 2018). Although previous

studies have looked at correlations between brain activation or connec-

tivity and the degree of schizotypy, actual classification is of great impor-

tance to determine if these changes can be used to categorize or even

diagnose subjects already in early stages. Machine learning methods have

been used in classification of schizophrenia patients from healthy control

using functional imaging data (reviewed in (Madsen, Krohne, Cai, Wang, &

Chan, 2018)). So far there are a few studies that have investigated the

classification performance of individuals with schizotypy based on brain

activation during task-based fMRI using machine learning methods

(Modinos et al., 2012; Shinkareva, Ombao, Sutton, Mohanty, & Miller,

2006), but both studies only focused on the positive dimension of

schizotypy instead of negative schizotypy.

The aim of our studywas to investigate which features extracted from

functional networks during a social cognition task were sufficient to clas-

sify subjects according to their degree of social anhedonia using super-

vised machine learning. To this end, we extracted brain network features

using both standard activation maps and traditional seed region analysis

(Biswal, Yetkin, Haughton, & Hyde, 1995; Cole, Smith, & Beckmann,

2010), but also decomposition methods based on independent compo-

nent analysis (ICA; Beckmann & Smith, 2004; Calhoun, Adali, Pearlson, &

Pekar, 2001) and the multi-subject archetypal analysis (MSAA) described

in (Hinrich et al., 2016). Seed based analysis procedures extract features

from defined seed regions, whereas ICA uses unsupervised learning to

decompose the data into latent maximally independent spatial compo-

nents. Each of these components can be thought of as representing a

functional brain network. MSAA can be seen as seed region-based analy-

sis where the seeds are automatically defined based on unsupervised

learning. The features used for the classification, and the relation

between the approaches are illustrated in Figure 1.

The use of different methods helped us exploring the separate

importance of spatial and temporal network features.

Our second aim was to specifically investigate which features were

important for classification. We investigated time series extracted

from either specific brain regions or from networks, and hypothesized

that the features showing significant classification of subjects with

high social anhedonia would entail brain regions previously associated

with schizotypy and the development of schizophrenia. Such regions

include as prefrontal cortex, temporal–parietal regions, and insula

(Chan, Di, McAlonan, & Gong, 2011; Kühn, Schubert, & Gallinat,

2012; Takahashi, Wood, Yung, Velakoulis, & Pantelis, 2009).

2 | MATERIALS AND METHODS

2.1 | Participants

This study included 76 college students from Guangzhou Medical Uni-

versity (37/39 male/female) with age between 17 and 21 years

2 KROHNE ET AL.



F IGURE 1 Illustration of the feature extraction methods and aims of classification. We roughly divide the feature extraction methods considered
into statistical parametric mapping, unsupervised decomposition, and seed region analysis. Here the letters a–k refers to the results of individual
analyses as displayed in Table 1. (a) Refers to spatial maps extracted from statistical parametric mapping and classification approach (b,c) are based on
static measures from seed based analysis, (d,e) are expressions of functional connectivity within and between the seeds and (f,g) reflect temporal

dynamics of seed based analysis. In analyses (f–k) the time series are rearranged such that the order of the conditions is consistent across subjects, this
was necessary as the order of the tasks were randomized across participants. In approach (h) time series and spatial maps obtain from ICA are
considered, and approaches (i–k) are based on archetypical analysis which can be seen as seed based analysis with automatical extraction of seeds,
merging aspects of ICA and seed region analysis. For approaches (e,f and h–k) classification was performed for each ROI/component separately, and
thus multiple comparisons correction was used to assess the significance of the results [Color figure can be viewed at wileyonlinelibrary.com]
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(μ = 19.3 years, σ = 0.9 years). The subjects were chosen such that

they covered a continuous range of schizotypy and none had a history

of drug abuse, or psychiatric disorders. The Chapman social anhedonia

scale (CSAS) was used to assess the inability to experience pleasure

from social interactions (Chan et al., 2015; Chapman, Chapman,

Kwapil, Eckblad, & Zinser, 1994). The CSAS consists of 40 items

(e.g., “Just being with friends can make me feel really good”; “Making

new friends isn't worth the energy it takes”) and higher score indi-

cated more severity of anhedonia. The good reliability and validity of

the CSAS has been proved in Chinese context (Chan et al., 2015). The

internal consistency coefficient was 0.84 in our sample. The mean and

standard deviation of all four Chapman scales and the Becks Depres-

sion Inventory can be found in Data S1–Table S2. All subjects were

right-handed and a radiologist screened all scans to exclude subjects

with any incidental clinical abnormalities. The study was approved by

the Ethics Committee of the Institute of Psychology at the Chinese

Academy of Sciences.

In a previous analysis, the same dataset showed specific correla-

tion between the degree of social anhedonia and the mean activity in;

the middle temporal gyrus, the temporoparietal junction and the

medial prefrontal gyrus. (Wang et al., 2015). In contrast, this study

investigated if the measured changes were sufficient for actual classi-

fication of subject with high and low social anhedonia (HSA/LSA)

using support vector machines.

Subjects were defined in the HSA group if their CSAS score was

more than one standard deviation above the mean (based on a large

independent dataset including 887 subjects (Chan et al., 2012)). This

separation threshold was relatively low, but comparable with what

previously has been used in the literature (Wang et al., 2016). Further-

more, even when using this relatively low separation boundary, the

dataset was unbalanced (HSA = 14/LSA = 56 subjects). As it will be

discussed more carefully in Sections 2.9 and 3.4 this complicated the

classification procedure.

2.2 | Functional imaging task

A Chinese adaption of the visual comic strip task developed by Völlm

et al. was presented in a block design (Völlm et al., 2006; Wang et al.,

2015). The task included four different conditions namely ToM, empa-

thy, and two corresponding control conditions; “physical causality

with one character” (Phy1) and “physical causality with two charac-

ters” (Phy2). Whereas the ToM and empathy condition were designed

to probe the corresponding social cognition processing, the physical

conditions were designed to look as similar to the social cognition

conditions as possible. Hence, Phy1 included comic strips with only

one character, whereas Phy2 included two interacting characters.

Each condition was presented twice, resulting in a total of eight

blocks, with each block containing five trials of comic strips belonging

to the same condition. When the condition was presented the second

time, a new set of comic strips were used, hence each comic strip was

only seen once by each subject. In each trial, three pictures depicting

a short story were displayed in the upper half of the screen for 6 s.

Afterward, two pictures appeared in the lower half of the screen for

another 6 s. During the second 6-s period, participants were asked to

choose one of the two pictures from the lower half of the screen as

the appropriate ending to the story by pressing the corresponding

button with their right hand. For the ToM trials, the original cartoons

from the “Attribution of intention” (Brunet, Sarfati, Hardy-Baylé, &

Decety, 2000) condition was used and the question: “What will the

main character do next?” was asked. For the empathy condition, sce-

narios with emotional states attribution was showed and the question

“What will make the main character feel better?” was asked. The total

duration of the whole task was 8 min and 48 s. To control for effects

of practice and fatigue the blocks were randomized across subjects.

More details, as well as examples on the comic strip task, can be

found in (Völlm et al., 2006), who developed the task.

2.3 | Image acquisition and preprocessing

All scans were acquired on a 3T Siemens Verio MR scanner at Guang-

zhou First People's Hospital in 2012, using a T2* weighted gradient echo

based echo planar imaging (EPI) sequence with echo time = 28 ms, repe-

tition time = 2,000 ms and flip angle = 90�. 264 whole brain volumes

were acquired with a slice thickness of 4 mm, matrix size 64 × 64

(32 slices in coronal plane), field of view = 210 × 210 mm, voxel

size = 3.3 × 3.3 × 4 mm, and bandwidth = 2,232 Hz/px.

The images were preprocessed using Statistical Parameter Map-

ping (SPM) version 12 revision 6685. The eight first volumes of the

scans were removed to ensure T1 equilibrium, and slice-timing correc-

tion was performed to correct for the descending slice order with the

middle slice as reference. The EPI images were normalized to the EPI

template (ICBM-152) and the images were re-sliced to 3 × 3 × 3 mm.

As this study focused on functional connectivity modeling additional

preprocessing steps were included, since artifacts can lead to spurious

connections (Power, Barnes, Snyder, Schlaggar, & Petersen, 2012).

First despiking was performed to remove transient phenomena with-

out scrubbing (Patel et al., 2014) using a Daubechies 4 mother wave-

let. Then additional nuisance regressors were included in a multiple

linear regression and the effect of them was removed from the data.

These included; (a) mean signal and second order detrending

(b) nuisance variable regressors (NVRs), (c) spike percentage from des-

piking, and (d) explicit modeling of specific time frames based on the

DVARS and frame wise displacement criteria as described in (Patel

et al., 2014; Power et al., 2012), using a threshold of 1% and 1 mm,

respectively. NVRs were used to remove both residual motion

(24-parameter Volterra expansion model (Friston, Williams, Howard, &

Frackowiak, 1996) based on the six head motion parameters esti-

mated during realignment) and physiological noise where the mean sig-

nals from nonneuronal brain regions was extracted. Nonneuronal

tissue included white matter, which was segmented using the SPM12

tissue probability map with a threshold of 0.5, cerebrospinal fluid in

the lateral ventricles according to the HarvardOxford atlas (Desikan

et al., 2006). To reduce the influence of partial volume effect with

gray matter, the white matter mask was eroded by two voxels. Finally,

the images were smoothed using an isotropic Gaussian 8 mm full

width at half maximum filter.

4 KROHNE ET AL.



2.4 | Classification using support vector classification

To classify subject into high and low social anhedonia, as well as for

the task classification, we used binary support vector machines to per-

form supervised classification (Cortes & Vapnik, 1995). The goal of

support vector classification (SVC) is to identify a function that dis-

criminates the labels (e.g., high or low social anhedonia) in a training

dataset, such that it is possible to use this function to classify the

labels of a test dataset. In principle, it is possible to apply SVC directly

to the (preprocessed) fMRI images. However, due to the very high

dimensionality of fMRI images in relation to the number of subjects,

perfect classification in the training dataset is trivial but with poor

generalization to the test data due to overfitting (see Madsen et al. for

a more thorough description of SVC for fMRI data (Madsen et al.,

2018)). We therefore applied SVC on 11 spatial and temporal features

(analysis a-k listed in Table 1), which were extracted from the fMRI

data to capture the network changes of interest.

In short, one feature included the task specific activation maps

determined by a SPM analysis (Section 2.5), six features resulted from

a seed region analysis (Section 2.6), and four came from the decompo-

sition methods (Section 2.7). For some of the seed region analysis and

decomposition methods, we extracted both time series and spatial

maps for each seed region/component respectively (analysis e,f and

h–k), and classification was then performed on each extracted feature

respectively. Table 1 lists the classification performances of the fea-

tures yielding the highest classification performance, and maximum

permutation statistics was therefore used to correct for multiple com-

parisons between the components as described in Section 2.9.

For classification, we used the SVC-C implementation from the

LIBSVM (Chang & Lin, 2011) library with a linear kernel. We used

nested cross validation to determine the soft margin penalty parame-

ter, and to evaluate the classification performance. For task classifica-

tion, the cross validation scheme was based on grouped stratified

cross validation where each subject was considered a group. In the

inner loop, the optimal soft margin penalty parameter (C-parameter)

was determined in a logarithmic grid containing 11 values C 2 [2−5,

2−3, …, 215] by 10-fold cross validation, and an unbiased estimate of

the classification accuracy was obtained in another outer 10-fold

cross validation loop.

For HSA classification, a similar scheme was followed but without

grouping as there was only one sample per subject in this case. Fur-

thermore, the C-parameter was adjusted for each class to counteract

the class imbalance (Chang & Lin, 2011). The inner and outer loops

where set to reserve exactly one sample of the least common class

(HSA) resulting in 13- and 14-fold cross validation, this ensured that

stratification across splits was achievable while preserving sufficient

data for training.

2.5 | Statistical parametric mapping

To determine task specific activity maps for all four task conditions

(ToM, Emp, Phy1, and Phy2), we ran a standard SPM analysis, per-

forming a parametric statistical test for each voxel separately. The

significance level was αRFT ≤ 0.05, where random field theory was

used to correct for multiple comparisons. The activation maps were

later used as features (classification approach [a]) for classification.

Since the activation maps were constructed based on information

about task onset and duration, we expected that they would obtain a

high performance for classifying the tasks conditions. However, for

the social anhedonia classification, which was not directly related to

the presented task, the static nature of this feature extraction step

might not identity information useful for classification. For the task

classification, we used one task activation map for each social con-

struct, that is, the ToM—Phy1 condition, and empathy—Phy2 condi-

tion, respectively. For the HSA classification, we used one single

contrast map, reflecting the pooled effect of ToM, and empathy in

comparison to the physical control conditions, as illustrated in

Figure 1.

Furthermore, we used SPM to perform a pooled condition analysis

(PCon) identifying the pooled effect of the social cognition tasks (ToM

and Emp) compared to the control conditions. This was used as input

for the spotlight MSAA as described in Section 2.7.

2.6 | Seed region analysis

Seed region analysis is a very intuitive way to investigate the brain by

determining the activity in predefined regions of interest (ROIs). In

this study, six different methods (approach b–g) were used to investi-

gate the ROI specific activity, which later were used for classification.

These included; approach (b): the mean activity and (c) variance within

each ROI, (d) the covariance between all N ROIs (calculated pairwise),

(e) the correlation between the time series of each ROI with all voxels

in the brain (classical seed based analysis) resulting in a connectivity

map for each seed, (f) the extracted time series of each ROI sepa-

rately, and (g) the time series of all ROIs concatenated. All of these are

illustrated in Figure 1, and enabled us to study the importance of tem-

poral dynamics (approach (f) and (g)), network coupling (approach

(d) and (e)), and static features separately.

The time series of each ROI were extracted as the first

eigenvariate, which reflects the most consistent source across all

included voxels. Compared to using the average across the ROI, this

can be an advantage if there are multiple sources in the given ROI

(Poldrack & Gorgolewski, 2014). When using the time series as fea-

ture for classification, they were rearranged (by simple temporal

reordering) such that they reflect the same structure (ToM, Emp,

Phy1, and Phy2) for all subjects, despite that the order of the condi-

tions were randomized across subjects. In approach (e) the correlation

between the time series of the ROIs, and that of all other voxels in

the brain, was determined using Pearson's correlation coefficient,

followed by conversion to Z-score through the Fisher Z-transform

(Fisher & Fisher, 1915).

In approach (e) and (f) classification was performed independently

for each ROI, highlighting the importance of multiple comparisons cor-

rection as described more carefully in Section 2.9.
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TABLE 1 Classification performance of both task and HSA

Description of classification feature

Task classification accuracy (%; p value) HSA vs. LSA
classification
MCC (p-value)ToM––Phy1 Emp––Phy2

Seed region analysis features

(a) Task activation maps Task specific activation maps determined

using SPM

84%

p = .001

1 × V

81%

p = .001

1 × V

0.13

p = .199

1 × V

Static measures (b) Mean activity Average activity of each ROI 41%

p = .801

1 × K

56%

p = .115

1 × K

-- (†)

(c) Variance Variance within each ROI 58%

p = .070

1 × K

58%

p = .091

1 × K

−0.02
p = .569

1 × K

Network coupling (d) Covariance

(network coupling)

Covariance of the time series of ROIs 60%

p = .039

1 × (K2+K)/2

60%

p = .037

1 × (K2+K)/2

0.43

p = .005

1 × (K2+K)/2

(e) Seed based network Correlation between time series

of a ROI and all voxels in the brain

73%

p = .001

K × V

73%

p = .001

K × V

0.19

p = .897

pUC = .125

K × V

Time series (f) Time series (ROI specific) Time series of each ROI separately 59%

p = .666

K × T1

61%

p = .393

K × T1

0.35

p = .189

pUC = .007

K × T2

(g) Time series

(concatenated)

Time series of each ROI,

concatenated

63%

p = .010

1 × KT1

68%

p = .001

1 × KT1

−0.15
p = .937

1 × KT2

Decomposition features

Feature type

TS TS SM

(h) ICA Time series and spatial maps from ICA 73%

p = .001

K × T1

79%

p = .001

K × T1

0.45

p = .072

pUC = .005

K × T2

0.24

p = .912

pUC = .093

K × V

(i) wbMSAA Time series and spatial maps from wbMSAA 74%

p = .001

K × T1

69%

p = .002

K × T1

0.56

p = .008

pUC = .002

K × T2

0.42

p = .097

pUC = .006

K × V

(j) sMSAALit Time series and spatial maps from spotlight

MSAA (using literature coordinates)

67%

p = .020

K × T1

73%

p = .001

K × T1

0.49

p = .032

pUC = .003

K × T2

0.25

p = .744

pUC = .059

K × V

(k) sMSAAPCon Time series and spatial maps from spotlight

MSAA (using PCon coordinates)

-- (*) --(*) 0.31

p = .463

pUC = .030

K × T2

0.25

p = .732

pUC = .066

K × V

Note: For each performed analysis, this table yields a short explanation of the input feature and classification performance measured in accuracy (task

classification) or Mathews correlation coefficient, MCC (HSA classification). For the HSA classification, both time series (TS) and spatial maps (SM) were

used as features for the decomposition methods. For seed region analysis features e–f and decomposition methods (h–j) the table lists the classification

performance of the component yielding the highest classification performance. The p-value was nonparametrically estimated with random permutation

testing and maximum permutation statistics was used to correct for multiple comparisons when necessary. The number of comparisons × feature

dimensionality are stated for each of the classification models, where the size of the voxel dimension is V = 60,704, T1 = 60 (time points for each

condition), T2 = 264 (total number of time points), and K = 25 (number of components or ROIs). The uncorrected p-value (pUC) was also based on random

permutation and is stated for some HSA classifications. (†) HSA was not classified as the overall mean per subject was subtracted during preprocessing. (*)
task classification was not calculated for the sMSAAPCon analysis, since this result would be biased.

Abbreviations: Emp, empathy; HSA, moderately high social anhedonia; LSA, low social anhedonia; MCC, Matthews correlation coefficient; ToM, theory

of mind.
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2.7 | Decomposition methods

One of the most frequently used decomposition methods in neurosci-

ence is the ICA, which determines a predefined numbers of maximally

independent sources (McKeown et al., 1998). For fMRI data, these

sources represent spatial networks, where all included regions have

similar time series. For multi-subject analysis, common spatial compo-

nents can be obtained by concatenating subject data in time (Calhoun,

Adali, & Hansen, 2003). More specifically, ICA seeks to identify latent

sources in the data from multiple mixed measurements via the per

subject linear mixing model

Xi =AiSi + Ei,

where Xi 2 RT × V is the data matrix measured at T timepoints and

across V voxels for the i'th subject, Ai 2 RT × K contains K source time

series as columns, Si 2 RK × V is comprised by the K spatial compo-

nents as rows, and Ei 2 RT × V is a residual error term. While the

expression above enforces no coupling across subjects, such depen-

dence is usually accomplished by enforcing dependence or equality of

Si across subjects, which we will consider later. Since minimizing the

residual leads to rotational ambiguity and thereby nonunique solu-

tions, additional assumptions, or constraints are typically imposed on

either the time series or spatial components or both. In spatial ICA,

this typically amounts to assuming a non-Gaussian source distribution

upon the spatial components.

MSAA is another data driven approach, which bridges aspects of

seed analysis and decomposition (Hinrich et al., 2016) (Cutler &

Breiman, 1994; Mørup & Hansen, 2012). MSAA is a latent variable

model, similar to ICA, but is constrained to have latent factors that

reflect representative points in the data, termed “archetypes.” For

fMRI data, the archetypes are a set of representative time-series, which

have a corresponding set of spatial networks. Whereas ICA represents

the fMRI data by a linear mixture of maximally independent spatial maps,

MSAA determines the components through iterative optimization of;

(a) a seed region matrix, C (that is identical for all subjects) and (b) a set of

subject specific spatial maps (S) corresponding to each archetype. The

archetypes for each subject are given as the weighted average of the

voxels specified in the seed region matrix, such that

Ai =XiC

where Xi is the subject specific data and Ai 2 RT × K includes all arche-

types defining distinct temporal profiles for the i'th subject. Figure 2 illus-

trates how MSAA represents the fMRI data as archetypes and spatial

maps. Each voxel time series is reconstructed by convex combinations as

defined in Si of the archetypes. Thus, both the columns of Si and C are

constrained to be nonnegative and to sum to one. The resulting spatial

maps can therefore be interpreted as the fractional contribution of all

voxels to the archetypal time series as specified in Ai.

The MSAA decomposition is in general unique (Mørup & Hansen,

2012) and the linear model (per subject) can be formulated as

Xi =XiCSi + Ei ,

Under the assumption of independently distributed additive

Gaussian noise with heteroscedasticity over voxels we have

ei,v �N o, σ2i,v
� �

,

Where ei,v is a time vector of the residual in voxel v for subject i

and σ2i,v is the voxel and subject specific noise variance. This lead to

the likelihood

F IGURE 2 Illustration of whole brain multi-subject archetypal analysis (wbMSAA). The columns data matrix X include the time series for all
V voxels. Through iterative optimization, the MSAA algorithm determines a seed region matrix C, specifying the optimal choice of K seed regions
across subjects, as well as a set of K temporal (Xi C) and spatial components Si for all B subjects. The model also includes a subject specific noise
map, which is not specified in this figure [Color figure can be viewed at wileyonlinelibrary.com]
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Optimizing this likelihood leads to a sparse seed region matrix C,

which selects the archetypical voxel time series that best span the entire

dataset, and a corresponding set of subject specific spatial maps Si. For

explicit derivation of update rules see (Hinrich et al., 2016). Determining

C, Si, and σi is a nonconvex optimization problem (Mørup & Hansen,

2012), but a solution can be found by alternating optimization, that is,

optimizing for C while keeping Si and σi fixed and vice versa.

2.7.1 | Connection between ICA, seed based
analysis, and MSAA

In the following, we show how the decomposition scheme of MSAA can

be used to bridge spatial group ICA with seed based analysis. The MSAA

directly finds subject specific spatial maps (Si) and temporal activations

(XiC) which through the common seed matrix (CMSAA) express variability

across subjects. In contrast, spatial group ICA assumes the spatial sources

are fixed across subjects (Calhoun et al., 2003), however, individual sub-

ject expressions (spatial maps) can be identified through either back

reconstruction or dual regression (Erhardt et al., 2011). When the spatial

sources are known and no additional constraints are imposed upon the

time series, solving for Ai reduces to an ordinary least squares regression

problem where the solution can be expressed as

Ai =Xi
�S
> �S�S

>� �−1
:

Here �S represents the shared spatial components. In back reconstruc-

tion, individual subject components are formed through the expression

Xi =Ai
eSi,

where eSi is the individual spatial components and inserting the expres-

sion for Ai we obtain

Xi =Xi
�S
> �S�S

>� �−1eSi,
which again allows the individual spatial maps to be formed by solving an

ordinary least squares problem. This establishes an attractive correspon-

dence between MSAA and group ICA, where, in this case, the nonsparse

“seed matrix” given by CICA = �S
> �S�S

>� �−1
can take on both positive and

negative values whereas the columns are not constrained to sum

to one.

2.7.2 | Spotlight MSAA

In this study, we considered an expansion to the MSAA algorithm by

implementing a spotlight approach that restricted the seed region

matrix to prespecified ROIs. This allowed specifying a subset of voxels

from which the seed regions were then defined,

Xi = eXiCSi + Ei,

where eXi is the subset of voxel time series in the ROIs as illustrated in

Figure 3. This approach is useful to investigate “archetypal generating

activity” in specific areas, or if only approximate ROIs are known. The

derivation is given in (Hinrich et al., 2016), though they did not inves-

tigate the restricted method or considered the stability of its solution.

In the remaining manuscript, we will refer to the restricted MSAA

as spotlight MSAA (sMSAA) in contrast to the original whole brain

MSAA (wbMSAA).

We have run two sMSAA analysis using seed region restriction

maps from; (a) a literature study (sMSAALit) and (b) from a pooled con-

dition analysis (sMSAAPCon) respectively, as described in Section 2.8.

Implementation

We applied group ICA through the GroupICATv4.0a GIFT toolbox

(Rachakonda, Egolf, Correa, Calhoun, & Neuropsychiatry, 2015), using

the Infomax algorithm and the corresponding default settings. The

number of components was selected using the minimum description

length as proposed in Li, Adali, and Calhoun (2007), which for our

dataset resulted in 25 components. Finally, subject specific spatial and

temporal components were determined using the default back recon-

struction method implemented in GIFT (Calhoun et al., 2003). For

visualization purposes, the spatial components where z-scored and

both positive and negative contributions were shown.

For the MSAA analysis, we used the same number of components as

for ICA. As the MSAA algorithm is a nonconvex optimization problem,

there was a risk that the solution would get stuck in a local and not

global minimum. As done for other nonconvex problems, we therefore

repeated the analysis several times with different random initializations

for each run, and chose the solution with the lowest final cost at the end

of the optimization. Optimization halted after either a maximum of

250 iterations or when the relative decrease in the cost function was less

than 10−6 as in Hinrich et al. (2016). Different initializations, such as the

FurthestSum initialization (Mørup & Hansen, 2012) have been suggested

for archetypal analysis. However, as these resulted in a higher final cost

function, random initialization was used in this study.

To increase the stability of MSAA the algorithm was rerun with

10 random initializations choosing the solution that obtained the lowest

cost function. To further investigate the stability of the algorithm we

repeated the fitting procedure 10 times and compared the spatial maps

across runs using spatial correlation, this indicated that components were

fairly stable across runs, providing an average correlation of 0.86. Visual

inspection revealed that the differences were primarily due to minor

changes in network expressions between runs for some components,

see the stability of wbMSAA section in Data S1 for further information.

Furthermore, the finding of significant classification of HSA using

wbMSAA times series reproduced in all 10 individual runs.
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2.8 | Predefined ROIs

For the seed regions, analysis and spotlight MSAA predefined ROIs

were a prerequisite for the analysis. We defined the ROIs as all voxels

in a sphere (8 mm radius) around a given center coordinate. These

were determined through a literature study of ToM and empathy

processing, taking into account both reproducibility of the areas (Abu-

Akel & Shamay-Tsoory, 2011; Shamay-Tsoory et al., 2010) and speci-

ficity for the comic strip task (Benedetti, Bernasconi, Bosia, &

Smeraldi, 2009; Völlm et al., 2006; Wang et al., 2015). The center

coordinates are illustrated and labeled in Figure 4 and the MNI coordi-

nates can be found in Data S1–Table S3.

Finally, for the classification of social anhedonia using spotlight

MSAA, center coordinates were also obtained using the peak coordi-

nates of significant clusters for the pooled condition analysis (PCon)

as described in Section 2.4. All center coordinates can be found in

Data S1–Table S3.

2.9 | Statistical tests and measures

We used the accuracy as performance measure for the task classifica-

tion, as it provides a straightforward interpretation for balanced sam-

ples. However, for the classification of unbalanced datasets the

accuracy measure can be misleading. That is, even in the case of a triv-

ial classification where all subjects were classified as the dominant

class (e.g., in this study: LSA = 56, HSA = 14), the accuracy would be

56/(56 + 14) = 80%. To mitigate this issue, we used the Matthews

correlation coefficient (MCC) for the social anhedonia classification,

as it is regarded as being one of the best summary statistic measures

for unbalanced datasets (Baldi, Brunak, Chauvin, Andersen, & Nielsen,

2000; Powers, 2011). MCC returns a value between −1 (worst) and

1 (best) where 0 indicates that the result is no better than random

classification.

For all classification procedures, statistical inference of the perfor-

mance was performed using a random permutation testing procedure

(Nichols & Holmes, 2003). For each of 1,000 random permutations

the entire classification procedure, including the inner and outer

nested cross validation loops, were repeated to obtain an empirical

null distribution of the performance measure (accuracy and MCC for

task and HSA classification respectively).

As mentioned above, for some features the classification was per-

formed for each ROI/network separately, and the significance of

these analyses therefore needed to be corrected for multiple compari-

sons. This was done by the use of maximum permutation statistics,

where an empirical null distribution was obtained by considering only

the most significant effect over the entire set (here regions or compo-

nents), which controls the family-wise error over the set.

3 | RESULTS AND DISCUSSION

This combined results and discussion section is split into five sub-

sections, covering different aspects of the study. The first

section includes a general discussion of the networks determined

F IGURE 3 Illustration of the spotlight (sMSAA) approach. For the spotlight MSAA C and X are restricted to only include a subset of the
voxels corresponding to some predefined regions of interest (for simplicity only two regions are shown here). However, the exact localization and
size of the seed regions are still optimized by the algorithm. Apart from the restriction, the model is identical to the wbMSAA shown in Figure 2
[Color figure can be viewed at wileyonlinelibrary.com]
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by the decomposition methods (ICA and MSAA), and comments on

the stability of these approaches. Sections 3.2 and 3.3 cover the

results from the task and social anhedonia classification, respec-

tively, and discuss how these findings correspond to our hypothe-

ses and previous literature. Since MSAA is a new decomposition

method, which previously only has been applied in one neuroimag-

ing study (Hinrich et al., 2016), we comment on the general inter-

pretability and stability of the MSAA networks, and compare it with

ICA in Section 3.4. Finally, in Section 3.5 we discuss general limita-

tions of our study, as well as suggestions for future development

and applications.

3.1 | Network extraction using decomposition
methods

Visual inspection of the spatial maps from ICA and MSA showed that

both methods captured networks which previously have been related

to ToM processing (Benedetti et al., 2009; Völlm et al., 2006; Wang

et al., 2015), without any a priori knowledge about the task onset and

duration (which was a requirement for the previous studies that used

SPM analysis). Furthermore, we observed that both ICA and MSAA

successfully captured effect of no interest (such as pulsation and

movement artifacts) as well as other specific activity (visual or motor

processing) in separate networks. This is an important sanity check, as

noise/unrelated activity would otherwise contaminate the task related

networks.

3.1.1 | Stability

As described in Section 2.7, the wbMSAA algorithm was run

10 × 10 times, comparing the stability of the spatial networks,

when the best (lowest final cost) solution of 10 runs was compared

for 10 repetitions. Using greedy matching a mean correlation of

86% was obtained. Visual inspection showed that the same net-

works were found in all 10 runs, but with minor differences,

resulting in the nonperfect matching. Using the 10 repeated runs to

investigate the classification stability, the same feature (discussed

later in Section 3.3) was found to result in the highest classification

performance (MCC varied between 0.49 and 0.56), which was sig-

nificant for all 10 repetitions. This stability analysis was only per-

formed for the wbMSAA. For the spotlight approaches the

algorithm was repeated 10 times, and the solution with the lowest

cost function was chosen.

3.1.2 | Cross validation

We used stratified k-fold cross validation as described in Section 2.4.

For cross validation, it is important that the test and training data sets

are independent. For the seed region analysis features, this is naturally

the case, as the feature extraction was performed for each subject

separately. However, in order to limit the computational complexity

and to ensure correspondence of components across cross validation

splits for ICA and MSAA, the decomposition was run on the entire

dataset. Note that this did not lead to biased estimates of the classifi-

cation performance, as no information about the class labels were

used in the decomposition step.

3.2 | Classification of task conditions

The aim of the task classification was twofold. Firstly, it was a proof

of concept of our classification approach, using either temporal or

spatial network features as input to the SVC. Secondly, we wanted to

investigate if the information captured by the networks was sufficient

to actually classify task conditions, and to see how the networks

F IGURE 4 Illustration of center coordinates determined based on the literature. These nodes were used both for the seed region analysis
approaches, and for the spotlight MSAA. Abbreviations: Amyg, amygdala; AngG, angular gyrus; d/v ACC, dorsal/ventral anterior cingulate cortex;
d/v mPFC, dorsal/ventral medial prefrontal cortex; d/v Stri, dorsal/ventral striatum; IPL, inferior parietal lobule; i/dL PFC, inferior/dorsolateral
prefrontal cortex; Pcun, precuneus; STS, superior temporal sulcus; TP, temporal pole; TPJ, temporoparietal junction [Color figure can be viewed at
wileyonlinelibrary.com]
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important for classification correspond to previous literature on ToM

and empathy processing. The classification performances are listed in

Table 1, and networks are illustrated in Figure 5.

First, we used the activation maps from the SPM analysis for classi-

fication. These activation maps yielded the highest task classification

performance (mean accuracy of 83%), which was expected since they

were informed about the onset and duration of the task conditions.

The center coordinates, cluster size, and z-score of the significant

clusters can be found in Data S1–Table S3. This result was mainly

used to validate that there was sufficient signal difference between

the task conditions.

To investigate our hypothesis about the importance of both tem-

poral and spatial network dynamics, we used six features from the

seed region analysis as illustrated in Figure 1. Firstly, we found that

classification was not significant when using static measures such as

the mean and variance, indicating that these simple measures do not

capture enough signal difference between task blocks for classifica-

tion in the considered sample. On the contrary, all spatial networks fea-

tures (covariance and seed based analysis) resulted in significant

classification with accuracies from 60 to 73%. As described in

Section 2.7, classification was performed for each of the 25 networks

extracted in the seed based analysis. Table 1 and Figure 5 include the

F IGURE 5 Mean spatial maps across subjects of the networks for ToM-Phy1 classification (left) and Emp-Phy2 classification (right), for SBA,
ICA, wbMSAA, and sMSAAlit, respectively. More significant networks can be found in Data S1–Figures S2–S4. For all four methods, the ToM-
Phy1 classifying networks have most activity in the temporoparietal regions, and prefrontal regions. For the Emp-Phy2, processing similar regions
are included, but generally more activity is located in posterior parietal regions. For visualization, the SBA networks include the most significant
10% of the network correlations, each ICA map was z-scored and thresholded at Z = 1, and the MSAA networks include voxels with 10% or more
fractional contribution [Color figure can be viewed at wileyonlinelibrary.com]
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networks that obtained the highest classification performance, how-

ever, more networks yielded significant classification, which can be

found in Data S1–Figure S1. For the empathy condition (Emp-Phy2),

the seed of the network yielding the highest classification perfor-

mance was located in the angular gyrus and the network further

included the inferior parietal lobule (IPL), precuneus, medial temporal

gyrus, and medial prefrontal cortex (mPFC). For the ToM classifica-

tion, the seed was located in the dorsal anterior cingulate cortex

(ACC), and the network included frontal lobe regions, caudate and the

precuneus. Most of these regions were suggested to be involved in

the ToM or empathy related processing in previous studies (Abu-

Akel & Shamay-Tsoory, 2011; Fan, Duncan, de Greck, & Northoff,

2011). In particular, the IPL, precuneus, middle temporal gyrus, mPFC,

and ACC are key regions of default mode network, which plays impor-

tant role in social processing, such as understanding others' beliefs

and feelings and self-referencing (Andrews-Hanna, Reidler, Sepulcre,

Poulin, & Buckner, 2010; Takeuchi et al., 2014).

Finally, we also tried to classify the conditions using the time

series from the 25 seed regions. Here significant classification was

only obtained when concatenating the time series from all compo-

nents (mean accuracy 65%), and not when using the TS from each

seed region separately.

For the decomposition methods, we used the time series from each

component extracted using the three methods: ICA, wbMSAA, and

sMSAALit. All decomposition time series yielded a high classification

performance with accuracies ranging from 67 to 79%, which were sig-

nificant after correcting for multiple comparisons. The reason for the

high classification performance when using time series from decom-

position methods compared to seed region analysis, might be that the

decomposition methods extract components which maximally explain

the data. They therefore captured networks (and corresponding time

series) which were the most prominent in the data, whereas, the seed

region analysis relied on seed region points that were manually cho-

sen based on previous literature, and thus were not specific for the

given dataset.

The corresponding spatial maps of the best components are

shown in Figure 5, and other significant networks can be found in

Data S1–Figures S2–S4. Generally, we found that the best networks

across most methods included similar regions. For the ToM-Phy1 clas-

sification (left column), the networks include inferior and medial fron-

tal gyrus, temporoparietal junction (TPJ), posterior cingulate cortex

(PCC), and postcentral gyrus activation, which all are known to be

involved in ToM processing (Amodio & Frith, 2006; Ettinger et al.,

2015; Frith & Frith, 2006; Pickup, 2006). For the Emp-Phy2 classifica-

tion, the networks included similar regions as for the ToM-Phy1 clas-

sification, but generally there was more activation in posterior parietal

regions, such as precuneus and PCC.

To summarize, our findings show that both spatial networks and

temporal dynamics capture important information, which enabled signifi-

cant classification of the ongoing social cognition task. The networks,

which yielded the highest classification performance, generally included

temporoparietal and prefrontal areas, which consistently have been

considered core regions for ToM and empathy processing (Frith & Frith,

2006; Schurz, Radua, Aichhorn, Richlan, & Perner, 2014).

3.3 | Classification of social anhedonia

In this section, we show and discuss the results from the social anhe-

donia classification. The classification performances, measured by the

MCC are listed in Table 1 and Figure 6 shows the spatial maps of the

features obtaining the highest classification performance.

Whereas the activation maps from the SPM analysis resulted in the

highest task classification performance of all methods, our results show

that neither the raw maps, nor the seed based static measures (mean

and variance) enabled significant classification of social anhedonia. In

fact, for the seed region analysis features, only the covariance feature

obtained significant classification with a MCC = 0.43 (p = .005). This indi-

cates that simple network coupling between regions that are known to

be involved in social cognition processing, seems to capture important

information to differentiate the high and low social anhedonia group.

Additional analysis of which part of the covariance were important for

classification, revealed that the only feature surviving correction for mul-

tiple comparisons was the variance within the left TPJ. This region has

been associated with social cognition and ToM in several previous stud-

ies (Bodnar et al., 2014; Dodell-Feder, Tully, Lincoln, & Hooker, 2014;

Kronbichler, Tschernegg, Martin, Schurz, & Kronbichler, 2017) and was

also a prominent region in the decomposition methods to presented

below. For more details on this analysis wee the “interpretation of

covariance features for HSA classification” section in Data S1. The sec-

ond highest classification performance was obtained when using the

time series from the inferior lateral prefrontal cortex seed (MCC = 0.35,

pun-corrected = .007), however, classification was not significant after multi-

ple comparisons correction, which was necessary since classification was

performed for each seed region separately.

On the contrary, several features from the decomposition methods

yielded significant classification even after multiple comparisons cor-

rection. Here, we used both the time series and spatial maps for each

network as classification feature, and corrected for multiple compari-

sons using maximum permutation statistics across components. For

each decomposition method, only one (or sometimes no) feature

yielded significant classification.

The highest classification performance was obtained when using

one time series from the wbMSAA approach (MCC = 0.56, p = .008).

Very interestingly this was the same TS that also obtained the highest

task classification performance for the ToM condition, highlighting

the coupling between schizotypy and ToM processing (Bora & Pan-

telis, 2013; Pickup, 2006). In future studies, such coupling between

schizotypy and a relevant task (e.g., ToM), could be used to preselect

relevant network features instead of testing the classification for all

features extracted by the MSAA.

Furthermore, the spatial map corresponding to this time series

also obtained the highest classification performance of all wbMSAA

spatial maps, which was borderline significant (MCC = 0.42, p = .09,

pun-corrected = .006). The seed of this network was in the TPJ, and the

network further included inferior and medial PFC and insula.
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Furthermore, the ICA feature (time series) that resulted in the

highest classification performance (MCC = 0.45, p = .07, pun-

corrected = .005), had a corresponding spatial map, that was nearly

identical to the network from the wbMSAA analysis (see Figure 6

and Data S1–Figure S5).

The second decomposition feature that yielded significant classifi-

cation, was the time series from the spotlight sMSAAlit approach

(MCC = 0.49, p = .03). The spatial map corresponding to this TS had

its seed region is in the dorsolateral PFC and furthermore the network

included cingulate cortex and motor areas. For the sMSAAlit approach,

we chose the seed regions which were known to be involved in ToM

and empathy processing, since it is well established that social cogni-

tion is reduced in patients with schizophrenia (Bora et al., 2009;

Brunet et al., 2000), and in subjects with schizotypy (Ettinger et al.,

2015; Pickup, 2006).

As described in Section 2.8, we also tested another spotlight

approach where we used the peak coordinates from a pooled condi-

tion analysis (sMSAAPCon), because this would be a more data driven

way to choose center coordinates. Since the pooled condition analysis

was specific for the given task, we hypothesized that the features

extracted by this approach would result in a higher classification per-

formance than for the sMSAALit approach. However, neither of the

time series or spatial maps from the sMSAAPCon analysis resulted in

significant classification after multiple comparisons correction. Only

one component (time series) obtained a classification performance,

with an un-corrected p-value <.05. Most activation in this network

was in the TPJ and angular gyrus, but also included thalamus, insula,

and i/m FG.

To summarize, the components from the decomposition methods,

which obtained the highest classification performance generally

included temporoparietal and prefrontal regions, as well as insula and

cingulate cortex. These findings are in accordance with earlier studies

which have reported lower white matter integrity in the fronto-

temporal tracts (measured by diffusion tensor imaging) in subjects

with a high degree of schizotypy (Nelson et al., 2011), and both struc-

tural as well as functional studies have related changes in the PFC to

schizotypy (Kühn et al., 2012; Raine, Sheard, Reynolds, & Lencz,

1992). Furthermore, earlier studies have shown a decrease in insula

gray matter volume in UHR groups (Chan et al., 2011), and it has even

been suggested that structural insular abnormalities might be related

to the vulnerability for the development of later psychosis (Takahashi

et al., 2009). In future studies, it could thus be interesting to investi-

gate if functional imaging could support the structural findings of

Takahasi et al., and maybe enable identification of schizotypy in even

earlier stages than what is possible with the structural changes. As for

insula, gray matter volume reductions in thalamus have also been

found in both schizophrenia (Ettinger et al., 2001) as well as in

schizotypy (Kühn et al., 2012). Furthermore, fMRI studies have shown

F IGURE 6 Mean spatial maps of the components yielding significant HSA classification performance. For all features, highest classification
performance was obtained when using the times series (TS). This figure shows the corresponding spatial maps. The top row shows the two
networks, corresponding to the TS features that obtained significant classification after multiple comparisons correction (wbMSAA and
SMSAALit). Visualization threshold was 10% fractional contribution. The networks in the bottom row are from the ICA and sMSAAPCon analysis,
where the un-corrected p-value was below .05. For visualization, the ICA map was thresholded at a Z-score of 1 and the sMSAAPCon network
include voxels with 5% fractional contribution [Color figure can be viewed at wileyonlinelibrary.com]
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correlation between reduced activation in thalamus and the degree of

schizotypy (Aichert, Williams, Möller, Kumari, & Ettinger, 2012;

Kumari, Antonova, & Geyer, 2008), but it should be noted that the

subjects performed another task in these studies.

In summary, the included areas of the two networks which are

able to significantly classify HSA, have consistently been related to

schizotypy and the schizophrenia development, which highlight the

potential importance of these networks.

Finally, we want to comment on the use of spatial and temporal

network features for the classification. Whereas many spatial network

features resulted in significant classification of the task conditions, the

time series generally resulted in a higher classification performance

for the social anhedonia classification. This finding indicates that the

temporal dynamics during the social cognition task captures important

information to differentiate between high and low social anhedonia.

In comparison, the connectivity measures used to extract spatial net-

work features in this study are regarded static. In future studies, it

would thus be interesting to look at dynamic functional connectivity,

where the connectivity is estimated repeatedly for different windows

of the time series, and thus also reflect the dynamic variations in the

time series (Hutchison et al., 2013) (Damaraju et al., 2014; Nielsen

et al., 2018).

3.4 | Discussion of the MSAA method

This study is one of the first to use the MSAA method on neuroimag-

ing data, and the first to implement the spotlight approach that further

bridges aspects of data-driven decomposition methods and seed

based analysis. We, therefore, highlight some of the important aspects

of MSAA.

3.4.1 | Interpretability

Due to the nonnegativity and sum-to-one constraints, the spatial

maps in MSAA have a clear interpretation, showing the fractional con-

tributions of the components (archetypes) at each voxel. We used a

threshold of 0.1 for visualization, meaning that for each voxel shown

in a spatial map, this component had a relative contribution of at least

10% to that given observation. A similar interpretation of the scale in

ICA is not immediately possible without additional post processing,

and furthermore as the ICA allows both positive and negative contri-

butions, the components can include cancelation effects leading to

less straightforward interpretation.

3.4.2 | Noise modeling

The MSAA approach enables heteroscedastic noise modeling, that is,

the noise can be estimated for each subject and each voxel separately,

instead of assuming it to be constant, which is done in previous

decomposition methods such as ICA. Visual inspection of the spatial

distribution of these noise levels (Data S1–Figure S3) showed that

most noise was present around the edges of the brain and close to

known major blood vessels, which probably reflects residual

movement effects and noise due to blood pulsation, respectively. A

more elaborate discussion of this noise modeling can be found in

(Hinrich et al., 2016).

3.4.3 | Spotlight

The spotlight restriction of MSAA showed to successfully enforce the

algorithm to reveal functional networks, which otherwise were

obscured by other salient signal features. This is somewhat similar to

what was done by seed based analysis, but for the spotlight MSAA

the optimal seed is determined by data driven optimization instead of

manual assignment. Restriction of the seed regions can be especially

valuable if a specific hypothesis needs to be tested, for example, how

the connectivity between the whole brain and a particular region

changes in relation to disease progression. However, compared to the

wbMSAA approach, it requires the user to choose a number of seed

regions, which can be difficult to choose. In this study, we have cho-

sen center coordinates based on the social cognition task, either

based on previous literature or from a pooled condition analysis.

Another approach could have been to choose seeds, which have been

related to social anhedonia and/or schizotypy progression.

3.4.4 | Nonconvex optimization and number of
components

As for ICA, the MSAA algorithm is a nonconvex optimization problem,

which means that the optimization might get struck in a local and not

global minimum. In practice, this means that repeated runs can result

in somewhat different networks. How severe this problem is, depends

on the stability of the given dataset (signal to noise ratio, intersubject

differences, etc.) as well as on the number of components chosen. In

this study, we used 25 components as this was found to be the opti-

mal number using the minimum description length criteria, which is

the default implemented in GIFT toolbox (Li et al., 2007). Using

25 components, resulted in relatively stable networks, with a mean

spatial correlation of 86% for the wbMSAA when choosing the best

(lowest cost) solution between 10 runs as described in Section 2.7.

Visual inspection of the networks showed that the overall network

structures between runs were very stable, and the nonperfect

machining resulted in small network differences between runs (net-

works illustrated in Data S1 section “stability of wbMSAA”). Further-

more, we noted that the number of components within one run

seemed reasonable, such that known networks were captured by sep-

arate spatial maps (mixing of e.g., task and visual processing networks

would indicate that the number of components was too low), and did

not split networks up into separate components (this would indicate

that the number of components was too high). All in all, this indicates

that the number of runs and components were appropriate for the

given study. However, we want to emphasize the importance of

investigating the stability in future studies applying MSAA.
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3.4.5 | Toolbox

We have implemented the MSAA (both whole brain and spotlight)

code into a SPM plugin (compatible with SPM 12), which interested

users can download here: http://www.brain-fmri.com/MSAA/. The

plugin enables the user to apply the MSAA algorithm on fMRI data, by

simply loading the preprocessed images and choose the optimization

parameters specified in the toolbox.

3.5 | Limitations and future perspectives

As discussed in the previous section there are some challenges for decom-

position methods, such as nonconvexity and choosing an appropriate

number of components. Another large challenge of this study was the rela-

tively small difference between subjects of the high and low social anhe-

donia respectively. Firstly, classification was challenged by the low

separation boundary which was used (mean plus one standard deviation).

Though similar boundaries have been used in previous group comparison

studies of schizotypy (Wang et al., 2016), it was challenging for the sup-

port vector machine to learn from the data of two relatively similar classes.

Secondly, even with this low separation threshold, we had an unbalanced

dataset, with 56 (LSA) and 14 (HSA) subjects in each group. This further

challenged the supervised classification procedure, and made the classifica-

tion performance sensitive the classification of few subjects. We tried to

mitigate this problem by (a) using weights in the support vector machine

to counteract the imbalance and (b) used the MCC measure to access clas-

sification performance. Additionally, it is important to note that while full

correction of multiple comparisons was considered within each feature

extraction method, this was not done across these different methods. This

was motivated by the main aim of comparing a set of, in many aspects,

very similar feature extraction methods. With these limitations in mind, we

consider the present study an explorative investigation of features for clas-

sification of social anhedonia rather than a study of the neural correlates

of social anhedonia itself. Still, we strongly expect that a larger group, par-

ticularly with more subjects with high social anhedonia, would make classi-

fication easier and more stable. Furthermore, including subjects with more

pronounced social anhedonia, or subjects belonging to other risk groups,

would also be very interesting from a clinical perspective.

However, even with these challenges, the whole brain and spotlight

MSAA algorithms extracted features that yielded significant classification.

Using the same methods on ultra-high-risk groups or patients with

schizophrenia would thus be very interesting to investigate how net-

works alterations are related to the development of schizophrenia. Opti-

mally, this could be investigated through a longitudinal study starting

with a large group of subjects with a continuous range of schizotypy and

a specific and well-designed experimental set-up.

4 | CONCLUSION

Using a variety of different feature extraction methods, we found signif-

icant classification of social anhedonia for two features, both consisting

of times series extracted by the MSAA decomposition methods. The

highest classification performance was achieved using the whole brain

MSAA. Importantly, the same time series also obtained the highest task

classification performance, making a strong coupling between the

processing of the ToM task and the degree of social anhedonia. This

indicates that future studies could focus on components representing

task-relevant networks for classification of schizotypy, thereby circum-

venting the need for correction for multiple comparisons across compo-

nents. The spatial map corresponding to the time series yielding highest

classification performance, included the TPJ, prefrontal cortex, angular

gyrus and insula, which all have been consistently related to schizotypy

as well as to the development of schizophrenia in earlier studies.

Finally, a nearly identical feature was also identified as the best

performing when using features extracted by ICA. The repeated

occurrence of the same feature highlights the potential importance of

this network for early identification of schizotypy. Thus, in future

studies, it would be very interesting to investigate if the same network

would also be important for subjects with more pronounced

schizotypy and other high-risk groups through the spectrum of schizo-

phrenia development.
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