Forgetting in Managing Rules and Ontologies

Author
Eiter, Thomas, Ianni, Giovambattista, Schindlauer, Roman, Tompits, Hans, Wang, Kewen

Published
2006

Conference Title
2006 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE, (WI 2006 MAIN CONFERENCE PROCEEDINGS)

DOI
10.1109/WI.2006.83

Rights statement
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

Downloaded from
http://hdl.handle.net/10072/11493

Link to published version
http://www.ieee.org/portal/site

Griffith Research Online
https://research-repository.griffith.edu.au
Forgetting in Managing Rules and Ontologies

Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, Hans Tompits
Institut für Informationssysteme 184/3, Technische Universität Wien, Favoritenstrasse 9-11, A-1040 Vienna, Austria
{eiter, ianni, roman, tompits}@kr.tuwien.ac.at

Kewen Wang
School of Information and Communication Technology, Griffith University, Brisbane, QLD 4111, Australia
k.wang@cit.gu.edu.au

Abstract

The language of HEX-programs under the answer-set semantics is designed for interoperating with heterogeneous sources via external atoms and for meta-reasoning via higher-order literals in the context of the Semantic Web. As an important technique in managing knowledge bases, the notion of forgetting has received increasing interest in the knowledge-representation area. In this paper, we introduce a semantics-based theory of forgetting for HEX-programs and, in turn, for a class of OWL/RDF ontologies which allows to fully employ semantic information in managing ontologies like editing, merging, aligning, and redundancy removal.

1 Introduction

An ontology is a formal representation of concepts and relationships between them, making global interoperability possible. Managing ontologies is a central task for many Semantic-Web applications. However, it is often acknowledged that the Ontology Layer of the Semantic Web [1] is insufficient in its reasoning abilities. In particular, more and more ontologies are available on the Web and they are often very large in size and heterogeneous in location.

This phenomenon brings up a good deal of challenges to researchers in the Semantic Web. For example, when an ontology design is involved, we have to consider some issues like how to tailor an ontology or how to merge ontologies. Recently, these and related issues of managing ontologies have received considerable interests [12, 17, 18, 9, 10, 7]. Related issues include ontology editing, ontology segmentation, ontology merging, ontology aligning, ontology reusing, ontology update, and ontology redundancy removal. To some extent, all of these issues can be reduced to the problem of extracting relevant segments out of large ontologies for the purpose of effective management of ontologies so that the tractability for both humans and computers is enhanced. Such segments are not mere fragments of ontologies, but stand alone as ontologies in their own right. The intuition here is similar to views in databases: an existing ontology is tailored to a smaller ontology so that an optimal ontology is produced for specific applications. Although this problem has been identified and a number of approaches are proposed, like, e.g., [8, 20], a general framework for tailoring ontologies in a purely semantic way is still missing.

On the other hand, the notion of forgetting [4, 15, 14] is a promising technique for adequately handling a range of classical tasks such as query answering, planning, decision-making, reasoning about actions, or knowledge update and revision. The idea of forgetting consists, informally, in the intelligent and “painless” removal of information from a given knowledge base. In other words, one may select some literals, predicates, or concepts, for being discarded (or forgotten) in a given knowledge base. However, the information selected for elimination is usually logically connected with other portions of the same knowledge base. It is thus important to preserve, to the best extent, soundness and completeness of the information entailed after removal.

While a literature on forgetting in logic programming exists (see, e.g., [22, 4]), and although forgetting takes relevance also in ontology-description formalism such as OWL, an explicit notion of forgetting has not been given yet for this class of languages. In this respect, the relationship between a notion of forgetting in ontologies and of forgetting in rule-based formalisms has not satisfactorily been investigated yet, and is thus matter of new research.

The problem of forgetting in ontologies can indeed be
solved by exploiting the connection between ontology-
description formalisms and logic programming. That is,
given a sound notion of forgetting for logic programming,
a knowledge base \(L \), formulated under a generic semantics
(e.g. RDFS, OWL, etc.) can be transposed to an equiva-

tent logic program \(P_L \), formulated under a different (and
usually, nonmonotonic) semantics. Then, logic program-
ming forgetting techniques are applied to \(P_L \) and a modi-
fied program, \(\text{forget}(P_L, l) \), is obtained and translated back
to a knowledge base \(L' \), where \(l \) is the information to be dis-
carded, which can be either a propositional atom, a concept,
or a predicate.

Nonetheless, in order to fulfill the above approach, sev-
eral issues, some of which already tackled in the literature,
have to be solved and accommodated:

- A systematic way for translating \(L \) to \(P_L \) must be
given. Attempts in this direction are several: for in-
stance, Grososf et al. [11] translate a fragment of OWL-
DL to Horn logic, whereas Swift [21] and Motik, Volz,
and Maedche [16] port significant fragments of de-
scription logics to positive disjunctive logic programs.

- The pre-existing forgetting semantics [22, 4] mainly
concentrates on discarding propositional information
from ground programs. However, often \(P_L \) might
be a non-ground program and \(l \) a non-propositional
value (such as a predicate whose entire extension must
be discarded). Also, many ontology description lan-
guages (such as RDF and RDFS) include the possibil-
ity of exchanging the notion of class with the notion of
individual, in order to enable meta-reasoning. In such
a setting, \(P_L \) is better mapped to a higher-order logic
program.

- Also it is unclear in which cases \(\text{forget}(P_L, l) \) can be
mapped back to a valid knowledge base \(L' \).

In the present paper, we aim at answering some of the
questions above.

The logic programming language of choice is HEX, as
defined in previous work [3]. This is a rule-based, fully
declarative formalism which allows both for higher-order
atoms and external atoms, under a well-defined generaliza-
tion of the answer-set semantics [6].

Intuitively, a higher-order atom allows to quantify val-
es over predicate names and to freely exchange predicate
symbols with constant symbols, like in the rule
\[C(X) \leftarrow \text{subClassOf}(D, C), D(X) \]. An external atom facilitates
the assignment of a truth value of an atom through an
external source of computation. For instance, the rule
\[t(\text{Sub}, \text{Pred}, \text{Obj}) \leftarrow \&\text{rdf}[\text{uri}](\text{Sub}, \text{Pred}, \text{Obj}) \]
computes the predicate \(t \) taking values from the predicate \&\text{rdf}.
The latter extracts RDF statements from the set of URIs
specified by the extension of the predicate \(\text{uri} \); this task

is delegated to an external computational source (e.g., an
external deduction system, an execution library, etc.). Ex-
ternal atoms allow for a bidirectional flow of informa-
tion to and from external sources of computation such as
description-logic reasoners. By means of HEX-programs,
powerful meta-reasoning becomes available in a decidable
setting, e.g., not only for Semantic-Web applications, but
also for meta-interprerentation techniques in answer-set pro-
gramming (ASP) itself, or for defining policy languages.

The contributions in this paper can be summarized as
follows:

1. We introduce the notion of semantic forgetting for
HEX-programs. Forgetting in logic programs has been
previously considered by Eiter and Wang [4], who de-
defined forgetting of a given literal \(l \) in the context of
propositional disjunctive logic programs. This notion
is extended in order to deal with external and higher-
order atoms, as well as with positive non-ground pro-
grams.

2. We develop an algorithm for forgetting which is useful
in the setting of ontology management. The basic idea
of this algorithm is that certain rules that are locally
redundant may become relevant afterwards and thus
they are kept in the program.

3. We show how semantic forgetting of ontologies can be
performed using an equivalent logic program, whose
modified versions (after forgetting) are translated back
to ontologies. In particular, that fragment of OWL-
DL is taken into account which can be translated to
description-logic programs [11]. The approach can be
currently generalized to all those ontology languages
for which a sound and complete mapping to positive
logic programs is known.

Our approach is illustrated on some example application.
For this, we use an ontology “Person-Relationship” in the
paper, which can be scaled as large as one wishes.

The rest of the paper is organized as follows. Section 2
briefly recalls syntax and semantics of HEX-programs. Sec-
tion 3 introduces the notion of semantic forgetting for HEX-
programs and a novel algorithm for computing forgetting.
As well, forgetting for non-ground positive programs is de-
ed. Section 4, then, discusses a method for forgetting
OWL/RDF-ontologies in terms of a transformation tech-
nique. Finally, Section 5 wraps up the paper with some
concluding remarks.

2 HEX-Programs

2.1 Syntax

HEX programs are built on mutually disjoint sets \(C, \mathcal{X}, \)}
and \mathcal{G} of constant names, variable names, and external predicate names, respectively. Unless stated otherwise, elements from \mathcal{X} (resp., \mathcal{C}) are written with first letter in upper case (resp., lower case), and elements from \mathcal{G} are prefixed with “&.” Constant names serve both as individual and predicate names. Importantly, \mathcal{C} may be infinite.

Elements from $\mathcal{C} \cup \mathcal{X}$ are called terms. A higher-order atom (or atom) is a tuple (Y_0, Y_1, \ldots, Y_n), where Y_0, \ldots, Y_n are terms and $n \geq 0$ is its arity. Intuitively, Y_0 is the predicate name; we thus also use the familiar notation $Y_0(Y_1, \ldots, Y_n)$. The atom is ordinary, if Y_0 is a constant. For example, $(x, \text{rdf:type}, c)$ and node(X) are ordinary atoms, while $D(a, b)$ is a higher-order atom. An external atom is of the form

$$
\&g[Y_1, \ldots, Y_n](X_1, \ldots, X_m),
$$

where Y_1, \ldots, Y_n and X_1, \ldots, X_m are two lists of terms (called input list and output list, respectively), and $\&g$ is an external predicate name.

It is possible to specify molecules of atoms similar as in F-Logic [13]. For instance, $g[\text{father} \rightarrow X, Z \rightarrow \text{iu}]$ is a shortcut for the conjunction $\text{father}(gi, X), Z(gi, \text{iu})$. A HEX-program\footnote{In contrast to the original definition in [3], here we consider only HEX-programs without disjunctions in rule heads.} is a set of rules of the form

$$
\alpha \leftarrow \beta_1, \ldots, \beta_n, \text{not} \ \beta_{n+1}, \ldots, \text{not} \ \beta_m,
$$

where $m \geq 0$, α is a higher-order atom, and β_1, \ldots, β_m are either higher-order atoms or external atoms. The operator “\text{not}” is negation as failure (or default negation). For a rule r as in (2), we define $\text{head}(r) = \alpha$ and $\text{body}(r) = \text{body}^+(r) \cup \text{body}^-(r)$, where $\text{body}^+(r) = \{\beta_1, \ldots, \beta_n\}$ and $\text{body}^-(r) = \{\beta_{n+1}, \ldots, \beta_m\}$. If r contains only ordinary atoms, then r is ordinary. Furthermore, r is quasi-negative if $n = 0$. A HEX-program is quasi-negative if it contains only quasi-negative rules. An ordinary rule is positive iff $m = n$, i.e., if it contains no negation as failure. A program is positive iff all rules in it are positive.

We mention that higher-order features in logic programs have also been considered, e.g., by Chen, Kifer, and Warren [2] and Ross [19].

2.2 Semantics

The semantics of HEX-programs [3] is defined by generalizing the answer-set semantics [6]. The Herbrand base of a program P, denoted HB_P, is the set of all possible ground versions of atoms and external atoms occurring in P obtained by replacing variables with constants from \mathcal{C}. The grounding of a rule r, $\text{grnd}(r)$, is defined accordingly, and the grounding of program P is given by $\text{grnd}(P) = \bigcup_{r \in P} \text{grnd}(r)$. Unless specified otherwise, \mathcal{C}, \mathcal{X}, and \mathcal{G} are implicitly given by P.

Any subset $I \subseteq HB_P$ containing only atoms is called an interpretation relative to P. We say that an interpretation I is a model of an atom $a \in HB_P$ iff $a \in I$. Furthermore, I is a model of a ground external atom $a = \&g[y_1, \ldots, y_n](x_1, \ldots, x_m)$ iff $f_{kg}(I, y_1, \ldots, y_n, x_1, \ldots, x_m) = 1$,

where f_{kg} is an $(n+m+1)$-ary Boolean function associated with $\&g$, called oracle function, assigning each element of $2^{HB_P} \times C^{n+m}$ either 0 or 1. We write $I \models a$ to express that I is a model of a.

Let r be a ground rule. We define (i) $I \models \text{body}(r)$ iff $I \models a$ for all $a \in \text{body}^+(r)$ and $I \not\models a$ for all $a \in \text{body}^-(r)$, and (ii) $I \models r$ iff $I \models \text{head}(r)$ whenever $I \models \text{body}(r)$. We say that I is a model of a HEX-program P, denoted $I \models P$, iff $I \models r$ for all $r \in \text{grnd}(P)$.

The Faber-Leone-Pfeifer reduct [5] (or FLP-reduct, for short) of P with respect to $I \subseteq HB_P$, denoted fP_I, is the set of all $r \in \text{grnd}(P)$ such that $I \models \text{body}(r)$. $I \subseteq HB_P$ is an answer set of P iff I is a minimal model of fP_I. By $\text{AS}(P)$ we denote the set of all answer sets of P.

A HEX-program is consistent if it has at least one answer set. We call two HEX-programs, P and Q, equivalent, symbolically $P \equiv Q$, iff $\text{AS}(P) = \text{AS}(Q)$.

In practice, it is useful to differentiate between two kinds of input attributes for external atoms. For an external predicate $\&g$ (exploited, say, in an atom $\&g[p](X)$), a term appearing in an attribute position of type predicate (in this case, p) means that the outcomes of f_{kg} are dependent from the current interpretation I, for what the extension of the predicate named p in I is concerned. An input attribute of type constant does not imply a dependency of f_{kg} from some portion of I. An external predicate whose input attributes are all of type constant does not depend from the current interpretation.

Example 1 The external predicate $\&\text{rdf}$ introduced before is implemented with a single input argument of type predicate, because its associated function finds the RDF-URIs in the extension of the predicate uri:

$$
\text{tr}(S, P, O) \leftarrow \&\text{rdf}[\text{uri}](S, P, O),
\text{uri}(\text{"file:foaf.rdf"}) \leftarrow .
$$

Should the input argument be of type constant, an equivalent program would be:

$$
\text{tr}(S, P, O) \leftarrow \&\text{rdf}[\text{"file:foaf.rdf"}](S, P, O)
$$

or

$$
\text{tr}(S, P, O) \leftarrow \&\text{rdf}[X](S, P, O), \text{uri}(X),
\text{uri}(\text{"file:foaf.rdf"}) \leftarrow .
$$
3 Forgetting in HEX-Programs

As we have explained in Section 1, the technique of forgetting is useful in managing ontologies. So it is natural and interesting to generalize forgetting to HEX-programs. In fact, since HEX-programs have higher-order syntax but first-order semantics, it allows us to adapt the notion of forgetting to HEX-programs. In this section, we introduce the notion of forgetting for HEX-programs. The intuition behind the forgetting of an atom \(l \) in a HEX-program is to obtain a HEX-program which is equivalent to the original HEX-program if we ignore the existence of \(l \).

In the next subsection, we assume that HEX-programs are ground and consistent. When a HEX-program with variables is given, it is a shorthand for its ground version. As we will see in Section 4, forgetting in an RDF ontology is defined in terms of forgetting in the corresponding logic program, which is a non-ground positive program. So, in Subsection 3.2, forgetting in non-grounded positive programs is considered.

3.1 Forgetting in Ground HEX-Programs

We call a set \(X' \) an \(l \)-subset of a set \(X \), denoted \(X' \subseteq_l X \), if \(X' \setminus \{l\} \subseteq X \setminus \{l\} \). Similarly, a set \(X' \) is a strict \(l \)-subset of \(X \), denoted \(X' \subset_l X \), if \(X' \setminus \{l\} \subset X \setminus \{l\} \). Two sets \(X \) and \(X' \) of literals are \(l \)-equivalent, denoted \(X \sim_l X' \), if \((X \setminus X') \cup (X' \setminus X) \subseteq \{l\} \).

Definition 1 Let \(P \) be a consistent HEX-program, let \(l \) be a (ground) atom in \(P \), and let \(X \) be a set of atoms.

1. For a collection \(S \) of sets of atoms, \(X \in S \) is \(l \)-minimal in \(S \) if there is no \(X' \in S \) such that \(X' \subset_l X \).

2. An answer set \(X \) of a HEX-program \(P \) is an \(l \)-answer set if \(X \) is \(l \)-minimal in \(AS(P) \).

Example 2 Let \(P = \{ p \leftarrow \text{not} \ q; q \leftarrow \text{not} \ p; s \leftarrow p; s \leftarrow q \} \). It is easy to see that \(P \) has two answer sets, viz. \(X = \{p, s\} \) and \(X' = \{q, s\} \). Then, \(X \) is a \(p \)-answer set but \(X' \) is not.

Having defined the notion of minimality about forgetting an atom, we are now in a position to define the result of forgetting about an atom in a HEX-program.

Definition 2 Let \(P \) be a consistent HEX-program and let \(l \) be a (ground) atom. A HEX-program \(P' \) is a result of forgetting about \(l \) in \(P \), if \(P' \) represents \(l \)-answer sets of \(P \), i.e., such that the following conditions are satisfied:

1. \(At(P') \subseteq At(P) - \{l\} \), where, for any program \(Q \), \(At(Q) \) denotes the set of atoms occurring in \(Q \).

2. For any set \(X' \) of atoms with \(l \notin X' \), \(X' \) is an answer set of \(P' \) iff there is an \(l \)-answer set \(X \) of \(P \) such that \(X' \sim_l X \).

Note that the first condition implies that \(l \) does not appear in \(P' \). We use \(\text{forget}(P, l) \) to denote a possible result of forgetting about \(l \) in \(P \).

Since an atom that does not appear in the head of a rule in a HEX-program is automatically assumed to be false in the process of forgetting for ordinary programs, all external atoms would be removed from the program. For this reason, the native algorithm for forgetting [4] is not helpful for HEX-programs. Thus, we introduce a new algorithm, which is inspired by Algorithm 4 in the system LPForget.²

Preparatory for describing the algorithm, below we introduce some program transformations for HEX-programs, which are generalizations of respective ones for ordinary programs [4].

In the following, let \(P \) and \(P' \) be HEX-programs.

Elimination of Tautologies: \(P' \) is obtained from \(P \) by elimination of tautologies iff there is a rule \(r \) in \(P \) such that \(\text{head}(r) \in \text{body}^-(r) \) and \(P' = P - \{r\} \).

Elimination of Head Redundancy: \(P' \) is obtained from \(P \) by elimination of head redundancy iff there is a rule \(r \) in \(P \) such that \(\text{head}(r) \in \text{body}^-(r) \) and \(P' = (P - \{r\}) \cup \{\leftarrow \text{body}(r)\} \).

Positive Reduction: \(P' \) is obtained from \(P \) by positive reduction iff there is a rule \(r \) in \(P \) such that \(\text{body}^-(r) \) contains some \(c \) which does not occur in the head of any rule in \(P \) and \(P' \) is obtained from \(P \) by removing not \(c \) from \(r \).

Negative Reduction: \(P' \) is obtained from \(P \) by negative reduction iff there are two rules \(r \) and \(r' : b' \leftarrow P \) such that \(b' \in \text{body}^-(r) \) and \(P' = P - \{r\} \).

Elimination of Implications: Let \(r \) and \(r' \) be two distinct rules in a logic program. We say that \(r' \) is an implication of \(r \) if \(\text{head}(r) = \text{head}(r') \) and \(\text{body}(r) \subset \text{body}(r') \). Then, \(P' \) is obtained from \(P \) by elimination of implications iff there are two distinct rules \(r \) and \(r' \) of \(P \) such that \(r' \) is an implication of \(r \) and \(P' = P - \{r'\} \).

Unfolding: For two rules \(r \) and \(r' \) such that \(\text{head}(r') \in \text{body}^+(r) \), the unfolding of \(r \) with \(r' \), symbolically \(\text{unfold}(r, r') \), is the rule \(\text{head}(r) \leftarrow (\text{body}(r) - \{\text{head}(r')\}) \cup \text{body}(r') \). Then, \(P' \) is obtained from \(P \) by unfolding if there is a rule \(r \) such that

\[
P' = (P - \{r\}) \cup \{\text{unfold}(r, r') | r' \in P, \text{head}(r') \in \text{body}^+(r)\}.
\]

Algorithm 1 (Computing a result of forgetting)

Input: HEX-program P and an atom l in P.
Output: Program $\text{forget}(P, l)$ as a result of forgetting l from P.

Method:

Step 1. Positive Splitting: Initially take Q as the set of all rules in which l appears. For every rule r in P such that either head(r) or some literal of body(r) appears in Q, add r to Q. Repeat this process until no new rule can be added. The resulting program is still denoted Q.

Step 2. Fully apply on Q the program transformations T and then obtain a quasi-negative program Q'. During this process, we keep record of the set $RU(Q, l)$ of all rules removed by unfolding but containing no appearance of l.

Step 3. Suppose that Q' has n rules with head l:

$$r_j : l \leftarrow \text{not } l_{j1}, \ldots, \text{not } l_{jm_j},$$

where $n \geq 0$, $j = 1, \ldots, n$ and $m_j \geq 0$ for all j.

If $n = 0$, then let Q'' denote the program obtained from Q' by removing all appearances of not l.

If $n = 1$ and $m_1 = 0$, then l is the only rule in Q' having head l. In this case, remove every rule in Q' whose body contains not l. Let Q'' be the resulting program.

For $n \geq 1$ and $m_1 > 0$, let D_1, \ldots, D_n be all possible conjunctions $(l_{1k_1}, \ldots, l_{nk_n})$, where $0 \leq k_1 \leq m_1$, ..., $0 \leq k_n \leq m_n$. Replace each occurrence of not l in Q' by all possible D_i. Let Q'' be the resulting program.

Step 4. Output $Q'' \cup RU(Q, l) \cup Q$ as forget(P, l), where $Q = P \setminus Q$.

Figure 1. Algorithm 1 for computing a result of forgetting.

A special case of unfolding is when there is no rule r' such that r' is resolved with r. In this case, $P' = P - \{r\}$.

We use T to denote the set of program transformations introduced above.

Lemma 1 By using program transformations from T, every HEX-program can be transformed into a quasi-negative program such that no atom appears in both head and body of a rule.

The algorithm for computing the result of forgetting, referred to as Algorithm 1, is depicted in Figure 1. This algorithm can be easily implemented using the system LPForget. Note that the current form of Algorithm 1 is incomplete with respect to the semantic forgetting for some special cases while it is intuitive and can be seen an ideal approximation to the semantic forgetting. A complete algorithm is obtained by replacing Step 3 with Step 3 of Algorithm 2 given by Eiter and Wang [4].

For a consistent HEX-program P and an atom l, some program P' as in Definition 2 always exists. However, different such programs P' might exist. It follows from the above definition that they are all equivalent under the answer-set semantics.

Proposition 1 Let P be a HEX-program and l an atom in P. If P' and P'' are two results of forgetting about l in P, then $P' \equiv P''$.

Example 3 Suppose that L is a knowledge base on the Web consisting of various axioms about persons and their relationships. In particular, L contains assertions depicted in Figure 2.

Let P now be the following HEX-program, where $\&dilC$ and $\&dilR$ are external atoms that query the extensions of a specified concept resp. role from a single description logic ontology:¹

\[
\begin{align*}
\text{Male} & \sqsubseteq \text{Person} & \text{parentOf}(\text{Bob, Emma}) \\
\text{Female} & \sqsubseteq \text{Person} & \text{sameProject}(\text{Bob, Dennis}) \\
\top & \sqsubseteq \neg \text{knows}^-. \text{Person} & \text{spouseOf} \sqsubseteq \text{knows} \\
\top & \sqsubseteq \neg \text{knows} . \text{Person} & \text{spouseOf} \equiv \text{spouseOf}^-
\end{align*}
\]

\[
\begin{align*}
\text{friendOf} & \sqsubseteq \text{knows} \\
\text{childOf} & \sqsubseteq \text{knows} \\
\text{siblingOf} & \equiv \text{siblingOf}^- \\
\text{siblingOf}^+ & \sqsubseteq \text{siblingOf} \\
\text{sameProject} & \sqsubseteq \text{knows} \\
\text{parentOf}(\text{Alice, Bob}) & \text{worksWith} \\
\text{parentOf}(\text{Alice, Carl}) & \text{worksWith}
\end{align*}
\]

To apply forgetting, we first have to obtain the ground program $\text{grnd}(P)$. In order to keep the example readable, we

¹For the sake of readability, we use a simplified version of the actual and implemented dl-atoms for HEX-programs here.
omit those ground rules whose bodies are not satisfied by L:

\[
\text{\texttt{sibling}}(\text{\texttt{"Bob"}}, \text{\texttt{"Carl"}}) \leftarrow \& \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Bob"}}, \\
\text{\texttt{\&}} \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Carl"}}, \\
\text{\texttt{\&}} \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Alice"}}));
\]

\[
\text{\texttt{sibling}}(\text{\texttt{"Carl"}}, \text{\texttt{"Bob"}}) \leftarrow \& \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Carl"}}, \\
\text{\texttt{\&}} \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Bob"}}, \\
\text{\texttt{\&}} \text{\texttt{dlR}}[\text{\texttt{childOf}}](\text{\texttt{"Alice"}}));
\]

\[
\text{\texttt{inEurope}}(\text{\texttt{"Carl"}}) \leftarrow \text{\texttt{sibling}}(\text{\texttt{"Bob"}}, \text{\texttt{"Carl"}}), \\
\text{\texttt{not inAmerica}}(\text{\texttt{"Carl"}});
\]

\[
\text{\texttt{inAmerica}}(\text{\texttt{"Carl"}}) \leftarrow \text{\texttt{sibling}}(\text{\texttt{"Bob"}}, \text{\texttt{"Carl"}}), \\
\text{\texttt{not inEurope}}(\text{\texttt{"Carl"}}).
\]

Thus, $\text{\texttt{grnd}}(P)$ has two answer sets, viz.

\[
X_1 = \{ \text{\texttt{inEurope}}(\text{\texttt{"Carl"}}), \text{\texttt{sibling}}(\text{\texttt{"Bob"}}, \text{\texttt{"Carl"}}), \\
\text{\texttt{\&}} \text{\texttt{sibling}}(\text{\texttt{"Carl"}}, \text{\texttt{"Bob"}}) \} \quad \text{and} \\
X_2 = \{ \text{\texttt{inAmerica}}(\text{\texttt{"Carl"}}), \text{\texttt{sibling}}(\text{\texttt{"Bob"}}, \text{\texttt{"Carl"}}), \\
\text{\texttt{\&}} \text{\texttt{sibling}}(\text{\texttt{"Carl"}}, \text{\texttt{"Bob"}}) \}.
\]

If we allow to forget about $\text{\texttt{sibling}}(\text{\texttt{"Carl"}}, \text{\texttt{"Bob"}})$ in $\text{\texttt{grnd}}(P)$, then the result of forgetting is obtained from $\text{\texttt{grnd}}(P)$ by removing the first rule. □

The above definitions of forgetting about an atom l can be extended to forgetting about a set F of atoms. Specifically, we can similarly define $X_1 \subseteq_P X_2, X_1 \sim_P X_2$, and F-answer sets of a hex-program. In fact, the properties of forgetting about a single atom can be generalized to the case of forgetting about a set. Moreover, the result of forgetting about a set F can be obtained by forgetting each atom one by one in F.

Proposition 2 Let P be a consistent hex-program and $F = \{ l_1, \ldots, l_m \}$ a set of atoms. Then, \(\text{\texttt{forget}}(P, F) \equiv \text{\texttt{forget}}(\ldots(\text{\texttt{forget}}(\text{\texttt{forget}}(P, l_1), l_2), \ldots), l_m) \).

Since higher-order atoms and external atoms can be treated as ordinary atoms in the process of forgetting, we can prove the above result similarly to the proof of Proposition 6 given by Eiter and Wang [4].

For hex-programs, the notion of ordinary forgetting may not be sufficient for some applications in managing ontologies. In some cases, we need to forget a predicate. This can be easily accomplished by forgetting the set of all atoms with the same predicate.

Due to the presence of higher-order terms, we may need also to forget some other atoms when we want to forget a specific atom. This is illustrated in the following example.

Example 4 Suppose we want to forget $\text{\texttt{brotherOf}}$ in the following program:

\[
\text{\texttt{subRelation}}(\text{\texttt{brotherOf}}, \text{\texttt{siblingOf}}) \leftarrow; \quad \text{\texttt{brotherOf}}(\text{\texttt{john}}, \text{\texttt{al}}) \leftarrow; \\
\text{\texttt{siblingOf}}(\text{\texttt{john}}, \text{\texttt{joe}}) \leftarrow; \\
\text{\texttt{siblingOf}}(\text{\texttt{al}}, \text{\texttt{mick}}) \leftarrow; \\
R(X, Y) \leftarrow \text{\texttt{subRelation}}(P, R), P(X, Y).
\]

Here, also $\text{\texttt{subRelation}}(\text{\texttt{brotherOf}}, \text{\texttt{siblingOf}})$ should be forgotten.

For the above discussion, it is natural to define the following variant of forgetting, which is more intuitive for most applications.

Definition 3 Let P be a hex-program and l an atom in P. Denote by $\text{\texttt{sup}}(l)$ the set of all atoms in P that contain the predicate name of l. Then the result of enforced forgetting about l in P, written \(\text{\texttt{Forget}}(P, l) \), is defined as $\text{\texttt{forget}}(P, \text{\texttt{sup}}(l))$.

In Example 4, \(\text{\texttt{Forget}}(P, \text{\texttt{brotherOf}}) \), given by

\[
\text{\texttt{forget}}(P, \{ \text{\texttt{brotherOf}}(\text{\texttt{john}}, \text{\texttt{al}}), \text{\texttt{subRelation}}(\text{\texttt{brotherOf}}, \text{\texttt{siblingOf}}) \})
\]

is the following program:

\[
\{ \text{\texttt{siblingOf}}(\text{\texttt{john}}, \text{\texttt{al}}) \leftarrow; \text{\texttt{siblingOf}}(\text{\texttt{john}}, \text{\texttt{joe}}) \leftarrow; \\
\text{\texttt{siblingOf}}(\text{\texttt{al}}, \text{\texttt{mick}}) \leftarrow. \}
\]

3.2 Forgetting for Non-Ground Positive Programs

As we will see in Section 4, the logic program P_L translated from an owl/rdf ontology is non-ground in general and thus forgetting as defined by Eiter and Wang [4] cannot be directly applied here. However, since P_L has a special form and, in particular, has no negation as failure, we are able to lift the notion of forgetting for ground programs to this kind of non-ground programs.

To this end, we first need to define weak unfolding for logic programs.

Let $r : a \leftarrow b, B$ and $r' : b' \leftarrow B'$ be normal rules, where a, b, b' are atoms, and B, B' are conjunctions of literals. Note that no higher-order atoms occur here. When necessary, we can rename the variables of r' such that r and r' have no common variables. If the head b' of r' and b have a most general unifier (mgu) θ, then the rule $(a \leftarrow B, B')\theta$ is called a resolvent of r with r'.

Weak Unfolding. A logic program P' is obtained from P by weak unfolding iff there are two rules r and r' in P such that r'' is a resolvent of r with r' and $P' = P \cup \{ r'' \}$.

Algorithm 2 (Computing forgetting for non-ground positive logic programs)

Input: Positive logic program \(P \) and a predicate \(R \).

Output: Program \(\text{forget}(P, R) \) as the result of forgetting \(R \) from \(P \).

Method:

1. Fully apply weak unfolding on \(P \).
2. Remove all rules containing \(R \).
3. Output the resulting program as \(\text{forget}(P, R) \).

Figure 3. Computing the result of forgetting for non-ground positive programs.

For a positive logic program the result of forgetting can be easily obtained by Algorithm 2 depicted in Figure 3.

The following result shows that this lifting algorithm for forgetting is sound with respect to semantic forgetting for ground programs.

Theorem 1 Let \(P \) be a non-ground positive program and \(R \) a predicate in \(P \).

For any extensional database \(E \) (i.e., a set of facts), we have \(\text{forget}(P, R) \cup E \equiv \text{forget}(\text{grnd}(P \cup E), \text{const}(R)) \), where \(\text{const}(R) \equiv \{ R(a) \mid a \text{ is a constant in } P \cup E \} \).

Algorithm 2 may be refined by applying Step 1 only to a subset of the rules and facts \(P \) which is relevant to \(R \), while the rest of the program remains untouched. In this way, the cost of computing forgetting can be reduced radically.

For \(P \) and \(R \) in Algorithm 2, let \(Q \) initially be the set of all rules in which \(R \) appears. Then, add each rule \(r \) from \(P \) to \(Q \) such that \(\text{head}(r) \) appears in \(Q \), and repeat this process until no new rules can be added. Let the resulting program be denoted by \(Q_{P,R} \). Intuitively, \(Q \) consists of rules that are irrelevant to \(R \). For forgetting in a positive program, it is done by a series of unfolding and then removing some rules relevant to \(R \). So, rules in \(Q \) are essentially unchanged during the process of forgetting.

Theorem 2 Let \(P \) be a non-ground positive program \(P \) and let \(R \) be a predicate in \(P \). For any extensional database \(E \), it holds that \(\text{forget}(P, R) \cup E \equiv \text{forget}(Q_{P,R}, R) \cup Q \cup E \), where \(Q \equiv P \setminus Q_{P,R} \).

It should be noted that although the process of forgetting for non-ground programs is realized by the removal of certain rules, it has a semantic justification as Theorem 2 shows.

4 Forgetting in OWL/RDF-Ontologies

To apply forgetting purely to an ontology expressed in OWL or RDFS, we reuse the techniques defined for forgetting in logic programs. Figure 4 shows the general principle of this approach. First, an ontology \(L \) is translated into a rule representation \(P_L \), taking the specific ontology semantics into account. Then, for any atom \(l \) in \(P_L \), we can compute \(\text{forget}(P_L, l) \). Finally, we translate the result back into an ontology.

The translation of description-logic axioms into a logic program is shown in Table 1. This translation covers most of the expressiveness of OWL Lite and corresponds to the translation given by Grosof et al. [11], mapping some subset of a description logic to positive equality-free datalog programs. Note that some description-logic constructs have no direct representation in logic-programming rules, such as cardinality constraints. Also, existential and universal quantification is restricted to the left-hand side resp. right-hand side of a subclass axiom. In general, a transformation from a set of rules back to ontology statements requires the rules in \(\text{forget}(P_L, l) \) to be in a form according to Table 1.

Example 5 Consider again the ontology \(L \) in Figure 2. The translation of \(L \) into a logic program according to \(P_L \) is depicted in Figure 5. Suppose we do not want to keep the concepts \(\text{worksWith} \), then we can use Theorem 1 to simplify the process of forgetting.

Take \(Q \) as a subprogram of \(P_L \):

\[
\begin{align*}
\text{sameProject}("Bob", "Dennis") & \leftarrow ; \\
\text{worksWith}(X, Y) & \leftarrow \text{worksWith}(Y, X); \\
\text{worksWith}(X, Z) & \leftarrow \text{worksWith}(X, Y), \text{worksWith}(Y, Z); \\
\text{knows}(X, Y) & \leftarrow \text{worksWith}(X, Y); \\
\text{worksWith}(X, Y) & \leftarrow \text{sameProject}(X, Y).
\end{align*}
\]

We can apply Algorithm 2 on the logic program \(Q \) by forgetting \(\text{worksWith} \). First, fully apply weak unfolding on \(Q \) and obtain \(Q' \):

\[
\begin{align*}
\text{sameProject}("Bob", "Dennis") & \leftarrow ; \\
\text{worksWith}(X, Y) & \leftarrow \text{worksWith}(Y, X);
\end{align*}
\]
worksWith(X, Z) ← worksWith(X, Y),
worksWith(Y, Z);
knows(X, Y) ← worksWith(X, Y);
worksWith(X, Y) ← sameProject(X, Y);
knows(X, Y) ← sameProject(X, Y);
worksWith("Bob", "Dennis") ←;
knows("Bob", "Dennis") ←.

Thus, the result of forgetting about worksWith is the program forget(Q, worksWith) ∪ ̄Q, where ̄Q = P_L \ Q and forget(Q, worksWith) is as follows:

\{ sameProject("Bob", "Dennis") ← ;
knows(X, Y) ← sameProject(X, Y);
knows("Bob", "Dennis") ← \}.

Translating this fragment back into the original description logic results in the following statements:

sameProject("Bob", "Dennis");
sameProject ⊑knows; knows("Bob", "Dennis").

The property worksWith does not occur in the modified description-logic knowledge base any more, while the subproperty relation between sameProject and knows is preserved.

Combining the approaches to forgetting of Sections 3 and 4, we are now able to forget any set of ordinary atoms, higher-order atoms, whole external atoms, and parts of external atoms in a HEX-program.

5 Related Work and Concluding Remarks

The notion of forgetting for HEX-program introduced in this paper generalizes a respective notion for ordinary logic programs defined in previous work [4]. Forgetting for HEX-programs provides a means to handle forgetting at the user-view level, since HEX-programs are tailored to access sources like OWL/RDF ontologies at the extensional level through external atoms, but does not go back to changes in these sources, as is done in the view-update problem of databases, for instance. However, such ontologies have been cast to a class of logic programs which constitute a small fragment of HEX-programs, and thus semantic forgetting for OWL/RDF may be facilitated through this mapping, as we have shown. Our work therefore provides a uniform basis for a framework for extracting ontology segments from a custom ontology, which is exploited at the user level. This approach is in an active area of semantic integration in ontologies (see [17] for a survey). However, the emphasis of our work is on conflict resolving in semantic integration of ontologies rather than on ontology mapping.

Forgetting for OWL/RDF ontologies can be used for various tasks in ontology management including the following:

- **Ontology segmentation**: This approach is to obtain segments from a custom ontology, thus having the same purpose as forgetting. Seidenberg and Rektor [20] present a series of strategies for extracting ontology segments. However, it lacks a general semantic justification.

Table 1. Mapping of ontology statements and class constructors to rules.

<table>
<thead>
<tr>
<th>Constructor</th>
<th>DL syntax</th>
<th>Rule representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>conjunction</td>
<td>C_1 \ C_2 ⊑ D_1 \ D_2</td>
<td>D(X) ← C_1(X), C_2(X).</td>
</tr>
<tr>
<td>disjunction</td>
<td>C_1 ∪ C_2 ⊑ D_1 ∪ D_2</td>
<td>D(X) ← C_1(X), C_2(X).</td>
</tr>
<tr>
<td>existential restriction</td>
<td>∃ P.C ⊑ D</td>
<td>D(X) ← P(X, Y), C(Y).</td>
</tr>
<tr>
<td>universal restriction</td>
<td>D ⊑ ∀ P.C</td>
<td>C(Y) ← P(X, Y), D(X).</td>
</tr>
</tbody>
</table>
• Ontology merging: Given two ontologies O_1 and O_2, they could first be preprocessed by techniques in ontology mapping and then be merged into one ontology. In many cases, conflicts may be present in the process of merging. If the conflict is caused by some concept C, a natural approach is to forget C from one of these two ontologies or from both. Grau, Parsia, and Sirin [8] propose to use so-called “E-connections” for merging ontologies. In this approach, merging ontologies is defined in terms of link properties. However, it is difficult to find related link properties.

Similar to other approaches to semantic integration, it is a hard issue to determine the set of concepts which should be forgotten if they are not explicitly specified by the user. This issue could be solved by employing heuristics and techniques from machine learning. Exploring this is left for future work.

References

Figure 5. Translation of L into a logic program P_L.

\[
\begin{array}{ll}
\text{parentOf}('Alice', 'Carl') & \leftarrow . \\
\text{female}('Alice') & \leftarrow . \\
\text{sameProject}('Bob', 'Dennis') & \leftarrow . \\
\text{male}('Bob') & \leftarrow . \\
\text{parentOf}('Carl', 'Emma') & \leftarrow . \\
\text{person}('Carl') & \leftarrow . \\
\text{person}('Dennis') & \leftarrow . \\
\text{knows}(X, Y) & \leftarrow \text{childOf}(X, Y). \\
\text{childOf}(X, Y) & \leftarrow \text{parentOf}(Y, X). \\
\text{male}(X) & \leftarrow \text{father}(X). \\
\text{person}(X) & \leftarrow \text{female}(X). \\
\text{friendOf}(X, Y) & \leftarrow \text{friendOf}(Y, X). \\
\text{knows}(X, Y) & \leftarrow \text{ancestorOf}(X, Y). \\
\text{ancestorOf}(X, Z) & \leftarrow \text{ancestorOf}(X, Y). \\
\text{ancestorOf}(X, Z) & \leftarrow \text{ancestorOf}(Y, Z). \\
\text{knows}(X, Y) & \leftarrow \text{friendOf}(X, Y). \\
\text{worksWith}(X, Y) & \leftarrow \text{worksWith}(Y, X). \\
\text{worksWith}(X, Y) & \leftarrow \text{worksWith}(X, Y). \\
\text{worksWith}(X, Z) & \leftarrow \text{worksWith}(X, Y). \\
\text{worksWith}(X, Z) & \leftarrow \text{sameProject}(X, Y). \\
\end{array}
\]