
GPU Accelerated Genetic Algorithm with Sequence-based
Clustering for Ordered Problems

Author
Ohira, Ryoma, Islam, Md Saiful

Published
2020

Conference Title
2020 IEEE Congress on Evolutionary Computation (CEC 2020)

Version
Accepted Manuscript (AM)

DOI

10.1109/cec48606.2020.9185762

Rights statement
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing this
material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

Downloaded from
http://hdl.handle.net/10072/399280

Griffith Research Online
https://research-repository.griffith.edu.au

http://dx.doi.org/10.1109/cec48606.2020.9185762
http://hdl.handle.net/10072/399280
https://research-repository.griffith.edu.au

GPU Accelerated Genetic Algorithm with
Sequence-based Clustering for Ordered Problems

Ryoma Ohira
School of Information and Communication Technology

Griffith University
Gold Coast, Australia
r.ohira@griffith.edu.au

Md. Saiful Islam
School of Information and Communication Technology

Griffith University
Gold Coast, Australia

saiful.islam@griffith.edu.au

Abstract—The island model allows genetic algorithms to ef-
fectively maintain diversity through migration between multiple
independent populations. Due to its flexibility and modularity, it
is commonly employed in distributed and parallel implementa-
tions, particularly in recent trends in leveraging the massively
parallel cores in GPUs. However, the efficiency and effectiveness
of the island model can be considered as its ability to manage its
global and local search while minimising the overlap of islands
searching in the same area of the solution space. This paper
introduces a GPU accelerated island-model genetic algorithm
that conducts global search by organising its populations into
islands according to the similarity in genotype sequences. Local
search is managed through adaptive mechanisms designed to
maintain population diversity. The characteristics of the pro-
posed genetic algorithm are investigated with encouraging results
demonstrating its robustness and scalability when solving ordered
optimisation problems.

Index Terms—genetic algorithm, ordered problems, adaptive
optimisation, GPU, island model genetic algorithm

I. INTRODUCTION

Optimisation can be considered as finding the best solu-
tions for a given problem with a possible solution space.
Since originally proposed by Holland [1] and DeJong [2],
genetic algorithms (GAs) have demonstrated their ability as
metaheuristic algorithms in obtaining near-optimal solutions
to solving NP-hard problems within a finite time.

Recent trends in parallel implementations of GAs have
demonstrated the scalability and flexibility of the island-model
(IMGA) [3], [4] and its capabilities in effectively exploring
the search space while delaying convergence. This method
involves distributing a large global population to islands where
each island’s population undergoes the evolutionary process.
Good performing individuals are selected to migrate between
islands in order to maintain diversity and prevent premature
convergence. While this method is an effective mechanism for
preventing global convergence, its effectiveness is dependent
on the number of islands. With the ability for an IMGA to
maintain population diversity being linked to the number of
islands it manages, it can become a computationally intensive
process. As such, an effective and efficient IMGA must
maintain a balance between the number of islands and the
computational power required to process them.

Recent trends have focused on parallel implementations of
GAs on both CPU and, more recently, the graphics processing

unit (GPU) in order to accelerate GAs. The Compute Unified
Device Architecture (CUDA) [5] toolkit released by NVIDIA
allows for GPUs to be used for general purposes. With a
single modern GPU containing thousands of cores, GPU
processing has allowed for high-performance computation in
many scientific applications. When used to accelerate ge-
netic algorithms, GPUs are often used to implement master-
slave, IMGA and hybrid configurations [3]. In a master-slave
configuration, a host (CPU) manages the population through
selection, crossover, and mutation while the GPU handles the
more computationally expensive processes such as fitness and
diversity evaluations.

While the massively parallel nature of GPU processing
makes the platform desirable for deploying an IMGA, recent
trends have identified several challenges in fully deploying
an IMGA onto GPU architecture. These include the nature of
the single instruction multiple threads (SIMT) architecture, the
amount of shared memory available and the latency between
global and shared memory. Furthermore, when considering the
massive number of islands that a GPU can handle in an IMGA,
there is a higher likelihood of two or more islands searching
in overlapping areas of the solution space. In order to improve
the effectiveness and efficiency of an IMGA, it is important to
minimise the way in which these islands overlap by managing
the search at a global and local level.

In this paper, we present an IMGA completely deployed on
the GPU that manages many islands in a parallel manner. To
improve the efficiency and effectiveness of the IMGA’s search,
we combine adaptive diversity maintenance mechanisms and
spectral clustering in order to prevent islands from searching
in the same areas as other islands. This allows for the proposed
IMGA to direct the global search of the solution space to better
navigate the complexities of the fitness landscape.

The remainder of this paper is organised as follows: Section
II highlights the existing works in the literature for GPU
accelerated IMGAs with Section III discussing the details of
the IMGA and GPU architecture. In Section IV, we outline the
proposed IMGA and its characteristics. Section V contains the
experimental environments and results analysis for instances
from the travelling salesman problem and the capacitated
vehicle routing problem. Finally, a discussion and conclusions
are drawn in Section VI.

(a) Fully-connected (global) migration (b) Stepping-stone migration (c) Ring migration

Fig. 1. Examples of island model topologies with each method of migration contributing to different characteristics of an IMGA

II. RELATED WORK

A GA’s ability to maintain diversity is critical to its ca-
pabilities in preventing premature convergence. In an IMGA,
diversity is maintained through migration between populations.
However, the method of migration has significant effects on
the GA’s search capacity as well as its ability to maintain
diversity. While many methods for distributing a GA for
parallel computation have been proposed, the IMGA is one of
the most commonly used techniques due to its performance
and flexibility [3].

Another active research area is that of adaptive genetic algo-
rithms. These aim to introduce mechanisms that monitor and
maintain the diversity of a single population [6]. This includes
adaptively changing operators [7] or their parameters [8].
Other methods include creating sub-populations to maintain
a balance between exploration and exploitation according to
the state of the population [9] or creating candidate individuals
that introduces population diversity while improving its fitness
[10]. These works have found effective ways of managing
a single population’s diversity and search in order to both
prevent premature convergence and improve the GA’s search
capabilities. While these adaptive features are not often used
in maintaining population diversity in distributed GA models,
some of these mechanisms have been introduced to migration
strategies.

Studies into understanding the characteristics of the fitness
landscape of combinatorial optimisation problems, like the
Travelling Salesman Problem (TSP), is an active and on-going
research topic [11]. Where it was previously theorised as a hill-
valley landscape, recent works highlighted how communities
of local optima can be found as clusters in the solution space
as funnels [12], [13]. Further works [14], [15] identified how
the number of clusters and the size of the cluster that the global
optimum resides in correlates to the search difficulty. By better
understanding the relationship between the many local optima
and the fitness landscape, more efficient and effective methods
of searching the solution space can be developed. This has led
to recent works incorporating clustering techniques into GAs

in numerous ways. These include using clustering to measure
the diversity of the population [16], part of the evolution
process [17] or during migration for IMGAs [18], [19].

Where IMGAs distribute sub-populations around the global
solution space, ensuring that the islands are not searching the
same areas is important to the IMGA’s effectiveness. By clus-
tering similar individuals together, an IMGA can encourage
each island to conduct local search around an optima but it
is necessary to ensure that the sub-population itself does not
converge prematurely. By combining techniques from adaptive
GAs and clustering based migration strategies, each island will
be able to maintain a healthy level of population diversity
while allowing the IMGA to help direct each island’s search
in order to minimise overlap in the solution space.

III. PRELIMINARIES

One of the open research problems in the topic of GPU
accelerated GAs is the challenge of deploying an IMGA
completely onto the GPU. In this section, we discuss the
technical challenges and compromises in designing IMGAs
for GPU deployment.

A. Island Model based Genetic Algorithms

Island model based genetic algorithms (IMGAs) are a
popular and efficient model for implementing GAs in a parallel
manner [3], [4], [20]. The main premise of an IMGA is to
parallelise the search process by managing multiple islands
of populations that are run concurrently and independently
to one another. In order to maintain diversity, individuals are
allowed to migrate from one island to another. The main
migration methods are demonstrated in Fig. 1. Whitley et
al [20] demonstrated how a global migration method (Fig.
1a) results in the IMGA acting as a single global population.
This can result in an overall high level of genetic similarity
between populations. A stepping-stone migration method (Fig.
1b) allows for individuals to migrate to the next island only
[21]. This reduces the rate of convergence and allows islands
further away from the globally fittest individuals to explore
more of the solution space while introducing diversity to

 NVIDIA Turing GPU

 SM2

Global
Memory

 SM1

C1

C2

C32

...

Sh
ar

ed
 M

em
or

y

Texture
Memory

Host System

Fig. 2. NVIDIA Turing memory hierarchy

nearby islands. Ursem [22] proposed a novel migration policy
which focused on classifying individuals into islands using a
hill-valley detection algorithm. While this method is successful
in maintaining different islands as they merged, it is inefficient
and the moving speed of islands is generally slow. However,
its important contribution to the topic was how the relationship
between individuals and the fitness landscape should be taken
into consideration when deciding which island an individual
should belong to.

There are several challenges in developing an IMGA for
the GPU. Many approaches implement a hybrid Master-Slave
IMGA where islands are managed on a master node (CPU)
with slave nodes (GPU) being responsible for introducing
parallel processing for computationally expensive tasks such as
fitness calculations [4]. However, the communication between
CPU and GPU can negatively affect its performance due to
the latency in synchronising the memory between the two.

By deploying each island as a thread-block on a CUDA
based GPU, Melab et al [23] demonstrated how an IMGA
can be deployed on the GPU. By storing the local population
on the shared memory of the thread block, the authors were
able to minimise the communication cost between the shared
and global memory. However, due to the GPU architecture,
several limitations must be considered when deploying the
island model onto the GPU.

B. GPU Architecture

The Compute Unified Device Architecture (CUDA) toolkit
developed for GPUs have enabled software to make use of
General Purpose GPUs (GPGPUs) to massively parallelise
computing tasks. NVIDIA introduced some changes with their
Turing architecture. Turing based GPUs consists of Graphics
Processing Clusters (GPCs) that hosts six Texture Processing

clusters (TPCs). Unlike the previous architectures, each TPC
contains two Streaming Multiprocessors (SMs) that each con-
tain four warps. Each SM contains 64KB of shared memory
capacity.

One of the challenges involved with deploying an IMGA
to the GPU is the constraints on the shared memory [24].
While subsequent generations has provided greater flexibility
in accessing and managing the amount of memory available,
NVIDIA’s architecture has largely limited the amount of
shared memory available to 48-64KB while global memory
has increased at a steady rate. This is important to the
performance of an GPU based IMGA due to the cost in
communicating between the cores and the different levels
of memory available. While the global memory available to
the GPU can range between 6GB to 24GB, accessing global
memory can take between 200 and 600 memory clock cycles
[5]. However, local and shared memory can be accessed much
faster for 2-8 clock cycles. As over-utilisation of the global
memory can result in significant costs to computation time,
data should be partitioned or encoded to fit inside the shared-
memory. However, due to the complexity and the size of larger
combinatorial optimisation problems, it is an ongoing and
active research topic [23]–[26].

Unlike multi-tasking on the CPU, the GPU architecture is
implemented as single instruction multiple threads (SIMT)
where the GPU is only able to run a single task across multiple
threads at any given time. An IMGA deployed on the GPU
should aim to minimise the thread divergence by ensuring all
threads within a warp follow the same execution path.

These technical constraints contributes to the challenge of
fully deploying an IMGA onto the GPU in an optimal manner.

IV. OUR APPROACH

In our proposed approach, each island is responsible for
conducting local search. This is achieved by migrating similar
individuals to the same island. This allows for each island
to focus on searching within a specific area of the solution
space. Global search is conducted by managing the islands
to ensure that they do not overlap by encouraging them to
search in different areas of the solution space. Inspired by the
Galapagos Islands, this creates a series of islands where the
populations evolve to become highly niche and adapted to its
local solution space. By distributing this process across the
many cores available on GPUs, the Galapagos Island Model
Genetic Algorithm (GIMGA) is designed to manage and direct
the search of its islands. This allows GIMGA to minimise the
overlaps in its search efforts thus improving its efficiency and
effectiveness in searching large solution spaces.

A. Sequence-wise Similarity

In order to adaptively maintain population diversity, it is
necessary for a GA to measure and monitor the similarity of
genotypes. However, there are a number of ways to measure
the similarity or difference between individuals. Many adaptive
GAs use euclidean or Hamming distances [6]. When consid-
ered the sequential nature of ordered problems, sequence-wise

(a) 2D representation of individuals in
the solution space

(b) k-means clustering (c) Spectral clustering

Fig. 3. Comparison between k-means and spectral clustering of individuals where k = 2

Gene-wise Similarity

Reference

Sequence-wise Similarity

8 6 7 4 5 3 1 2

8 4 6 7 5 1 3 2

8 4 6 7 5 1 3 2

Fig. 4. Demonstration of a gene-wise and sequence-wise approach to
measuring genotypic similarity

measurements have demonstrated their suitability and effec-
tiveness for the TSP and VRP [27]. Similar to the Hamming
distance, the longest common subsequence (LCS) distance is
the number of nodes that separate the distance between the
sequences of two genotypes. This is demonstrated in Fig. 4
where the gene-wise approach considers two genes to be sim-
ilar if they share the same gene values at the same positions in
the genotype sequence. Meanwhile, a sequence-wise approach
considers the similarity in gene-sequence. When considering
that a genotype represents a single or a set of routes in the TSP
and CVRP, the sequence of nodes contributes to the fitness
of the genotype more so than the positions of each node.
For this reason, GIMGA uses the LCS length of genotypes
to determine the diversity and similarity of individuals and
islands.

B. Sequence Based Clustering

In IMGAs, good solutions from an island are propagated to
other islands through migration. There are numerous migration
strategies, each with their unique characteristics. A global
migration strategy allows for the best individual from the
global population to migrate to all islands. Whitley et al [20]
demonstrated how this strategy results in IMGAs with similar
characteristics to a single, global population. A stepping-stone
strategy allows the best individual from an island to only
migrate to an adjacent island [4]. This slows the propagation
of the best individuals and reducing their dominance on the
global population. Variants of this strategy include the ring
and star migration strategies.

By reducing the dominance of strong individuals over the
global population, IMGAs are better able to explore the
solution space through its numerous islands. When islands
begin to converge on the same solutions, the search space
of each island begin to overlap, reducing the IMGA’s ability
to effectively conduct global search of the solution space. In
order to improve the IMGA’s capabilities in maintaining a
balance between exploration (global search) and exploitation
(local search), our proposed IMGA uses spectral clustering to
organise the global population into islands according to their
genotypic similarity.

As GIMGA evolves across generations, each island will
conduct its own exploration and exploitation resulting in a sub-
population with a healthy degree of diversity while focused
on an area of the solution space. The global population is
clustered into k sub-populations according to their sequence-
wise genotypic similarity. Spectral clustering was selected due
to it ability for parallel processing on the GPU [28].

Given a global population of p, in order to group the pop-
ulation into k islands using spectral clustering, we must first
construct an affinity matrix. With a sequence-based approach,
we can define the affinity matrix as shown in Eq. 1.

Aij =

{
1 if i = j
LCS(i,j)

N if i 6= j
(1)

The affinity matrix (A) is created using the LCS length
between each genotypes i and j. This LCS length is nor-
malised against the length of the genotype (N). Aij ' 1
indicates that the two are similar while Aij → 0 means that
the two genotypes are far apart. The diagonal matrix (D) and
Lapalacian matrix (L) are defined in Eq. 2 and Eq. 3 below.

Dij =
∑
j

Aij (2)

Lij = Dij −Aij (3)

The first k smallest eigenvalues are calculated and mapped
to clusters. This k value is dependent on the number of islands
or thread blocks available on the GPU. This spectral clustering
migration process can be seen in Fig. 5. During the evolution

... ...

Fig. 5. Spectral clustering migration

stages, each island acts as an adaptive genetic algorithm that
is responsible for maintaining its own population diversity.
From adaptively balancing its focus between exploration and
exploitation, each island will have contributed to local search
and global search. These individuals are then stored in global
memory for clustering into new islands.

C. Adaptive Islands

Each island in the IMGA is capable of acting as an
independent GA that is responsible for maintaining its bal-
ance between exploration and exploitation. The architecture
for balancing exploration and exploitation sub-populations
within an island is demonstrated in Fig 6. Each individual
is processed on a CUDA core (C1, . . . , Cn) according to
the number of cores available on the GPU device. During
the diversity evaluation stage of the evolution process, the
island measures the LCS distance (N − LCS(i, j)) of its
population in order to determine its diversity. By measuring the
diversity between the fittest individual and the rest of the island
population, GIMGA can effectively monitor its population
diversity in order to manage its exploration and exploita-
tion island sub-populations. While measuring the difference
between all individuals provides a much thorough measure
of population diversity, previous work has demonstrated how
measuring the difference between a population and its fittest
individual can provide a relatively accurate measurement at
a much lower computational cost [29]. The exploitation sub-
population selects two parents from the shared memory to
conduct crossover, and mutation. Individuals in the explo-
ration sub-population selects a single parent and undergoes
mutation at a rate dependent on the degree of diversity of
the population. The coefficient of variation in LCS distances
between individuals is used in the population diversity ratio
of the population. This is then averaged with the individual’s
fitness contribution to establish a mutation value that reflects
the individual’s contribution to the population’s fitness and
diversity [27].

By combining the spectral clustering with adaptive param-
eter controls, GIMGA aims to allow each island to actively

maintain its own population diversity and focus on different
areas of the solution space. By distributing the islands in such
a manner, GIMGA aims to improve on the ability to search
for good solutions in an effective and efficient manner.

V. EXPERIMENTS

All algorithms were implemented and tested on an AMD
Ryzen 5 2600x CPU with 32GB of main memory running
Windows 10. The GPU implementations were run using an
NVIDIA GTX 2080. Each implementation was written in C++
with the CUDA 10.1 toolkit. For benchmark purposes, the
CPU-based IMGA was run on a single core.

In order to test GIMGA’s ability to solve ordered problems,
a number of benchmark instances were selected from the TSP
and CVRP benchmark libraries. The TSP is a well known
combinatorial optimisation problem where the sequence of
cities a salesperson is to travel must be optimised to reduce
the total distance travelled. The CVRP is a generalised TSP
where N parcels with known weights must be made using
K vehicles with known capacities. Both are ordered problems
where each node can only be visited once. The instances were
selected for their variety in dimensions that allow for testing
the robustness of the GAs. Results presented in this study
represent the average values over 50 independent runs and
95% confidence intervals. In order to determine the statistical
significance of the results, two-sample Z-tests were conducted
between the GIMGA results and those of the IMGA and a
parallel implementation of the LCSB-AGA (P-LCSB-AGA).

For all GAs, the Modified Ordered Crossover (MOX) op-
erator and Partially Shuffled Mutation (PSM) operator were
implemented. These were selected due to their performance
and adherence to the constraints of ordered problems as
reported in [30].

A. Efficiency

Fig. 7 compares the execution time in seconds of a single
CPU core against the NVIDIA GTX 2080 across different
number of islands and their sizes. This speedup is measured
as the time required to complete 1,000 generations of the
problem instance and represents the average times after 50
runs. Both CPU and GPU implementations run the same
GIMGA framework to ensure an accurate comparison. As
expected, as the global population increases in size, a single
CPU core takes longer to compute each generation. However,
the GPU is much more capable of processing the increasing
number of islands and population size. In Table I, we present
the relationship between the number of islands, computation
time and solution quality between a single CPU core and the
multi-core GPU in running GIMGA. The island population
has been kept at a constant size of 128. As the number of
islands increases, the solution quality for both CPU and GPU
implementations improve. However, while there is minimal
increase in computation time for the GPU implementation, a
single-core CPU experiences a significant increase in compu-
tation time.

Exploitation

C64...C1

SM1

(Island1)

SM2

(Island2)

SM46

(Island46)

...

Global
Memory

C2 C3

Initialisation
Fitness Evaluation

Diversity Evaluation

Mutation

Sh
a

re
d

 M
e

m
o

ry

Fitness Evaluation

Spectral Clustering

Migration?

End?

Yes

Adaptive Mutation

Crossover

Parent Selection Exploration Selection

Exploration

No

Yes

No

Fig. 6. Adaptive islands architecture

TABLE I
GIMGA SPEEDUP FOR F-N135-K7

Islands CPU GPU Speed
UpQlty. Time Qlty. Time

32 1,535 350 1,534 8 46x
48 1,488 1,174 1,486 8 152x
64 1,495 2,735 1,493 8 339x
80 1,462 5,270 1,363 8 631x
96 1,361 9,155 1,370 9 1,059x
112 1,354 14,367 1,340 9 1,589x
128 1,325 15,361 1,298 9 1,640x

TABLE II
DIVERSITY MAINTENANCE FOR F-N135-K7

Islands IMGA P-LCSB-AGA GIMGA
Qlty. Div. Qlty. Div. Qlty. Div.

32 2,167 0.12 1,652 0.77 1,533 0.78
48 2,153 0.10 1,567 0.71 1,486 0.76
64 2,132 0.11 1,532 0.74 1,493 0.77
80 2,142 0.10 1,482 0.71 1,363 0.79
96 2,113 0.12 1,460 0.67 1,369 0.78

112 2,105 0.09 1,455 0.65 1,360 0.73
128 2,023 0.11 1,412 0.68 1,298 0.79

TABLE III
BENCHMARK RESULTS

Instance Optimum IMGA P-LCSB-AGA GIMGA
Qlty. Div. Qlty. Div. Qlty. Div.

Berlin52 7,542 7,583 0.25 7,542 0.55 7,542 0.65
Pr107 44,303 51,524 0.20 44,303 0.63 44,303 0.76
Pr152 73,682 103,841 0.12 73,770 0.64 73,720 0.78
Rat195 2,323 6,894 0.14 2,897 0.63 2,564 0.79
Pr264 49,135 65,348 0.15 61,441 0.67 57,123 0.81

A-n32-k5 784 785 0.20 784 0.52 784 0.65
A-n65-k9 1,174 1,181 0.10 1,174 0.58 1,174 0.73

A-n80-k10 1,763 2,551 0.07 1,773 0.60 1,770 0.75
P-n101-k4 681 1,198 0.08 821 0.61 763 0.76
F-n135-k7 1,162 2,023 0.07 1,370 0.61 1,298 0.76

32

48

64

80

96

112

128

 -

 500

 1,000

 1,500

 2,000

 2,500

32
48

64
80

96
112

128

Fig. 7. Speed-up of GPU implementation of GIMGA for CVRP instance
F-n135-k7

TABLE IV
STATISTICAL SIGNIFICANCE (Z-TESTS)

Problem Instance IMGA P-LCSB-
AGA

Berlin52 ++ *
Pr107 ++ *
Pr152 ++ +

Rat195 ++ ++
Pr264 ++ ++

A-n32-k5 * *
A-n65-k9 ++ *
A-n80-k10 ++ ++
P-n101-k4 ++ ++
F-n135-k7 ++ ++

B. Diversity Maintenance

While speed-up is often considered as the main component
of scalability, it is important to also consider the ability of
an IMGA to maintain population diversity as the number
of islands increases. In Table II, we measure the average
quality of the solutions found as well as the average global
population diversity for each IMGA across a range in number
of islands after 1,000 generations. In order to measure the
global population diversity, we measure the LCS distance
between the fittest individuals of each island. This distance is
then normalised against the problem’s dimensions (N) where
islands that are highly converged will approach a diversity
value of 0 and highly diverse islands will result in a diversity
value reaching 1.

The benchmark IMGA with a simple global migration strat-
egy manages to find good quality solutions for the F-N135-
K7 instance of the CVRP. However, it struggles to maintain
a healthy level of sequence-wise diversity. This can be seen
in the way that the IMGA maintains a low level of island
diversity even when the number of islands is increased. This
suggests that as the IMGA evolves and migrates, the islands
begin to converge on the same solutions with the individuals
of each island also becoming similar to one another.

On the other hand, P-LCSB-AGA manages to maintain

a high level of population diversity with a smaller number
of islands but this begins to diminish as more islands are
introduced. The manner in which the quality of the solution
found increases with the increased number of islands suggests
that a number of islands begin to overlap with one another
while each island attempts to maintain its adaptive diversity
maintenance. This highlights the strengths of introducing
adaptive mechanisms to IMGAs as well as how islands can
become redundant if there is no oversight into their global
search patterns.

The GIMGA configuration incorporates both adaptive
mechanisms as well as spectral clustering in order to direct
the search of each island into different areas of the solution
space. By clustering individuals into islands according to their
similarity, each island is influenced by the highest performing
individuals of its cluster. As the island balances its exploration
and exploitation, these influential individuals are likely to
direct the local search while maintaining enough diversity to
prevent convergence. The relatively high and stable degree of
population diversity indicates that GIMGA is successful in
directing the global search of its islands even as the number
of islands increases. This can then be seen to contribute to its
ability to find better quality solutions.

C. Effectiveness

Where the efficiency and diversity maintenance demonstrate
the IMGAs’ scalability and capacity to search broadly through
the solution space, these ultimately contribute to how effective
the IMGAs are in terms of finding good quality solutions
within a finite amount of time. Table III presents each IMGA’s
effectiveness in searching for the global optimum. The quality
(Qlty.) and diversity (Div.) are average values from the 50
independent runs for each IMGA configuration. Each IMGA
was set to 128 islands with 64 individuals per island for 1000
generations or until the known optimum was found.

The results indicate how each IMGA performs as the prob-
lem’s dimensions increases. Given the fixed population and
island parameters, the IMGA manages to achieve high quality
solutions but with greater errors as the problem’s dimensions
increases. Furthermore, with no diversity maintenance, the
degree of diversity decreases with the increase in dimensions.
This suggests that there is a higher likelihood of convergence
as the problem’s complexity increases due to the clustered
proximity of the local optima. As the IMGA evolves, the
islands begin to converge towards the local optima.

When diversity mechanisms are introduced, P-LCSB-AGA
manages to maintain a higher level of population diversity.
In fact, as the problem dimensions increase, P-LCSB-AGA
manages to slightly increase the amount of diversity be-
tween the islands. This indicates that diversity mechanisms
are working as designed. However, when considering the
performance of GIMGA with its spectral clustering migration
strategy, it appears as though P-LCSB-AGA still is not able to
sufficiently search the solution space in its attempts at global
search despite its islands having significantly less overlap than
the basic IMGA. GIMGA improves on this by being more

effective in its global search as indicated by its higher level
of island diversity. By maintaining more diverse islands, this
indicates that each island is less likely to be searching in the
same areas as another island and thus giving more opportunity
for the GA to find other clusters of local optima.

While these results demonstrate what GIMGA is capable
of achieving, the two-sample z-tests shown in Table IV high-
light their significance. In the z-test results, we compare the
GIMGA with the IMGA and P-LCSB-AGA with a significant
and a very significant improvement in performance is indicated
with a ”+” and ”++” respectively. A ”∗” indicates that there
is no significant difference in results between the IMGAs.
In small dimension problems, all three IMGAs perform very
well and are able to consistently find the optimal solution.
However, as the problem size increases, GIMGA quickly gains
significant improvements in solution quality over bot IMGA
and P-LCSB-AGA.

VI. CONCLUSION

In this paper, we propose an IMGA that focuses on main-
taining unique islands of solutions that are capable of search-
ing independently to one another. Unlike previous works,
we introduce adaptive diversity maintenance mechanisms to
each island population. Combining sequence-based adaptive
diversity maintenance with spectral clustering, GIMGA is able
to distribute its local search efforts across the global solution
space with minimal overlap. Furthermore, by distributing the
computation across the massively parallel NVIDIA GTX 2080,
we demonstrate how the solution and its speedup can provide
significant improvements to GIMGA’s ability to find good
quality solutions without significantly increasing the search
duration.

Our findings suggest that when considering significantly
large number of islands, IMGAs need to be designed with
awareness of inefficiencies can exist when islands begin to
overlap in their search. By reducing the likelihood of multiple
islands searching in the same area, islands can be directed
to search in new areas of the solution space, thus improving
the effectiveness of the search. However, while this approach
improves the broadness of the IMGA’s search capabilities, the
overlapping islands can be considered as a means to improve
the depth of local search in an area dense with local optima.
Future research in balancing global and local search should
consider the optimal balance between the breadth of global
search and the depth of local search between islands, ideally
in an adaptive and online manner.

REFERENCES

[1] J. H. Holland et al., Adaptation in natural and artificial systems: an
introductory analysis with applications to biology, control, and artificial
intelligence. MIT press, 1992.

[2] K. A. De Jong, “Analysis of the behavior of a class of genetic adaptive
systems,” 1975.

[3] Y.-J. Gong, W.-N. Chen, Z.-H. Zhan, J. Zhang, Y. Li, Q. Zhang, and
J.-J. Li, “Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art,” Applied Soft Computing, vol. 34, pp. 286–300,
2015.

[4] J. R. Cheng and M. Gen, “Accelerating genetic algorithms with gpu
computing: A selective overview,” Computers & Industrial Engineering,
vol. 128, pp. 514–525, 2019.

[5] “Nvidia turing gpu architecture: Graphics reinvented,” ”NVIDIA”, Tech.
Rep. WP-09183-001-v01, 2018.

[6] A. Aleti and I. Moser, “A systematic literature review of adaptive pa-
rameter control methods for evolutionary algorithms,” ACM Computing
Surveys, vol. 49, no. 3, pp. 1–35, 2016.

[7] A. F. Cruz-Salinas and J. G. Perdomo, “Self-adaptation of genetic
operators through genetic programming techniques,” in GECCO. ACM,
2017, pp. 913–920.

[8] F. Vafaee and P. C. Nelson, “An explorative and exploitative mutation
scheme,” in CEC. IEEE, 2010, pp. 1–8.

[9] B. Mc Ginley, J. Maher, C. O’Riordan, and F. Morgan, “Maintaining
healthy population diversity using adaptive crossover, mutation, and
selection,” IEEE Transactions on Evolutionary Computation, vol. 15,
no. 5, pp. 692–714, 2011.

[10] H. Zhang, Y. Liu, and J. Zhou, “Balanced-evolution genetic algorithm
for combinatorial optimization problems: the general outline and im-
plementation of balanced-evolution strategy based on linear diversity
index,” Natural Computing, vol. 17, no. 3, pp. 611–639, 2018.

[11] G. Ochoa and N. Veerapen, “Mapping the global structure of tsp fitness
landscapes,” Journal of Heuristics, vol. 24, no. 3, pp. 265–294, 2018.

[12] G. Ochoa, N. Veerapen, D. Whitley, and E. K. Burke, “The multi-funnel
structure of tsp fitness landscapes: a visual exploration,” in Evolution
Artificielle. Springer, 2015, pp. 1–13.

[13] G. Ochoa and N. Veerapen, “Deconstructing the big valley search space
hypothesis,” in Evolutionary Computation in Combinatorial Optimiza-
tion. Springer, 2016, pp. 58–73.

[14] S. Herrmann, G. Ochoa, and F. Rothlauf, “Communities of local optima
as funnels in fitness landscapes,” in GECCO. ACM, 2016, pp. 325–331.

[15] S. L. Thomson, F. Daolio, and G. Ochoa, “Comparing communities of
optima with funnels in combinatorial fitness landscapes,” in GECCO.
ACM, 2017, pp. 377–384.

[16] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength
pareto evolutionary algorithm,” TIK-report, vol. 103, 2001.

[17] A. Chehouri, R. Younes, J. Khoder, J. Perron, and A. Ilinca, “A selection
process for genetic algorithm using clustering analysis,” Algorithms,
vol. 10, no. 4, p. 123, 2017.

[18] Q. Meng, J. Wu, J. Ellis, and P. J. Kennedy, “Dynamic island model
based on spectral clustering in genetic algorithm,” in IJCNN. IEEE,
2017, pp. 1724–1731.

[19] H. Wang, J. Chen, and K. Guo, “A genetic spectral clustering algorithm,”
Journal of Computational Information Systems, vol. 7, no. 9, pp. 3245–
3252, 2011.

[20] D. Whitley, S. Rana, and R. B. Heckendorn, “The island model genetic
algorithm: On separability, population size and convergence,” Journal of
computing and information technology, vol. 7, no. 1, pp. 33–47, 1999.

[21] I. Boussaı̈D, J. Lepagnot, and P. Siarry, “A survey on optimization
metaheuristics,” Information sciences, vol. 237, pp. 82–117, 2013.

[22] R. K. Ursem et al., “Multinational gas: Multimodal optimization tech-
niques in dynamic environments.” in GECCO. ACM, 2000, pp. 19–26.

[23] N. Melab, E.-G. Talbi et al., “Gpu-based island model for evolutionary
algorithms,” in GECCO. ACM, 2010, pp. 1089–1096.

[24] J. Jaros, “Multi-gpu island-based genetic algorithm for solving the
knapsack problem,” in CEC. IEEE, 2012, pp. 1–8.

[25] C.-C. Li, J.-C. Liu, C.-H. Lin, and W. Lo, “On the accelerated conver-
gence of genetic algorithm using gpu parallel operations,” in Nature-
Inspired Computing: Concepts, Methodologies, Tools, and Applications.
IGI Global, 2017, pp. 1115–1130.

[26] C.-C. Li, C.-H. Lin, and J.-C. Liu, “Parallel genetic algorithms on the
graphics processing units using island model and simulated annealing,”
Advances in Mechanical Engineering, vol. 9, no. 7, 2017.

[27] R. Ohira, S. Islam, J. Jo, and B. Stantic, “Lcs based diversity mainte-
nance in adaptive genetic algorithms,” in AusDM, 2018, pp. 56–68.

[28] U. von Luxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[29] R. Ohira and S. Islam, “A distributed genetic algorithm with adaptive
diversity maintenance for ordered problems,” in PDCAT, 2019.

[30] R. Ohira, M. S. Islam, J. Jo, and B. Stantic, “Amga: An adaptive and
modular genetic algorithm for the traveling salesman problem,” in ISDA,
2018, pp. 1096–1109.

