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ABSTRACT

This study aims to develop autoregressive integrated moving average (ARIMA) models to predict the solar, wind, spot and options pricing over the 
next 2 years, with historical data being used in a univariate manner to understand market behaviour in terms of trends. The assessment is made in 
the context of the Australian National Electricity Market (ANEM). The ARIMA models predict the future values of the monthly solar, wind, spot 
and options prices for various Australian states using time-series data from January 2006 to March 2018. The results show increases from 30.46% to 
40.42% for the spot electricity prices and from 14.80% to 15.13% for the options electricity prices in the ANEM with a 2-year horizon. The results 
further show that wind prices are expected to increase by an average of 5.43%. However, the results also show that the average solar electricity prices 
will decrease by 67.7%.

Keywords: Electricity Pricing, Autoregressive Integrated Moving Average Model, Forecasting 
JEL Classifications: C22, E37, Q47

1. INTRODUCTION

The majority of countries worldwide are currently experiencing 
energy shortages, which are severely negatively affecting both 
their economic growth and their level of social transformation. 
For example, when compared to other countries, Australia 
has traditionally enjoyed some of the cheapest wholesale and 
household energy costs. However, between 2003 and 2013, the 
price of household electricity in Australia increased by 72% 
(Australian Energy Council, 2017). In fact, the past 12-18 months 
have been some of the most challenging faced by Australia’s 
energy sector since the establishment of the Australian National 
Electricity Market (ANEM) in 1998. The most significant impact 
of this challenging market situation has been felt in the country’s 
wholesale electricity markets. Investor uncertainty with regard to 

the viability of investments in new means of power generation, 
as well as recent coal plant closures, have contributed to a power 
generation mix that is increasingly reliant on intermittent wind 
and solar energy (Coenen et al., 2018). This has, in turn, led to 
an increase in both electricity production and electricity pricing.

The modelling and subsequent forecasting of electricity prices are 
important and necessary in relation to the management of power 
companies, as well as for all the physical and financial participants 
in the electricity sector. Indeed, Akay (2015) has identified a 
number of reasons why modelling and forecasting are vital: 
a) The bidding for generators takes place in advance. Hence, it 

is crucial to accurately predict prices so that optimal bidding 
strategies can be developed and implemented (O’Neill et al., 
2017).

This Journal is licensed under a Creative Commons Attribution 4.0 International License
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b) Advanced planning is required on the part of generators 
with respect to capacity generation (i.e., peak and off-peak 
generators have different input needs for production). 
Therefore, when the price is efficiently forecasted, more 
accurate planning can take place in relation to supplies (Kaytez 
et al., 2015).

c) The accurate prediction of the spot prices is critical for 
derivatives pricing, since it is important for traders to adopt 
positions on over-the-counter and well-developed futures 
trading platforms (e.g., the Australian Securities Exchange 
[ASX]) (Huang et al., 2015).

d) The distribution of electricity is a publicly controlled 
monopoly. Hence, various government reforms and 
regulations must be adhered to by all stakeholders (Okoro 
and Chikuni, 2017).

Various models and techniques have been used in relation to power 
systems’ operation and planning, including recent developments 
such as independence components, principal components and 
neural networks (Dai and Wang, 2007; Lasheras et al., 2015), fuzzy 
logic (Çevik and Çunkaş, 2015; Yang et al., 2006) and the hybrid 
method (Zhang et al., 2010). The use of the time-series method 
can also be seen in many prior studies (Çevik and Çunkaş, 2015; 
Cho et al., 1995). However, among these different techniques, the 
most widely used is the time-series method, which is also capable 
of accommodating the absence of stationarities, seasonal patterns 
and signals (Bin Majid et al., 2012).

The aim of the present study is to develop autoregressive integrated 
moving average (ARIMA) models for predicting the solar, wind, 
spot and options pricing in the ANEM over the next 2 years, with 
historical data being used in a univariate manner to understand the 
electricity markets’ behaviour in terms of trends. To the best of the 
author’s knowledge, only a few prior studies have examined solar, 
wind, spot and options pricing either individually or in concert, 
while none have individually analysed the associated time-series 
data in order to identify trends. In the present study, this will be 
achieved using ARIMA models. It is important to note that the 
ANEM includes the electricity markets of the Australian states of 
New South Wales (NSW), Queensland (QLD), South Australia 
(SA), Victoria (VIC), and Tasmania (TAS).

The remainder of this paper is organized as follows. Section 2 
presents a review of the literature concerning the use of ARIMA 
models in research regarding electricity. Section 3 describes the 
data source, while Section 4 outlines the methodology employed 
in the study. Section 5 presents the empirical results, while Section 
6 discusses the research findings and offers a conclusion to the 
study.

2. LITERATURE REVIEW

According to Rafał Weron (2014), the electricity price forecasting 
literature can be divided into five categories: (1) Multi-agent or 
game theory models simulating the operation of market agents, 
(2) fundamental methods employing physical and economic 
factors, (3) reduced-form models using the statistical properties 
of electricity trades for risk management and derivatives 

evaluation, (4) statistical models comprising time series and 
econometric models, and (5) artificial intelligence methods. All 
these different statistical approaches aim to identify the optimal 
model for forecasting electricity prices (Cartea and Figueroa, 
2005; Shahidehpour et al., 2002; Weron, 2007). Further, they 
involve either direct applications of statistical techniques for load 
forecasting or power market implementations of econometric 
models.

The most popular methods in this regard include the autoregressive 
types of multivariate regressions, stochastic time-series models 
and smoothing techniques (Misiorek et al., 2006). While the 
efficiency and usefulness of these “technical analysis” tools in 
terms of the financial markets are often questioned, such methods 
do demonstrate a higher potential in relation to the power markets, 
since they are able to capture the nature of the above-mentioned 
features. For example, the seasonality and correlation aspects that 
prevail within electricity pricing processes during normal, non-
spiky and other static periods. Such features render electricity 
prices more predictable than other types of “randomly” fluctuating 
financial assets.

Arguably, the most commonly applied statistical methods are 
ARIMA models (Cuaresma et al., 2004; Yang et al., 2017). 
Such models represent the standard modelling technique 
applied in time-series econometrics to understand the mean, 
autocorrelations and trends. Theoretically speaking, ARMA 
models provide a parsimonious description of a (weakly) 
stationary stochastic process in terms of two polynomials: (i) 
One for the auto-regression, and (ii) the other for the moving 
average. The autoregressive (AR) element of the model shows 
that the evolving variable of interest is regressed on its own 
lagged value, while the moving average (MA) element shows 
that the regressive error is a linear combination of the lagged 
error terms. Adding the integrated (I) element into an ARMA 
model results in an ARIMA model. ARIMA models tend 
to be applied to cases in which the data show evidence of 
non-stationarity, that is, in which an initial differencing step 
(corresponding to the “integrated” element of the model) can 
be applied one or more times to eliminate the non-stationarity 
in the series often noted in relation to electricity market prices 
(Shumway and Stoffer, 2006).

Various applications of the AR process have been discussed in 
the prior literature, with such applications often considering 
hourly (daily, weekly, monthly, quarterly or yearly) data 
concerning electricity price series to be a distinct commodity. 
A number of AR specifications were used by Cuaresma et al. 
(2004), who incorporated time-varying intercepts and jumps 
so as to predict electricity prices in the German market. Their 
approach considered specifications in which every hour of the 
day was modelled distinctly and separately (Table 1 for further 
details). In their study, the AR and MA orders were comprised 
of lags of 1, 23, 24 and 25 h. This study by Cuaresma et al. 
(2004) demonstrated how some AR specifications that model 
every hour distinctly and separately can offer better predictive 
abilities when compared to other AR specifications. Further, they 
found that the inclusion of probabilistic processes with regard 
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to the arrival of jumps provided a better fit to the empirical 
data, thereby allowing for an enhanced level of forecasting 
performance.

Threshold autoregressive (TAR) models with and without 
exogenous variables have also been used in prior studies. For 
example, Weron and Misiorek (2008) performed a comparison of 
the electricity pricing of 12 time-series models using the markets 
of California and the Nordic Power Pool. Their study highlighted 
the better model fits and enhanced performance of the models in 

which the system load was included as the exogenous variable. 
Therefore, it can be seen that the stylized features of electricity 
prices can be determined when the electricity prices are modelled 
using different types of AR processes. These stylized features 
include trend analyses that lead to some rapid mean reversions to 
the long-term mean levels as well as to occasional and, at times, 
successive jumps in prices.

A significant number of the ARIMA models discussed in the 
prior literature have been used alongside other methods to predict 

Table 1: Prior literature concerning the modelling and forecasting of spot electricity prices
Study Methodology/Technique Sample/Market (s) Results Conclusion
Garcia-Martos 
et al. (2017)

ARIMA model using the 
AIC, SBC, RMSE and 
MPE

Germany Applying daily data, this study 
developed a model to obtain accurate 
1-day-ahead electricity forecasts for 
electricity prices.

This study concludes that an 
ARIMA-type model provides 
the best prediction of electricity 
prices.

Kaur and 
Ahuja (2017)

ARIMA Apollo Hospital 
Ludhiana, India

This study identified the best fitted 
model for predicting the hospital’s 
electricity consumption over a 
two-year period.

Applying different criteria, this 
study concludes that an ARIMA 
model with suitable criteria can 
be used to predict electricity 
consumption.

Voronin and 
Partanen (2014)

This study combines 
wavelet transforms, 
ARIMA models and 
neural networks

Finnish energy 
market, which is 
part of the Nordic 
Power Pool

The proposed model provides a 
significant improvement in terms of 
the price prediction accuracy.

This study concludes that 
ARIMA models are extremely 
important in relation to electricity 
demand and price forecasting.

Khashei and 
Bijari (2011)

ARIMA based on EEMD China EEMD can effectively enhance 
forecasting accuracy. Within 
this framework, the proposed 
EEMD-ARIMA model can 
significantly improve the ARIMA 
time-series approaches.

This study concludes that the 
proposed EEMD-ARIMA model 
should enhance the annual runoff 
time-series forecasting.

Weron and 
Misiorek (2007)

AR and TAR models 
with and without 
exogenous variables

Californian and 
Nordic Power Pool 
markets

In the basic AR models, only 
the system load was used as 
an exogenous variable for the 
Californian market, while the hourly 
air temperature was used for the 
Nordic Power Pool market.

This study concludes that models 
that use the system load as the 
exogenous variable usually 
exhibit better performance when 
compared to solely price-based 
models. However, this is not 
always the case when the air 
temperature is used as the 
exogenous variable.

Zhou 
et al. (2006)

ARIMA with error 
correction and confidence 
interval estimation

Hourly MCP 
forecasting for the 
Californian power 
market is used as a 
computer example

According to the computer test 
results, the extended ARIMA 
approach suggested for spot price 
forecasting is quite effective and, 
further, demonstrates satisfactory 
precision.

The study concludes that 
seasonal ARIMA models can 
be used in very bad market 
conditions in which the price 
volatility is quite high.

Cuaresma 
et al. (2004)

AR models, ARMA 
models and unobserved 
component models

Leipzig Power 
Exchange

According to the results, the 
specifications that modelled every 
hour of the data separately provided 
consistently better forecasting 
properties when compared to the 
specifications for the entire time 
series.

The study concludes that when 
simple probabilistic processes 
are considered for extreme price 
events, enhancements can be 
made in terms of the predictive 
capacity of univariate models for 
electricity spot prices.

Contreras 
et al. (2003)

ARIMA Spanish and 
Californian 
electricity markets

Spanish market: Generally, more 
volatility is observed. The ARIMA 
model requires data from the past 
5 h. Differentiation is not used to 
obtain a stable mean. Californian 
market: Price forecasts prior to the 
collapse are better. This may be 
because there was less volatility in 
the Californian market at that time. 
The ARIMA model requires data 
from the past 2 h, as well as three 
differentiations.

The study concludes that these 
distinctions may show varying 
bidding structures and ownership.
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electricity prices so as to gain a deeper insight into the spot pricing 
framework (Contreras et al., 2003; Garcia-Martos et al., 2017; 
Voronin and Partanen, 2014; Zhou et al., 2006). For example, 
Voronin and Partanen (2014) combined wavelet transforms, 
ARIMA models and neural networks to predict the electricity 
prices in the Finnish energy market, which is part of the Nordic 
Power Pool. Their study concluded that ARIMA models are 
extremely important in terms of modelling both the electricity 
demand and price forecasting.

Relatively recently, Garcia-Martos et al. (2017) used an ARIMA 
model to obtain accurate 1-day-ahead electricity forecasts for 
electricity prices. From their study, it is possible to observe 
the application of a number of criteria that are often used in 
modelling to understand the nature of model fits as well as 
the appropriateness of the forecasting performance. Indeed, 
their study applied criteria such as the Akaike information 
criterion (AIC), Schwarz Bayesian criterion, root mean square 
error (RMSE) and mean percentage error (MPE) during the 
analysis. These criteria proved to be somewhat critical in terms 
of choosing, for example, an appropriate forecasting period. In 
Garcia-Martos et al.’s (2017) study, the parameter was selected 
by considering the lowest values of both the RMSE and the 
MPE. They concluded that the ARIMA-type model provided 
better predictions when compared to the other available models 
of electricity prices.

Along similar lines, a number of studies have used ARIMA 
models to predict electricity consumption rather than to predict 
pricing levels (Kaur, 2017; Khashei and Bijari, 2011). For 
example, Kaur and Ahuja (2017) developed an ARIMA model to 
predict electricity consumption within a healthcare institution, as 
well as to identify the most suitable forecasting period in terms 
of monthly, bimonthly or quarterly time series. Their prediction 
model was developed for the electricity series of Apollo Hospital 
Ludhiana, India, for the period between April 2005 and February 
2016. It was noted that the ARIMA model proved to be rather 
efficient, in addition to being more accurate and reliable than 
similar methods.

Khashei and Bijari (2011) applied ensemble empirical mode 
decomposition (EEMD) to model and predict electricity 
consumption. Their study concluded that EEMD can effectively 
enhance the accuracy of forecasts. The proposed EEMD-ARIMA 
model was, in fact, able to significantly improve upon the utilized 
ARIMA time-series approaches. The prior studies to have used 
various time-series approaches for the modelling and predicting 
of spot electricity prices are briefly introduced and explained in 
Table 1.

More specifically, Table 1 demonstrates that different time-series 
approaches are available for the modelling and forecasting of spot 
electricity prices. Indeed, the list of available approaches includes 
ARIMA models (Garcia-Martos et al., 2017; Voronin and Partanen, 
2014), ARIMA and seasonal ARIMA models (Contreras et al., 
2003; Zhou et al., 2006), AR models with exogenous fundamental 
variables (Garcıa-Martos et al., 2017), as well as AR and threshold 
autoregressive models (Weron and Misiorek, 2008).

Table 1 also shows that prior studies have used various applications 
of the AR processes (Cuaresma et al., 2004; Weron and Misiorek, 
2008). The majority of the discussed autoregressive models were 
intended to explain the “stylized” features of electricity pricing, 
as well as to identify the best fit to the empirical data (Weron 
and Misiorek, 2008). It has previously been shown that the 
incorporation of probabilistic procedures for dealing with jumps 
is more appropriate for empirical data, since it leads to better 
forecasts (Cuaresma et al., 2004).

A further review of Table 1 reveals that ARIMA-type models 
provide better predictions of electricity pricing in terms of the 
univariate analysis of autocorrelations, smoothing and trends 
(Contreras et al., 2003; Garcia-Martos et al., 2017; Voronin and 
Partanen, 2014; Zhou et al., 2006). Moreover, a number of studies 
have applied similar techniques to predict electricity consumption 
levels in different cities and countries (Kaur and Ahuja, 2017; 
Khashei and Bijari, 2011).

The key point stressed in all the above-mentioned studies is that 
an ARIMA-type model represents one of the most commonly 
used models for studying both trends and smoothing, as well as 
for predicting electricity prices, although whether or not such a 
model could be used in relation to renewable price modelling, 
such as for the solar and wind markets, is yet to be determined. 
In fact, it appears that no prior studies have conducted longer-
term forecasts or determined the accuracy of such forecasts. The 
present study, therefore, seeks to address this gap in the literature 
by investigating the modelling and prediction that can be applied 
with regard to the solar, wind, spot and options data series for each 
state included in the ANEM.

3. METHODOLOGY

The study conducted by Box and Jenkins (1978) ushered in a 
new generation of forecasting tools that are collectively known as 
the ARIMA methodology, which emphasizes the analysis of the 
probabilistic (or stochastic) properties of economic time series on 
their own, rather than the construction of single or simultaneous 
equation models. ARIMA models allow each variable to be 
explained by its own past (or lagged) values and stochastic error 
terms. A number of examples of this can be found in the literature 
(Contreras et al., 2003; Garcia-Martos et al., 2017; Voronin and 
Partanen, 2014; Zhou et al., 2006). In the present study, we used the 
ARIMA technique to individually examine and analyse the solar, 
wind, spot and options prices for each state included in the ANEM.

3.1. Autoregressive Model
An autoregressive model is one in which the equation represents 
the linear dependence of a value from its p past values, which can 
be written as AR (p) and defined as follows:

   Yt=c+∅1Yt−1+∅2Yt−2+...+∅pYt−p+εt (1)

Where Yt is the response (dependent) variable at time t; C is a 
constant term; Yt−1, Yt−2,…, Yt−p are the response variables at 
time lags Yt−1, Yt−2,…, Yt−p, respectively; ∅1, ∅2,…, ∅p are the 
coefficients to be estimated; and εt is the random shock ~N(0,σ2).
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3.2. Moving Average Model
A moving average model is one in which the equation represents 
the linear dependence of a value from its q past residuals, which 
can be written as MA (q) and defined as follows:

   Yt=c+θ1εt−1+θ2εt−2+...+θqεt−q+εt (2)

where Yt is the response (dependent) variable at time t; C is a 
constant term; θ1, θ2,…, θq are the coefficients to be estimated; 
εt−1, εt−2,…., ε t−q are the errors in the previous time periods that 
are incorporated into the response Yt; and εt is the random shock 
~N(0,σ2).

3.3. Autoregressive Integrated Moving Average
The general form of the ARIMA model is presented in Equation (3). 
The order of an ARIMA model is typically identified in the form of 
(p, d, q), where p indicates the order of the autoregressive part, d 
the amount of the difference and q the order of the moving average 
part (Jiang et al., 2018; Kim et al., 2017; Lasheras et al., 2015).

Yt=c+∅1Yt−1+∅2Yt−2+...+∅pYt−p+εt+θ1εt−1+θ2εt−2+...+θqεt−q (3)

Where ∅ and θ are the maximum likelihood estimates of the 
respective models, while εt is the error series.

The ARIMA model involves a series transformation to a state of 
stationary covariance, followed by identification, approximation, 
diagnosis and prediction steps (Ediger and Akar, 2007; Sen et al., 
2016). The ARIMA model can be described as follows:

Step 1: Individually check the stationarity of all the influencing 
factors’ historical data, since the ARIMA model is only applicable 
in the case of stationary time series. A stationary time series 
has a constant mean and a constant variance. If the data are not 
stationary, a differencing operation is performed. If the data are 
still not stationary, differencing is repeatedly performed until 
the data are finally in stationary. The augmented Dickey–Fuller 
(ADF) test is used in this step. If the ADF t-statistic is lower than 
the Mackinnon critical value under a significance level of 5%, the 
series is supposed to be stationary.

Step 2: Estimate the number of autoregressive orders (p), the 
number of differencing orders (d) and the number of moving-
average orders (q) involved in the development of a univariate 
ARIMA model (p, d, q). This is achieved through the examination 
of the autocorrelation plot (ACF) and the partial autocorrelation 
plot (PACF) of the time series of each individual variable. These 
plots offer an indication of the significant orders p and q to be 
used in the model setup. However, it is not accurate to estimate 
the p and q using only the ACF and PACF graphs. There are 
several criteria, such as the AIC and the Schwarz criterion (SC), 
which can be employed in a quantitative analysis to obtain 
specific values.

Step 3: Validate the ARIMA model obtained in Step 2 and test it 
on the residuals. If the residual term shows normal distribution 
behaviour with constant variance and zero mean, then it resembles 
a white-noise error and, therefore, there is no need for further 

ARIMA modelling. The cumulative periodogram white-noise 
test and the portmanteau test for white noise are examples of the 
null hypothesis that the data stem from a white-noise process 
of uncorrelated random variables with a constant mean and a 
constant variance.

Step 4: Predict future data for each electricity price.

4. DATA SOURCES

In the present study, the dataset consists of monthly observations, 
while the sample covers the period from January 2006 to 
March 2018. The variables included in the estimations are the 
spot, options, solar and wind electricity prices (as expressed in 
Australian dollars per megawatt [$/MW]) from five electricity 
markets in Australia, namely the NSW, QLD, SA, TAS and VIC 
markets (save for the options electricity price in the case of TAS). 
The choice of study period was constrained by the availability of 
time-series data concerning the solar and wind electricity prices.

The time-series data for the spot electricity prices were collected 
on a monthly basis from the Australian Energy Market Operator 
(AEMO). The AEMO collates and reports the average daily, 
monthly and annual observations for each price for the five market 
regions within the ANEM. The data concerning the options prices 
(closing prices) were collected from among the ASX Energy daily 
market data and then converted into monthly terms (January 2006 
to March 2018). All the utilized data include only those options 
contracts with a non-zero trading volume.

The MAC Global Solar Energy Index and the ISE Global Wind 
Energy Index were used as the solar and wind electricity price 
proxy variables, respectively. Time-series data concerning the 
two indices were collected on a monthly basis from Bloomberg.

5. RESULTS

5.1. Data Preliminaries
Table 2 presents a summary of the descriptive statistics concerning 
the monthly spot, options, solar and wind electricity prices for 
the five investigated electricity markets. The means, medians, 
maximums, minimums, standard deviations, skewness, kurtosis, 
Jarque-Bera statistics and P values are reported in the Table 2.

Between January 2006 and March 2018, the mean and median 
electricity spot prices were found to be broadly consistent across 
NSW, QLD and VIC, where the base generation technologies are 
similar and where relatively low-cost fuels are used. SA exhibited 
the highest mean and median prices per megawatt hour at $59.75 
and $48.57, respectively, which indicates that SA relies more 
heavily on higher-cost gas-turbine generators when compared 
to the low-cost coal-based generators relied on in NSW, QLD 
and VIC. All the markets were significantly positively skewed, 
ranging from 1.61 (VIC) to 3.03 (TAS), which indicates the greater 
likelihood of large price increases than of price falls. The kurtosis, 
or degree of excess, ranged from 5.47 for VIC to 14.99 for NSW, 
thereby indicating leptokurtic or heavy-tailed distributions with 
many extreme observations. As the Jarque-Bera results were 
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statistically significant, the analysis rejected the null hypothesis 
of a normal distribution for all the spot prices, which is consistent 
with the findings of prior studies (Akay, 2015; Higgs, 2009; Higgs 
and Worthington, 2005; Thomas et al., 2011).

Of the four options markets, the highest options prices were seen 
in SA and VIC, which averaged $28.25 and $24.33 per megawatt 
hour, respectively. The lowest options price was seen in QLD, 
which exhibited a price of $1.55. The standard deviations for 
the options electricity prices ranged from $3.99 (QLD) to $5.62 
(SA). Further, the distributions of the options electricity price 
observations were slightly negatively skewed for QLD, while 
they were positively skewed for NSW, VIC and SA. The options 
price series for NSW, QLD, SA and VIC all demonstrated positive 
kurtosis.

From the descriptive statistics, it can be seen that the solar 
electricity prices exhibited a median of $218.03, which is not 
closed to the mean of $352.01. All the values of the solar electricity 
prices fell between $65.73 and $1548.20. Further, the maximum 
average monthly wind electricity values reached up to $358.69, 
while the mean price was $181.72. However, the wind electricity 
prices ranged from $63.82 to $358.69.

5.2. Unit Root and Stationary Tests
In the present study, unit root tests based on the ADF test were 
conducted prior to performing the ARIMA analysis. The ADF unit 
root test was used to examine the stationarity of the time series, 
and the results are presented in Table 3. From the table, it can be 
seen that all the options, solar and wind electricity prices were non-
stationary in terms of their levels, although they were stationary 
with regard to the first differences. During this phase, the data 
exhibited stationarities by means of the differencing technique, 
which is the process whereby a new series is created. Each value 
in the series is replaced by the difference between that value and 
the proceeding value, where the first value in the series will be the 
second data value minus the first. In this way, the new series will 
have one less data item. For the spot electricity prices, no evidence 
was found for the presence of a unit root. The findings of this paper 
are consistent with those of Akay (2015), which confirms the non-
presence of a unit root in Australian spot electricity prices.

5.3. ARIMA Model
An ARIMA model was developed for each of the spot, options, 
solar and wind electricity prices. This section presents the results of 
the analysis of the time-series data concerning the spot and options 
electricity prices in the ANEM so as to predict how the spot and 
options electricity time series may change in the future. A similar 
process was used to forecast the solar and wind electricity prices. The 
orders p and q of the ARIMA models are identified and estimated 
for both series using the methodology of Box and Jenkins (1978).

The results show that the autocorrelation function (ACF) and 
the partial autocorrelation function (PCF) both became much 
smoother, since the ARIMA model could successfully decompose 
the autoregressive process and the moving average components, 
thereby obtaining stationary residuals. From the ACF and PACF 
plots of the residuals, it can be seen that most values were within 
the bounds (although there was a 95% confidence interval for 
the Gaussian white noise). There was no discernible pattern seen 
in the ACF or the PACF in terms of the average monthly data. 
However, the ACF showed that, although the row data were largely 
uncorrelated, the variances exhibited some correlation. This study 
used the AIC and the BIC to choose the ARIMA term, which 
minimized the corresponding values of the criteria.

Diagnostic checking of the ARIMA model helped us to determine 
whether the estimated model was acceptable and statistically 

Table 3: The ADF unit root test for the spot, options, solar 
and wind electricity prices
State Variable Level First Difference

ADF P value ADF P value
NSW Spot −5.177 0.0000 −12.850 0.0000

Options −2.398 0.1423 −7.213 0.0000
QLD Spot −5.319 0.0000 −12.840 0.0000

Options −2.491 0.1178 −6.499 0.0000
VIC Spot −4.024 0.0013 −12.698 0.0000

Options −2.535 0.1073 −7.291 0.0000
SA Spot −5.641 0.0000 −12.630 0.0000

Options −2.003 0.2851 −6.970 0.0000
TAS Spot −4.358 0.0004 −10.845 0.0000

Solar −1.642 0.4612 −8.036 0.0000
Wind −1.401 0.5818 −7.568 0.0000

Table 2: Descriptive statistics for the spot, options, solar and wind electricity prices ($/MWh) from January 2006 and 
March 2018
Variable Mean Median Maximum Minimum SD Skewness Kurtosis Jarque-Bera Probability
Spot electricity prices

NSW 49.53 41.43 230.66 20.61 28.93 2.82 14.99 1076.77 0.00
QLD 52.00 43.08 239.59 17.64 34.53 2.48 11.47 590.83 0.00
VIC 47.29 40.46 143.28 16.52 25.43 1.61 5.47 101.78 0.00
SA 59.75 48.57 229.39 17.59 40.55 2.06 7.80 245.40 0.00
TAS 52.63 42.54 252.37 16.70 35.02 3.03 14.98 1106.07 0.00

Options electricity prices
NSW 9.98 10.05 22.63 1.78 4.25 0.32 3.70 5.61 0.06
QLD 9.96 9.32 17.48 1.55 3.99 -0.29 2.61 3.05 0.21
VIC 10.81 11.01 24.33 1.73 4.46 0.22 3.63 3.75 0.15
SA 11.14 9.79 28.25 1.69 5.62 0.69 3.50 13.46 0.001

Solar and wind electricity prices
Solar 352.01 218.03 1548.20 65.73 316.32 1.527 1.813 33.37 0.00
Wind 181.72 177.23 358.69 63.82 74.12 0.74 3.13 13.62 0.00
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significant, which means that the residuals were not autocorrelated 
and, hence, followed a normal distribution. To check the 
autocorrelation, we looked at the ACF and PACF of the residuals, 
as well as the cumulative periodogram white-noise test and the 
portmanteau test for white noise. Table 4 displays the results of 
the fitted ARIMA models, while Table 5 displays the results of 
white-noise tests.

In the case of NSW, Tables 4 shows that the ARIMA (1, 1, 1) 
model was a good model for the spot electricity prices. Further, 
the cumulative periodogram white-noise test gave a Bartlett’s 
(B) statistic and a corresponding p-value of 0.5591 and 0.9134, 
respectively, which were considered appropriate. Similarly, the 
portmanteau test for white noise concerning the spot electricity 
price residuals showed a portmanteau (Q) statistic of 18.0691 
and a probability value of 0.9989. These results proved that the 
residuals were white noise, which means that there was no serial 
correlation or heteroscedasticity. We used the ARIMA (1, 1, 1) 
model to forecast how the spot electricity prices were impacted 
by their own lags in order to explain the spot electricity prices in 
NSW. In Figure 1a, we determined the forecasts of the ARIMA 
(1, 1, 1) model for a period spanning 2 years. The forecast results 
for the spot electricity prices in NSW showed favourable growth 
rates of around 30.46%.

Table 4 also presents the ARIMA results obtained from the 
analyses of the options electricity pricing data from NSW for 
the period January 2006 to March 2018, which involved 147 
observations. The results showed that the ARIMA (0, 1, 1) model 
was the most appropriate univariate model of the options prices. 
In Figure 1b, the options electricity price time-series forecasts for 
the next 2 years (April 2018 to March 2020) are presented. The 

forecast results for the options electricity prices in NSW showed 
positive growth rates of around 14.94%.

In the case of QLD, the ARIMA model proved to be suitable, and 
it was used to forecast the spot and options electricity prices for 
the next 2 years. The results showed that the ARIMA (1, 1, 1) and 
ARIMA (1, 1, 0) models were appropriate. Figure 1c depicts a 
predicted increase in the spot electricity prices in QLD of around 
40.42% between April 2018 and March 2020. Moreover, Figure 
1d shows that QLD will experience rising options electricity prices 
that will lead to increased monthly average options prices ranging 
from $13.64 in March 2018 to $15.68 in March 2020.

With regard to the situation in VIC, the analyses suggested that 
the ARIMA (1, 1, 1) and ARIMA (0, 1, 1) were the best fitted 
models for the spot and options electricity prices, respectively. 
Figure 1e shows that the electricity spot prices are expected 
to increase by an average of 33.29% over the next 2 years. 
Further, Figure 1f shows a predicted increase in the options 

Table 4: The equations used to predict the spot, options, solar and wind prices
State Variables Equation ARIMA AIC
NSW Spot Spott=0.28805+0.32581spott−1 − 0.92019εt−1+εt (1,1,1) 1364.194

Options Optiont=0.10337−0.45549εt−1+εt (0,1,1) 383.517
QLD Spot Spott=0.31164+0.36214spott−1 − 0.95861εt−1+εt (1,1,1) 1413.217

Options Optiont=0.19389−0.35416optiont−1+εt
(1,1,0) 389.9463

VIC Spot Spott=0.35530+0.26438spott−1 − 0.80921εt−1+εt (1,1,1) 1290.41
Options Optiont=0.10541−0.43884εt−1+εt (0,1,1) 393.4034

SA Spot Spott=0.37805+0.23361spott−1 − 0.91438εt−1+εt (1,1,1) 1475.164
Options Optiont=0.11702+0.26907optiont−1+εt (1,1,0) 485.2769

TAS Spot Spott=0.32628+0.59721spott−1 − 0.95870εt−1+εt (1,1,1) 1368.475
Solar Solart=−3.2146−0.07174solart−1+εt

(1,1,0) 1685.588
Wind Windt=0.41668−0.3657windt−1 − 0.69015εt−1+εt (1,1,1) 1156.058

Table 5: White-noise tests of the spot, options, solar and wind prices
State Variable Bartlett’s periodogram test P value Portmanteau test P value
NSW Spot 0.5591 0.9134 18.0691 0.9989

Options 0.8426 0.4767 29.265 0.1717
QLD Spot 0.4037 0.9968 24.6079 0.9734

Options 1.1355 0.1517 46.6705 0.2172
VIC Spot 0.6247 0.8300 33.7601 0.7460

Options 1.1987 0.1129 17.149 0.1035
SA Spot 0.5135 0.9547 42.8158 0.3513

Options 0.6674 0.7646 24.4028 0.9753
TAS Spot 0.5240 0.9465 22.1995 0.9898

Solar 0.5505 0.9223 36.1845 0.6427
Wind 0.7445 0.6365 39.1714 0.5074

Table 6: ARIMA forecast
State Variable Change from April 2018 to March 2020
NSW Spot 30.46% increase

Options 14.94% increase
QLD Spot 40.42% increase

Options 14.95% increase
VIC Spot 33.29% increase

Options 15.13% increase
SA Spot 35.57% increase

Options 14.80% increase
TAS Spot 11.38% increase

Solar 67.7% decrease
Wind 5.43% increase
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electricity prices in VIC of around 15.13% between April 2018 
and March 2020.

In the case of SA, Table 4 presents the outputs obtained from the 
ARIMA testing of the spot and options pricing data. The results 
indicated that the ARIMA (1, 1, 1) model was appropriate for the 
spot prices, while the ARIMA (1, 1, 0) model was appropriate for 
the options prices. Figure 1g shows that the spot electricity prices 
are predicted to increase by 35.57% in March 2020 when compared 
to the prices in March 2018. Additionally, Figure 1h shows that 
the options electricity prices are predicted to increase by 14.80% 
in March 2020 when compared to the prices in March 2018.

In relation to TAS, a univariate analysis of the spot prices was 
used to model the time-series data, with the aim of forecasting the 
monthly trends of the spot prices between April 2018 and March 
2020. Table 6 shows that the ARIMA (1, 1, 1) model was the most 
appropriate model for the spot electricity prices. Further, Figure 
1i shows that the spot electricity prices in TAS are predicted to 
increase by around 11.38% in March 2020.

The univariate analyses of the MAC Global Solar Energy Index 
and the ISE Global Wind Energy Index were mainly used to 
study the models in terms of the trends, with the aim being to use 
the model to forecast the series from April 2018 to March 2020. 
The analyses suggested that the ARIMA (1, 1, 0) and ARIMA 
(1, 1, 1) models were the best fitted models for the solar and wind 
electricity prices, respectively. The forecast results concerning the 
solar electricity prices showed a negative percentage growth rate 
of around 67.7% (Figure 1j). Further, the average monthly wind 

prices are predicted to increase from $213.17 in March 2018 to 
$224.76 in March 2020 (Figure 1k).

6. DISCUSSION AND CONCLUSION

The present study examined whether the historical values of each 
investigated time-series variable (spot, options, solar and wind 
electricity prices) for each selected state (QLD, NSW, VIC, SA 
and TAS) could explain the changes that may occur to that variable 
in the future. The ARIMA method was used to determine both the 
best fit of the models and their appropriateness. The best fitting 
ARIMA (p, d, q) models were obtained to predict the values of 
the spot, options, solar and wind electricity prices for a 3-year 
period (April 2018 to March 2020). Identifying the variabilities 
and the directions in time-series data allows for the forecasting 
of potential changes in those variables in the future. Thus, these 
ARIMA models could be used for policy purposes as well as for 
forecasting the spot, options, solar and wind electricity prices in 
Australia.

The analysis of the descriptive statistics showed that the 
distribution of the spot prices was significantly non-Gaussian for 
all the regions of the ANEM, which is consistent with previous 
findings (Akay, 2015; Higgs, 2009; Higgs and Worthington, 2005; 
Thomas et al., 2011). Moreover, the unit root test results confirmed 
the non-Gaussian and stationary nature of the spot price series.

The results showed increases ranging from 30.46% to 40.42% for 
the spot electricity prices in each state, with the highest growth 
being seen in the case of QLD. The forecasted increase is due to 

Figure 1: Time-series forecasts. (a) NSW spot time-series forecasts, (b) NSW options time-series forecasts, (c) QLD spot time-series forecasts, 
(d) QLD options time-series forecasts, (e) VIC spot time-series forecasts, (f) VIC options time-series forecasts, (g) SA spot time-series forecasts, 

(h) SA options time-series forecasts, (i) TAS spot time-series forecasts, (j) MAC Global Solar Energy Index forecasts, (k) ISE Global Wind Energy 
Index forecasts
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the increasing cost of gas-fired generation and the closure of the 
Hazelwood Power Station, which was decommissioned in March 
2017. The price increase seen in the case of VIC has impacted on 
neighbouring states, including TAS, SA and NSW. Further, the 
rising cost of gas has increased the cost of power produced by 
gas-fired power plants.

The results also showed increases in the options electricity prices 
of 14.94% in NSW, 14.95% in QLD, 15.13% in VIC and 14.80% 
in SA. The forecasted increases in the options electricity prices 
are due to the increasing spot prices.

The average monthly solar prices are estimated to decrease by 
around 67.7% between April 2018 and March 2020. Government 
policies that stimulate market growth have played a key role in 
enabling a reduction in the cost of solar power through privately 
funded research and development (R&D) and scale economies. 
The results showed that wind prices are expected to increase by an 
average of 5.43% over the next 2 years. Wind power is expensive 
because it is intermittent, while the management of electricity 
systems becomes increasingly difficult if the share of wind power 
in the total system capacity approaches or exceeds the minimum 
level of demand during the year.

Ultimately, the most appropriate decision-making process is the 
one that proves the most effective. Predicting future events based 
on an appropriate time-series model will help policy makers and 
strategists alike to make decisions and devise suitable strategic 
plans regarding the electricity markets. To extend this work, future 
studies should examine and compare the use of complex univariate 
models, such as the autoregressive conditional heteroscedasticity 
model (ARCH), the generalized ARCH model (GARCH) and the 
ARIMA/GARCH model.
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