Immigration history of amphidromous species on a Greater Antillean island

Author
Cook, Benjamin D, Pringle, Catherine M, Hughes, Jane M

Published
2010

Journal Title
Journal of Biogeography

DOI
10.1111/j.1365-2699.2009.02215.x

Rights statement
© 2010 Blackwell Publishing Ltd. This is the pre-peer reviewed version of the following article: Immigration history of amphidromous species on a Greater Antillean island, Journal of Biogeography Volume 37, Issue 2, 2010, 270-277, which has been published in final form at 10.1111/j.1365-2699.2009.02215.x.

Downloaded from
http://hdl.handle.net/10072/32252

Griffith Research Online
https://research-repository.griffith.edu.au
Immigration history of amphidromous species on a Greater Antillean island

Benjamin D. Cook¹, Catherine M. Pringle², Jane M. Hughes¹

¹ Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia 4111
² Odum Institute for Ecology, University of Georgia, Athens, GA, USA 30602-2602

Corresponding author
B.D. Cook, Australian Rivers Institute, Griffith University, Nathan, Queensland, Australia 4111
ben.cook@griffith.edu.au

Key words
amphidromy, colonisation window, demographic expansion, dispersal structuring, equilibrium biogeography, freshwater recolonisation, island biogeography, marine dispersal

Running header
Island immigration by amphidromous species
Abstract

Aim To use molecular data to test for dispersal structuring in the immigration history of an amphidromous community on an island.

Location The Caribbean island, Puerto Rico.

Methods Mitochondrial DNA sequences were obtained from 11 amphidromous species, including shrimps, fish and a gastropod, sampled from throughout the island. The timing of population expansion (T_E) in each species was calculated using nucleotide variation and molecular clock dating methods. The order of species accumulation was then reconstructed (oldest to most recent estimate for T_E) and groups of species with non-overlapping estimates for T_E were identified. The temporal span and average immigration rate for each group was calculated and compared with expectations of previously published models of island immigration [i.e. the ‘Dispersal-Structured Model of Island Recolonisation’ (Whittaker & Jones (1994) *Oikos, 69*, 524-529) which predicts short phases of rapid immigration followed by extended phases with relatively slow immigration rates; and the ‘Colonisation Window Hypothesis’ (Carine (2005) *Taxon, 54*, 895-903) which suggests that opportunities for island colonisation are temporally constrained to discrete waves of colonisation].

Results The molecular data indicated the immigration history of Puerto Rican amphidromous fauna from the late Pleistocene through the Holocene and identified two groups of species with non-overlapping estimates for T_E and one group that overlapped with the other two groups. The temporal span, average immigration rate and lack of discreetness between all three groups indicated a continuum of immigration rather than distinct phases of species arrivals.
Main conclusions This study did not support expectations of the immigration models and suggested that amphidromous species from Puerto Rico comprise a single class of marine-based dispersers. The immigration sequence we report likely reflects a recolonisation chronology in this community, in keeping with the notion of species turnover through time. Four areas of future research into the immigration history of amphidromous species on islands were identified, including the possibly that equilibrium processes govern long-term community change in amphidromous biota on islands.
Introduction

The arrival of species to islands has long interested biogeographers (e.g. Darwin, 1859; MacArthur & Wilson, 1967). Some classic studies in island biogeography have examined immigration by experimentally defaunating small islands, or capitalising on sterilisation of islands by natural disturbance, and monitoring the subsequent arrival of species (Simberloff & Wilson, 1969; Whittaker & Jones, 1994). For example, patterns of plant immigration to Rakata Island (Krakatau group, Indonesia) following its sterilisation in 1883 by a series of volcanic eruptions showed distinct phases of recolonisation in terms of dispersal mode of the species (i.e. oceanic dispersal, wind-born dispersal or hitchhiking on dispersing animals) and rates of species accumulation, giving rise to the ‘Dispersal-Structured Model (DSM) of Island Recolonisation’ (Whittaker & Jones, 1994; Whittaker & Fernández-Palacios, 2007). The ‘Colonisation Window Hypothesis’ (CWH; Carine, 2005) is an alternative hypothesis that suggests that opportunities for island colonisation are temporally constrained to discrete waves of colonisation, such as waves of plant colonisation to the Macaronesian islands that were associated with land bridges during historical periods of lowered sea levels (Carine, 2005; Kim et al., 2008). Whilst many studies have examined the immigration history of islands over ecological time scales (i.e. < 100 years, Heaney, 2000), other studies have used molecular data to reconstruct immigration histories over much longer temporal scales (see Emerson, 2002). These studies have indicated the sequence of islands colonised by a given taxon (e.g. Clegg et al., 2002; Hormiga et al., 2003; Page et al., 2005; Garb & Gillespie, 2006; Gillespie et al., 2008), the sequence of species arriving on a given island (e.g. Juan et al. 1996; Parent & Crespi, 2006), and long-term changes in rates of immigration due to deterministic, abiotic factors (e.g. Ricklefs & Bermingham, 2001). Reconciling models
of species accumulation on islands, such as the DSM and CWH, across ecological and evolutionary time scales is an area that molecular genetic analysis can contribute to island biogeography (Emerson, 2002).

Various components of island stream faunas, including fish, decapod crustaceans and gastropods, undertake obligate amphidromous migration whereby larvae are released in freshwater reaches, drift downstream to marine or estuarine habitats, then migrate upstream as post-larvae to freshwater adult habitats (McDowall, 2004, 2007). Therefore, amphidromous species have clearly defined abilities for marine dispersal. In the DSM, the rate of recolonisation facilitated by oceanic dispersal is rapid in Phase 1 of the model then declines steadily through Phases 2 and 3 (Whittaker & Fernández-Palacios, 2007). Factors influencing this decline include variation among species in their ability for oceanic dispersal (i.e. rapid immigration by good dispersers followed by a reduced rate of immigration by poorer dispersers), exhaustion of species in the source pool of potential arrivals, and reduced habitat or niche availability on the island (Whittaker & Fernández-Palacios, 2007). Phases 1 and 2 of plant recolonisation to Rakata Island where relatively short time intervals (i.e. < 25 years) whereas Phase 3 was a relatively extended period of time (i.e. > 60 years), reflecting the stochastic and slow rate of immigration by poor dispersers (Whittaker & Jones, 1994). Although some population genetic studies indicate that amphidromous species have equal and well-developed abilities for among-river (within-island) marine dispersal (e.g. Cook et al., 2008a, in review), dispersal limitation is a fundamental determinant of biodiversity patterns in island stream communities, including for amphidromous species (Covich 2006). Whether amphidromy represents a single class of dispersal over ecological and evolutionary time scales is therefore a key question in freshwater
island biogeography. If amphidromous species differ in their abilities for large-scale oceanic dispersal, long-term patterns of arrival to an island may contain signatures of dispersal structuring, such as relatively short phases of rapid immigration followed by extended phases with relatively slow immigration rates as predicted by the DSM. Alternatively, if the molecular data indicate discrete periods of immigration that do not differ in their immigration rate, then temporal constraints on immigration, such as those predicted by the CWH, may suggest the importance of historical landscape processes on dispersal limitation.

In this study, we used mitochondrial DNA data from 11 amphidromous species from Puerto Rico, including shrimps, fish and a snail, to estimate the timing of the most recent population expansion \((T_E) \) in each species and test for dispersal structuring in the immigration history of this community. We firstly discriminated between contemporaneous and non-contemporaneous estimates for \(T_E \), as the former would likely reflect population growth by pre-existing populations following bottlenecks associated with abiotic factors (e.g. disturbance) whereas the latter would likely reflect demographic change following founder events associated with species-specific immigration to the island. We then determined if expectations of the DSM (i.e. short phases of rapid immigration followed by extended phases with relatively slow immigration rates) or CWH (i.e. discrete phases of immigration that did not differ in their immigration rate) were reflected in the molecular data for this community.

Methods

The sampling design follows that presented by Cook *et al.* (2008a, 2009) and includes three marine regions (Atlantic Ocean, Mona Passage and Caribbean Sea), each with
three rivers, spanning the entirety of the island (Fig. 1). The species we assayed include representatives of all amphidromous higher taxa (i.e. caridean shrimp – Crustacea: Decapoda; gobiid fishes – OsteIchthys: Perciformes; and snails – Mollusca: Gastropoda). Although our samples also contained _Potimirum mexicana_ (Decapoda: Atyidae) and two additional _Macrobrachium_ species (Decapoda: Palamonidae), sample sizes for these species (i.e. N < 10 per taxon for the whole island) were too small to make valid comparison with the 11 taxa we examined.

Whilst not all 11 species were represented in all rivers, at least two regions were sampled for all species, with most species being sampled in all three regional areas, meaning that a broad geographical area was sampled for each species (Table 1). Population genetic analyses indicate that all species have continuous population structures among rivers in Puerto Rico (Cook _et al._, 2008a, 2009); thus, samples from throughout the island were pooled for demographic analysis and the data for each species reflected island-scale molecular variation. Sequences of the cytochrome _c_ subunit I (COI) mitochondrial DNA gene were amplified, aligned and edited for the invertebrates as described in Cook _et al._ (2008a, 2009), and aligned and edited fragments of the ATPase 6 and 8 mtDNA gene for the gobiid fish were obtained as described in Cook _et al._ (2007).

The population demographic parameters _D_ (Tajima, 1989), _Fs_ (Fu, 1997) and _R_2 (Ramos-Onsins & Rozas, 2002) were calculated for each species in DnaSP (Rozas _et al._, 2003), using 10,000 coalescent simulations using the observed number of segregating sites. Significantly negative values of _Fs_ and _D_, and significantly positive _R_2 values, indicate a genetic pattern expected under population growth. Mismatch distribution analyses (MDA; Rogers & Harpending, 1992), which test patterns of
nucleotide variation against a null model expected under a sudden population expansion, were also implemented in ARLEQUIN using 10,000 bootstrap replicates. MDA calculates various population parameters, such as the raggedness index (r; Rogers and Harpending, 1992), with significantly ragged populations having stable demographic histories and non-significantly ragged populations having sudden population growth. For data distributed according to a sudden population expansion model (i.e. non-significant r indices), MDA calculates lower- and upper- confidence bounds using non-parametric bootstrapping for the additional parameters, tau (τ; Li, 1977), which is an index of time since population expansion, and theta-0 (θ_0) and theta-1 (θ_1), which are the pre- and post- expansion values for the mutation parameter $2N\mu$, where N is the effective female population size and μ is the mutation rate per nucleotide per generation (i.e. $\theta_1 - \theta_0$ is indicative of the magnitude of effective female population growth, with effective population size defined as the reciprocal of the probability that two individuals have the same mother; Rogers, 1995).

No species were significantly ragged and the various population demographic parameters indicated demographic expansions (see results & Table 1); thus, the time of population expansion (T_E) for each species, including the 95% lower- and upper-bound estimates, were calculated by rearranging the formula $\tau = 2\mu t$, where μ is the mutation rate per nucleotide per generation, and t is time in generations (Li, 1977; Rogers & Harpending 1992). Thus, $t = \tau/2\mu$, where $\mu =$ mutation rate multiplied by number of base pairs in the DNA fragment divided by 1000000. The sequence divergence rates of 1.4% per million years (Knowlton & Weigt, 1998) for the decapod COI sequences, 1.8% for the gastropod COI sequences (Wilke & Pfenninger, 2002) and 1.3% for the goby ATPase sequences (Bermingham et al., 1997) were converted
to mutation rates by dividing in half, as divergence rates are double mutation rates. For example, the point estimate for the population expansion for *A. scabra* was calculated: \(t \) in generations = \(2.13/\left(\left(1.4/2*596\right)/1000000\right) \), and converted to time in years (i.e. \(T_E \)) by multiplying by 2 (see Cook et al. 2008 for assumptions on generation times in these fauna).

The order of species accumulation was reconstructed whereby the oldest expansion event (i.e. largest value for \(T_E \)) corresponded to one species on the island (\(S = 1 \)), through to the most recent expansion event corresponding to all species on the island (\(S = 11 \)). Groups of species with non-overlapping estimates for \(T_E \) were identified and the temporal span of each group was determined using the oldest and most recent point estimates of \(T_E \) and divided by the number of species in the group to give an average immigration rate for each group.

Results

Mitochondrial DNA sequence data contained signatures of population expansions in all species, although the magnitude of demographic change varied considerably among species (less than one-fold increases to over three and a half fold increases; Table 1). The molecular data indicates the immigration history of Puerto Rican amphidromous fauna from the late Pleistocene through the Holocene and shows non-overlapping estimates of expansion time for some species-pair combinations, including between some species within the genera *Atya* and *Micratya* (Fig. 2). Three groupings of species were identified (Fig. 2): Group 1, which contained species with \(T_E \) estimates that did not overlap with Group 3; Group 2, which contained species with \(T_E \) estimates that overlapped with both Groups 1 and 3; and Group 3, which
contained species with T_E estimates that did not overlap with Group 1. Group 1 spanned approximately 46,359 years and contained eight species, yielding an average immigration rate of one species every 5,795 years; Group 2 spanned approximately 15,715 years and contained two species, giving an immigration rate of one species every 7,857 years, and Group 3 spanned 8,427 years and contained three species, giving an average immigration rate of one species every 2,809 years. The higher taxa that were represented by more than a single species (i.e. shrimp and fish) were not contained within only a single grouping (Fig. 2).

Discussion

The molecular data indicated non-contemporaneous population expansions in the species we considered in this study, including two groups of species (Groups 1 and 3) with non-overlapping estimates for the timing of population growth. This suggests that patterns of demographic change in these species were not associated with population growth following bottlenecks in pre-existing populations (i.e. a consequence of disturbances such as hurricanes, tsunamis, volcanoes), as abiotic forcing would have facilitated contemporaneous estimates for T_E. Instead, results suggest species-specific estimates for the timing of founder events associated with immigration to Puerto Rico throughout the Quaternary.

Two of the three species in Group 3 (i.e. *Atya lanipes* and *Micratya poeyi*) had extremely low levels of genetic variation (e.g. nucleotide diversity, π, is an order of magnitude lower than all other species, Cook *et al.*, 2008a, 2009), raising the potential for selective sweeps to be a determinant of patterns of nucleotide variation. This would invalidate the conclusion of non-contemporaneous population growth, although
the use of unlinked nuclear gene sequences in future studies would enable patterns of nucleotide variation resulting from demographic changes or selective sweeps to be disentangled. However, the third species in Group 3 (i.e. *Macrobrachium faustinum*) had similar levels of genetic variation as all species in Groups 1 and 2 (Cook *et al.* 2008a, 2009), indicating that species without impoverished genetic diversity can also have recent estimates for T_E. Furthermore, an earlier study suggested taxon cycling, which is a biotic process of species turnover and community change (Ricklefs & Bermingham, 2002), explains patterns of nucleotide variation in *A. lanipes* (i.e. secondary expansion and recolonisation of Puerto Rico following historical regional decline, Cook *et al.*, 2008a). Interestingly, *A. lanipes* is the most morphologically and ecologically distinct species within *Atya* (Hobbs & Hart, 1982), which is expected for species undergoing secondary expansions and recent immigration to new habitats within taxon cycles (Wilson, 1961; Erwin, 1981; Ricklefs & Bermingham, 2002). In contrast, the genus *Micratya* contains only a single described taxon (*Mi. poeyi*), whereas a recent phylogenetic study indicated two cryptic species from Puerto Rico within the genus (Page *et al.*, 2008). It would be interesting to determine if these morphologically cryptic species have diverged in aspects of their ecology (e.g. habitat utilisation and distribution) as expected for closely-related species interacting in taxon cycles (Ricklefs & Bermingham, 2002), similar to habitat differentiation between *A. lanipes* and other *Atya* species in the West Indies (Chace & Hobbs, 1969) and between *A. innocuous* and *A. scabra* (and among congener of *Macrobrachium*) on the Lesser Antillean island Basse Terre, Guadeloupe (Fièvet *et al.*, 2001).

The expectation of brief phases of rapid immigration followed by relatively long phases of slow immigration, as described in the DSM, or discrete phases of
immigration as predicted by the CWH, were not evident in the molecular data for the Puerto Rican amphidromous community. Instead, the groupings of species with similar estimates for T_E indicated a relatively long period of more ancient immigration followed by a relatively brief period of more recent immigration. Furthermore, estimates of T_E for species in Group 2 overlapped with T_E estimates for species within Groups 1 and 3, indicating a continuum of immigration to the island by amphidromous species, rather than distinct phases of species arrivals as expected under the DSM and CWH. Whilst dispersal-limitation is a fundamental determinant of biodiversity patterns in insular stream communities (Covich, 2006), results of this study indicate that amphidromy represents a single class of marine dispersal. Molecular assessments of immigration histories of other amphidromous communities on other islands, especially highly isolated oceanic islands, would facilitate further examination of the prospect for dispersal structuring and multiple dispersal classes within amphidromous biota.

The Puerto Rican freshwater (i.e. non-amphidromous) crab (*Epilobocera sinuatifrons*) likely colonised the island by rafting (Rodriguez & López, 2003) and is thus a stream species with a strikingly different potential for marine-based dispersal in comparison to amphidromous species. In contrast to population patterns shown for the amphidromous species (Cook et al., 2008a, 2009), molecular data for the freshwater crab indicated significant population structuring among rivers on the island (Cook et al. 2008b). Population subdivision confounds the types of island-scale demographic analyses used in this study, and therefore would make results for an island scale analysis invalid and not comparable with results for the amphidromous species, precluding the inclusion of molecular data for *E. sinuatifrons* in this study. However,
stream insects with adult flight are often genetically continuous among stream systems over scales comparable to the scale of our study (Hughes 2007; Wilcock et al., 2007; Chaput-Bardy et al., 2008). Molecular analysis of the immigration history of stream insects on Puerto Rico, which would reflect the wind-born dispersal aspect of the DSM, would be very interesting to juxtapose with patterns in the immigration history of amphidromous biota to contribute broader knowledge about the island biogeography of insular freshwater communities. Wind-born immigration by adult stream insects would also be interesting to compare with wind-born dispersal of plants as described in the DSM (Whittaker & Jones, 1994; Whittaker & Fernández-Palacios, 2007).

Spatial and temporal scales are critical issues to consider when reconstructing the immigration histories of biotas on islands (Whittaker, 2000; Whittaker et al., 2008). The molecular signatures we report extend back to only the mid-Pleistocene; thus, are unlikely to reflect initial arrival to the island by its amphidromous biota. Instead, they likely reflect a recolonisation chronology in keeping with the notion of species turnover through time and broadly suggest an equilibrium process of community change, as described in MacArthur and Wilson’s (1967) theory of island biogeography and more recent theories in island biogeography (e.g. the general dynamic theory of oceanic island biogeography; Whittaker et al., 2008). However, it is unlikely for equilibrium biogeography to be maintained throughout the total evolutionary history of a community (Heaney, 2000) or history of an island (Whittaker et al., 2008), and other studies have suggested nonequilibrium immigration histories in some island biotas (Whittaker 1995; Ricklefs & Bermingham, 2001). More ancient processes, such as those occurring during the Miocene when many of these species originated and
underwent morphological divergence from their progenitors (Page et al., 2008), and more recent processes, such as source-sink population dynamics in shrimp populations in response to disturbance (Greathouse et al., 2005; Covich et al., 2006), are suggestive of nonequilibrium dynamics at larger and smaller temporal scales, and smaller spatial scales than the ‘island scale’ that our molecular data reflects (e.g. at river or river reach scales; Covich, 2006).

This study indicates four areas for future research. Firstly, our analyses used only a single mtDNA marker for each species meaning that selective sweeps cannot be disregarded as potential influences on patterns of nucleotide variation, particularly for *A. lanipes* and *Mi. poeyi*. Future studies using unlinked nuclear gene sequences would enable discrimination between patterns of nucleotide variation resulting from demographic processes or selective sweeps. Secondly, our analyses used within-island molecular variation to examine the immigration history of an amphidromous community. Calculating the timing and frequency of immigration using coalescent-based modelling at among-island scales would be a complementary approach for using molecular data to reconstruct the immigration history of island species. Thirdly, our analysis was focused on detecting dispersal structuring in amphidromous biota. Extending the analysis to include aquatic insects would enable analysis of dispersal structuring in stream species that have ocean- versus wind- born dispersal mechanisms. Finally, our suggestion that amphidromous communities represent biotic systems that align with equilibrium theories of species turnover and island biogeography would be interesting to explore further. Continued research into the immigration history of amphidromous and aquatic insect species on other islands, including highly isolated oceanic islands, would facilitate the generation of more
general knowledge about the immigration history and biogeography of lotic species on islands.
Acknowledgements

Research was funded by a Cooperative Agreement between the USDA Forest Service's International Institute of Tropical Forestry (IITF) and the University of Georgia. It was also supported by the National Science Foundation Luquillo LTER (Project DEB-0218039 and DEB-0620910) to IITF the University of Puerto Rico and the IITF USDA Forest Service, as part of the Long-Term Ecological Research Program in the Luquillo Experimental Forest. We thank the USDA Forest Service for permits to sample and the USD-FA and the Australian Rivers Institute, Griffith University, for financially supporting this research. Pablo Hernandez-Garcia and Katherine Smith helped during the sampling expedition, S. Bernays sequenced some of the gobies, and H. Larson identified juvenile gobies.
References

Clegg, S.M., Degnan, S.M., Kikkawa, J., Moritz, C., Estoup, A. & Owens,

(Tenebrionidae, Coleoptera) and its colonization of the Canary Islands deduced from cytochrome oxidase I mitochondrial DNA sequences. *Heredity, 76*, 392-403.

Table Legends

Table 1. Species and sample sizes used and population demographic parameters for each species. P values are in parenthesis and significant values (\(\alpha = 0.05\)) are in bold.
Figure Legends

Figure 1. Map of Puerto Rico showing locations, rivers and regions sampled.

Figure 2. Cumulative number of species (S) plotted as a function of timing of expansion (T_E), showing the point estimate for the time of expansion for each species (black diamonds) and 95% lower- and upper-confidence bounds (open diamonds). Three groups of species are indicated, with Groups 1 and 3 having T_E estimates that do not overlap.
Table 1. Species and sample sizes and population demographic parameters for each species. *P* values are in parenthesis and significant values (*α* = 0.05) are in bold.

<table>
<thead>
<tr>
<th>Species</th>
<th>N</th>
<th>D</th>
<th>Fs</th>
<th>R₂</th>
<th>r</th>
<th>τ</th>
<th>θ₀</th>
<th>θ₁</th>
<th>GenBank Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crustacea: Decapoda: Atyidae (atyid shrimp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atya lanipes*</td>
<td>773/185/8/3</td>
<td>-2.683 (<0.001)</td>
<td>-65.712 (<0.001)</td>
<td>0.012 (<0.001)</td>
<td>0.186 (0.630)</td>
<td>0.714</td>
<td>0.000</td>
<td>0.771</td>
<td>EU005053 - EU005083</td>
</tr>
<tr>
<td>A. scabra*</td>
<td>596/225/9/3</td>
<td>-2.005 (<0.001)</td>
<td>-201.469 (<0.001)</td>
<td>0.032 (0.003)</td>
<td>0.006 (0.601)</td>
<td>2.130</td>
<td>7.059</td>
<td>40.2625</td>
<td>EU005084 - EU005224</td>
</tr>
<tr>
<td>A. innocuous*</td>
<td>777/48/4/2</td>
<td>-0.811 (0.222)</td>
<td>-11.990 (0.005)</td>
<td>0.081 (0.227)</td>
<td>0.012 (0.223)</td>
<td>8.956</td>
<td>0.000</td>
<td>87.930</td>
<td>EU005036 - EU005052</td>
</tr>
<tr>
<td>Micratya sp.</td>
<td>756/104/5/3</td>
<td>0.457 (0.749)</td>
<td>-20.418 (<0.001)</td>
<td>0.091 (<0.001)</td>
<td>0.015 (0.640)</td>
<td>8.668</td>
<td>0.002</td>
<td>15.579</td>
<td>EU005036 - EU005052</td>
</tr>
<tr>
<td>Mic poeyi</td>
<td>775/52/5/3</td>
<td>-2.133 (0.002)</td>
<td>-11.918 (<0.001)</td>
<td>0.106 (<0.001)</td>
<td>0.089 (0.603)</td>
<td>0.694</td>
<td>0.000</td>
<td>256.992</td>
<td>EU005036 - EU005052</td>
</tr>
<tr>
<td>Crustacea: Decapoda: Xiphocarididae (long-faced shrimp)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiphocaris elongata*</td>
<td>768/66/5/3</td>
<td>-2.139 (0.003)</td>
<td>-73.964 (<0.001)</td>
<td>0.036 (<0.001)</td>
<td>0.066 (0.724)</td>
<td>8.502</td>
<td>0.003</td>
<td>175.938</td>
<td>EU004940 - EU005000</td>
</tr>
<tr>
<td>Crustacea: Decapoda: Palaemonidae (long-armed river prawn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrobrachium faustinum*</td>
<td>708/71/7/3</td>
<td>-2.487 (<0.001)</td>
<td>-45.119 (<0.001)</td>
<td>0.021 (<0.001)</td>
<td>0.049 (0.546)</td>
<td>1.571</td>
<td>0.000</td>
<td>7.245</td>
<td>EU005001 - EU005035</td>
</tr>
<tr>
<td>Actinopterygii: Perciformes: Gobiidae (gobies)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sicydium sp.</td>
<td>657/40/5/2</td>
<td>-1.264 (0.085)</td>
<td>-16.292 (<0.001)</td>
<td>0.110 (<0.001)</td>
<td>0.021 (0.378)</td>
<td>5.430</td>
<td>0.003</td>
<td>53.994</td>
<td>FJ348976 – FJ349015</td>
</tr>
<tr>
<td>S. buscki</td>
<td>657/80/5/2</td>
<td>-2.215 (0.001)</td>
<td>-61.918 (<0.001)</td>
<td>0.096 (<0.001)</td>
<td>0.026 (0.350)</td>
<td>3.631</td>
<td>0.003</td>
<td>66.550</td>
<td>FJ349016 - FJ349095</td>
</tr>
<tr>
<td>S. punctatum</td>
<td>657/34/4/3</td>
<td>-2.504 (<0.001)</td>
<td>-11.636 (0.002)</td>
<td>0.114 (<0.001)</td>
<td>0.030 (0.280)</td>
<td>2.252</td>
<td>0.000</td>
<td>19.609</td>
<td>FJ348742 - FJ348775</td>
</tr>
<tr>
<td>Mollusca: Gastropoda: Neritidae (amphidromous snail)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neritina virginae</td>
<td>354/44/2/2</td>
<td>-1.835 (0.012)</td>
<td>-15.194 (<0.001)</td>
<td>0.108 (<0.001)</td>
<td>0.033 (0.350)</td>
<td>4.623</td>
<td>0.003</td>
<td>12.839</td>
<td>FJ348932 – FJ348975</td>
</tr>
</tbody>
</table>

N = number of base pairs of DNA fragment/individuals/rivers/regions sampled; D = Tajima’s D; Fs = Fu’s Fs; R₂ – Ramos-Onsins & Rozas’ R₂; r = Rogers and Harpending’s ragged index; τ = τ; which is an index of time since population expansion expressed in units of mutational time; θ₀ & θ₁ = pre- and post- expansion values for the mutation parameter (i.e. 2Nμ, where N is the effective female population size and μ is the mutation rate per gene per generation).

* Results from Cook et al. (2008)
Fig 1

Atlantic Ocean

Río Grande de Arecibo Río Grande de Manatí
Río Culebrinas
Río Grande de Añasco
Río Guanajibo
Río Guayanés Río Coamo Río Guayanés

Caribbean Sea

Mona Passage

10 km N
Fig. 2

Cumulative species (S)

- Micratya sp. (1)
- A. innocuous (2)
- X. elongata (3)
- N. virginia (4)
- Sicydium sp. (5)
- S. buscki (6)
- S. punctatum (7)
- A. scabra (8)
- M. faustinum (9)
- A. lanipes (10)
- Mi. poeyi (11)

Time before present (years)

Group 1

Group 2

Group 3
Biosketch

B.D. Cook is a research fellow with the Tropical Rivers and Coastal Knowledge (TRaCK) Commonwealth Environmental Research Facility at the Australian Rivers Institute, Griffith University. He is investigating phylogeographic patterns in freshwater species throughout northern Australia and other regions. His research interests include freshwater biogeography, population biology and conservation ecology.

C.M. Pringle is a Professor of Ecology at the Odum School of Ecology, The University of Georgia, and has had long-term projects in Puerto Rico and Costa Rica. Her research interests include unravelling species-community-ecosystem linkages in key ecosystem processes.

J.M. Hughes is a Professor of Environmental Science at the Australian Rivers Institute, Griffith University, where she is head of the Molecular Ecology Laboratory. Her research interests include the use of molecular data for answering questions in ecology, evolution and conservation.

Editor: Jon Sadler