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Marine coastal (or �blue�) ecosystems provide valuable services to humanity and
the environment, but global loss and degradation of blue ecosystems necessitates
ecological restoration. However, blue restoration is an emerging �eld and is still relatively
experimental and small-scale. Identi�cation of the key barriers to scaling-up blue
restoration will enable targeted problem solving and increase the likelihood of success.
Here we describe the environmental, technical, social, economic, and political barriers
to restoration of blue ecosystems, including saltmarsh, mangroves, seagrass, shell�sh
reefs, coral reefs, and kelp forests. We provide managers, practitioners, and decision-
makers with solutions to construct barrier-informed blue restoration plans and illustrate
these solutions through the use of case studies where barriers were overcome. We
offer a way forward to build con�dence in blue restoration for society, government, and
restoration practitioners at larger and more ambitious scales.

Keywords: marine coastal restoration, mangroves, seagrasses, saltmarsh, corals, kelp, shell�sh, ecosystem
services

IN A NUTSHELL

� Marine and coastal, or �blue� restoration is increasing in relevance and need due to degradation
and loss of habitat, combined with increasing need for ecosystem-based climate change
mitigation and adaptation.
� Restoration of blue ecosystems can be challenging due to environmental, technical, social,

economic, and political barriers.
� Case studies provide insights of how to overcome barriers to restoration.
� Identifying barriers and evaluating potential pathways to achieve success is essential to enable

blue restoration to play a major role in biodiversity conservation, and climate change mitigation
and adaptation.
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INTRODUCTION

Marine and coastal, or �blue� ecosystems, such as saltmarsh,
mangroves, seagrass, shell�sh reefs, coral reefs, tidal �ats,
and kelp forests and other seaweed beds, provide signi�cant
ecosystem services that have intrinsic value to environmental,
social, and economic sustainability (MEA, 2005). These
ecosystem services include regulating and maintenance services
(e.g., coastal protection, climate regulation), provisioning (e.g.,
food, nutrient cycling, water quality), and cultural bene�ts
(e.g., recreation, tourism) (Barbier et al., 2011). However, blue
ecosystems are also some of the most heavily modi�ed systems
on Earth. Large scale global losses in habitat have been reported
for mangroves and saltmarshes (Valiela et al., 2001; Gedan et al.,
2009), kelp forests (Krumhansl et al., 2016), coral reefs (Hughes
et al., 2017), shell�sh reefs (Beck et al., 2011), seagrass (Waycott
et al., 2009; Arias-Ortiz et al., 2018), and tidal �ats (Murray et al.,
2019). Drivers of loss vary and include pollution, invasive or pest
species, disease, overexploitation or destructive �shing methods,
land conversion, and the threats associated with climate change
and associated extreme weather events (Valiela et al., 2001;
Waycott et al., 2009; Beck et al., 2011). Ecological restoration
is a priority where the natural recovery of degraded habitat(s)
is slow, absent, or hindered by physical or biological factors
(Perrow and Davy, 2002; SER, 2004).

Restoration describes interventions to assist in the
recovery of an ecosystem, while �blue restoration� refers to
interventions focused on the recovery of marine and coastal
ecosystems. The importance of restoration of natural systems
is recognized by numerous global accords and conventions,
all aimed at accelerating ecological restoration. These include
the Millennium Ecosystem Assessment (MEA, 2005), the
Convention on Biological Diversity (CBD, 2010), Bonn
Challenge (restoration of 350 million hectares by 2030),
the United Nations Sustainable Development Goals (SDGs)
in particular SDG14 �Life Below Water,� and the recent
United Nations (UN) declarations for �Decade for Ecosystem
Restoration 2021�2030� (Salvador, 2018; Waltham et al., 2020)
and �Decade of Ocean Science for Sustainable Development
2021�2030� (UN, 2019).

Until recently, the focus of restoration has been largely
terrestrial; with blue restoration still mostly small-scale,
costly, and with limited long-term success (Bayraktarov et al.,
2016). Meeting the ambitious global targets will require
successful implementation of blue restoration at scales
not yet seen. Successful blue restoration must overcome
environmental, technical, social, economic, and political
barriers to implementation. The identi�cation and assessment
of common barriers will allow managers to target, prioritize,
and potentially eliminate barriers during the planning phase,
increasing the likelihood of project success. Here we describe
common barriers to blue restoration projects, evaluate the level
of threat they pose to success for each ecosystem type, detail
the relationship between barriers and restoration success, and
provide real-world examples where barriers have been overcome.
Now is the time to build con�dence in society, government,
and amongst restoration practitioners through resolving how to

overcome multiple barriers to enable scaling-up blue restoration
to ecologically-relevant scales.

BARRIERS TO BLUE RESTORATION

A series of workshop discussions among the authors drew on
our knowledge of the restoration literature to identify common
barriers to successful blue restoration at the scale required
to meet future targets (MEA, 2005; CBD, 2010; Salvador,
2018; GMA, 2019). We categorized these into �ve broad
classes: environmental, technical, social, economic, and political
(Figure 1). To supplement the knowledge of the authors, we
conducted a targeted search of the Web of Science databases and
Google Scholar. The resulting literature (WebTable 1) was used
to (1) describe how environmental, technical, social, economic,
and political barriers can hinder success of blue restoration
projects, and (2) give solutions to these barriers based on our
literature search (Table 1). We further illustrate these solutions
utilizing case studies including:

� Coral reef restoration in Sulawesi, Indonesia, where
technical barriers were overcome using new, relatively
inexpensive technology (Box 1);
� Mangrove restoration in Sulawesi, Indonesia, where

environmental (hydrological) barriers were overcome
using creative solutions that were based on sound
technical knowledge (Box 2);
� Seagrass restoration in Chesapeake Bay, United States,

where technical knowledge was used to increase
restoration capacity by implementing seed propagation
technology (Box 3); and
� Shell�sh restoration in Chesapeake Bay, United States,

to illustrate where political barriers were overcome by
fostering collaboration between stakeholders (Box 4).

The case studies presented here are examples of success in
overcoming barriers and are not intended to be portrayed as
representative of the norm in the blue restoration industry. For
example, seed propagation is not always as successful in large-
scale seagrass restoration as it was in Chesapeake Bay (e.g., only
12% survival on Kangaroo Island in Australia: Tanner et al.,
2014). This is due to the relatively young nature of the blue
restoration industry, where solution to some barriers have not
yet been widely implemented. We expect that more solutions will
emerge as the blue restoration industry matures.

Environmental Barriers
Environmental barriers are physical, chemical, biological, or
hydrological characteristics that decrease the likelihood of
restoration success (Perrow and Davy, 2002). These barriers
include land conversion, hydrological modi�cation, poor water
quality, pest species, overexploitation, climate change, and
extreme weather events (Figure 1).

Land Conversion
Land conversion has been one of the key causes of loss of
approximately one third of the world’s saltmarsh, seagrass, and
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FIGURE 1 | Common barriers to successful blue restoration. Barriers are shown for the restoration of saltmarsh, mangroves, seagrass, shell�sh reefs, coral reefs,
and kelp.

mangroves (Valiela et al., 2001; Gedan et al., 2009; Waycott
et al., 2009). Environmental barriers associated with changes
in land-use include changes in the structure (compaction) and
biogeochemistry of soils (nutrients and other pollutants), which
may be di�cult to reverse, particularly in the cases of blue
ecosystems where the original ecosystem is lost through land
reclamation. In cases that do not include land reclamation,
solutions that have been identi�ed include adding sediment in
saltmarshes where soils and their elevations are inappropriate
for plant growth (Berkowitz et al., 2017). The negative impacts
of mobilizing pollutants can be minimized through staged
re�ooding and liming (treating with lime) in acid sulfate soils
(Portnoy and Giblin, 1997).

Payments for ecosystem services (including carbon
sequestration) have been successfully used to motivate and
�nance the restoration of converted agricultural landscapes in
terrestrial systems, as in China’s Grain-to-Green Program (Chen
et al., 2009) and Madagascar’s Ankeniheny-Mantadia-Zahamena
Biodiversity Conservation and Restoration Project (Wendland
et al., 2010). Carbon �nance is applicable to blue ecosystems
(Wylie et al., 2016), and methodologies are available for a
range of restoration activities for mangroves, saltmarshes, and
seagrass (e.g., rewetting landscapes to restore coastal wetlands
(Emmer et al., 2015; Needelman et al., 2018). A wide range of
projects are emerging to restore mangroves and saltmarshes
on converted agricultural and aquaculture landscapes, both for
carbon payments, for example Conservation International’s
project in CispatÆ, Colombia (Bernal et al., 2017), and restoration
of saltmarsh in Canada (Wollenberg et al., 2018), and also for
supporting biodiversity and other co-bene�ts, including nutrient
cycling (e.g., Land Restoration Fund projects in Queensland,
Australia; Queensland Government, 2020).

Hydrological Modi�cation
Degradation of coastal wetlands is often the result of changes
in hydrology to support aquaculture and agriculture; for

example, drainage, impoundment with seawalls, or excavation
(Lewis et al., 2016). Changes to hydrology can cause major
alterations to the suitability for plants and animals of blue
ecosystems. Mangrove ecosystems can be di�cult to restore
where aquaculture ponds and channels excavated for shrimp
aquaculture result in hydrological modi�cations of the landscape
(Brown et al., 2015). Re-establishing hydrological regimes that
are suitable for plant communities has been achieved in a range
of saltmarsh settings (Glamore, 2012; Esteves and Williams,
2017), although success has been variable (Wolters et al., 2005).
There remain technical barriers to predicting outcomes of
hydrological change (e.g., because of di�culties in predicting
tidal attenuation in complex environments; Rodríguez et al.,
2017) and development of accessible hydrological models is key,
although often not possible due to limitations in resources, data,
or capacity (Boumans et al., 2002).

Water Quality
Water quality has large e�ects on how blue ecosystems function
and persist, and often preclude successful blue restoration (van
Katwijk et al., 2016). Eutrophication (excess nutrient loads
resulting in signi�cant reductions in dissolved oxygen) is one
of the most prominent cause of seagrass loss (Waycott et al.,
2009), and has also contributed to loss of oyster reefs (Beck et al.,
2011). Seagrass restoration in the Wadden Sea was more feasible
with a higher likelihood of success at sites where water quality
issues such as eutrophication and turbidity had been improved in
the late 1980s, after extensive seagrass losses had occurred (van
Katwijk et al., 2009).

Pest Species
Pest species have caused widespread damage to blue ecosystems,
often threatening the success of restoration projects. Pest
species can reduce the survival and persistence of restored
blue ecosystems. For example, Crown-of-Thorns star�sh
(Acanthaster planci) and Indo-Paci�c lion�sh (Pterois volitans)
have threatened reef restoration projects in Australia and the
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TABLE 1 | Examples of solutions to the common barriers to blue restoration.

Challenge Solution References

Environmental

Land conversion Sediment addition, staged re�ooding, liming, and
payments for ecosystem services.

Portnoy and Giblin, 1997; Chen et al., 2009; Wendland
et al., 2010; Konnerup et al., 2014; Emmer et al., 2015;
Berkowitz et al., 2017; Bernal et al., 2017; Needelman
et al., 2018; Wollenberg et al., 2018

Hydrological modi�cation Re-establishing hydrological regimes, development of
hydrological models.

Boumans et al., 2002; Wolters et al., 2005; Glamore,
2012; Esteves and Williams, 2017

Water quality Water quality management, site selection. van Katwijk et al., 2009

Pest species Site selection, manual removal, increase biodiversity,
and native species.

Johnson et al., 1990; Davis et al., 1998; Steneck et al.,
2002

Overexploitation Harvesting bans/limits, complementary planting,
provision of alternative livelihoods, and community
engagement.

Winterwerp et al., 2016; Wylie et al., 2016; Chan and
Hodgson, 2017; Owuor et al., 2019

Other human disturbances Eco-mooring, zoning for low-impact areas, policy
changes, and site selection.

Stowers et al., 2000; Precht et al., 2001;
Cullen-Unsworth and Unsworth, 2016

Climate change and Extreme events Site selection, risk management, niche modeling,
bene�t-cost analysis, and adaptive management.

Alleman and Hester, 2011; Perry et al., 2015; Adams
et al., 2016; Beyer et al., 2018; Runting et al., 2018

Technical

Site selection Guidance documents, trait matching for site conditions,
avoiding sites with climate-induced extremes.

Lewis, 2005; Precht, 2006; Srivastava, 2017; Ladd
et al., 2018; The Nature Conservancy, 2018; Fitzsimons
et al., 2019

Capacity and knowledge Investment into research and development, increased
communication of restoration outside of the global
north.

RRAP, 2018; Zhang et al., 2018

Social

Rights, responsibilities, and cultural value Allow cultural harvest, valuation and investment in
cultural ecosystem services, inclusion of indigenous
peoples.

Allan et al., 2015; Poe et al., 2016; Brown, 2017; Wehi
and Lord, 2017

Public perception Actively address concerns of public. Rey et al., 2012.

Community engagement and civil unrest Create co-bene�ts and increase livelihoods. Increase
community engagement through job creation, and
encouraging cultural practices. Use citizen science.

Dickinson et al., 2012; Kittinger et al., 2013; Huddart
et al., 2016; Disney et al., 2017; Hesley et al., 2017;
Livelihoods funds, 2019

Economic

Financing Use �nancial models (e.g., REDD C,
debt-for-nature-swaps, green taxes, biodiversity offsets
etc.). Use a range of investors (e.g., private, public,
donors etc.). Government policy.

Iftekhar et al., 2017; Srivastava, 2017; Herr et al., 2019

Insurance and risk management Charge private stakeholders for ecosystem services,
catastrophe bonds, and parametric insurance.

Bell and Lovelock, 2013; Colgan et al., 2017; Lab, 2017

Political

Land tenure and trade-offs Payment for ecosystem services, sustainable
harvesting.

Beck et al., 2011; Lovelock and Brown, 2019

Policy and governance Consider cultural context, incorporate social science,
knowledge sharing, and consider barriers to restoration.

Ferrol-Schulte et al., 2015; Bell-James, 2016; France,
2016

Caribbean, respectively (Omori, 2010), green crabs (Carcinus
maenas) have reduced survival of restored seagrass (Davis
et al., 1998), sea urchins have damaged kelp restoration projects
(Watanuki et al., 2010), and the common reed (Phragmites
australis) has reduced success of saltmarsh restoration in
North American (Silliman and Bertness, 2004). In some
cases, the only solution to reducing the impact of pest species
on restoration projects is by avoidance through careful site
selection (e.g., green crabs in seagrass; Davis et al., 1998).
In other cases, manual removal is necessary (e.g. Crown-of-
Thorns star�sh, Great Barrier Reef, Australia), although this
can increase the cost of restoration projects (Johnson et al.,

1990). Restoring the biodiversity of blue ecosystems may help
resist invasion of pest species, such as in kelp forests (Steneck
et al., 2002), while reduced biodiversity is associated with
invasions in saltmarsh (e.g., in New England; Silliman and
Bertness, 2004). This demonstrates a positive feedback loop
between restoration of biodiversity and reduced incidence
of pest species.

Overexploitation
In many nations, overharvesting has led to degradation of
mangroves and reduction in important ecosystem services, such
as coastal protection and stabilization. Restoration is unlikely to
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BOX 1 | Sulawesi, Indonesia � coral reef restoration.
Ecosystem: Coral reef.
Background: The site (Pulau Badi, South Sulawesi, Indonesia) was damaged by storms, blast-�shing, coral mining, and the construction of a boat channel,
resulting in a coral rubble �eld (Williams et al., 2019). Restoration success was measured against a reference site which was a nearby, undisturbed reef.

Photo: ‘Spiders’ used to stabilize rubble for coral transplantation.
Barrier 1: Technical � low levels of substrate availability for coral recruits.
Context and solution: The project deployed small, modular, open structures (‘spiders’) to stabilize rubble and to support transplanted coral fragments over 2 years.
The structures allowed unrestricted water �ow, trapped broken coral fragments and rubble, and stabilized the substratum to support coral recruitment, growth, and
diversity. Live coral cover on the structures increased from less than 10% to greater than 60%, although this varied depending on depth, deployment date, location,
and disturbances.

be successful unless harvesting of timber from restoration sites
is prevented, either through regulation with enforcement or the
provision of local people with alternatives resources. Provision of
alternative livelihoods has proven a valuable tool to reduce over-
exploitation of mangroves, for example in the Mikoko Pamoja
mangrove restoration project in Kenya, complementary planting
of terrestrial species for timber production reduces pressure on
the restored forest (Wylie et al., 2016; Owuor et al., 2019).

Other Human Disturbances
Direct physical damage by human activities can reduce success
of restoration projects through increased costs or decreased
survival. Physical damage, such as that done by boat propellers
and chain moorings, can have a large impact on the success
of restoration by reducing the density of seagrass � in some
areas to zero (Demers et al., 2013). Eco-mooring systems
that prevent damage or designating certain sensitive areas as
�low-impact� (i.e., no high-impact moorings), may provide a
solution to damage of restoration sites (Cullen-Unsworth and
Unsworth, 2016). Implementation of policy that protects seagrass
from damage has been successful in Tampa Bay, where areas
of restored seagrass were closed to boats with combustion

engines, perhaps providing a model for other restoration projects
(Stowers et al., 2000).

Larger-scale damage, such as damage to corals by ship
groundings, can in some cases be managed with appropriate
site selection for restoration (e.g., in the Florida Keys). In this
example, areas of high relief did not recover on their own and
required restoration, while low-relief, hardground coral sites
recovered without the need for assisted restoration. Restoration
with appropriate site selection (i.e., that focuses on damaged
high-relief habitat) can reduce the cost and increase the feasibility
of restoration in cases of ship groundings (Precht et al., 2001).

Climate Change and Extreme Events
Climate change can have a direct impact on blue ecosystems
through gradual increased ocean temperatures, sea level rise,
and ocean acidi�cation, as well as increasing intensity and
frequency of extreme weather events. Restoration projects can
be vulnerable to extreme weather events if sites are not chosen
carefully to include areas that are less vulnerable (see �Site
Selection;� van Katwijk et al., 2016). The projected impacts
of climate change should be incorporated into restoration
planning, with consideration given to species’ ability to adapt
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BOX 2 | Sulawesi, Indonesia � mangrove restoration.
Ecosystem: Mangrove.
Background: Mangrove restoration in two locations � Tiwoho Village, North Sulawesi (site referenced in Brown and Djamaluddin, 2017); and in Tanakeke Island,
South Sulawesi (site referenced in Brown et al., 2014). While these sites have a similar history of clearing and land-use conversion, they represent very different
conditions for mangrove restoration. Tiwoho is a high productivity mangrove system where the soil is silty and deep, whereas Tanakeke is a low productivity
mangrove system on shallow coral sands (Cameron et al., 2019).

Photo: By Rignolda Djamaluddin of hydrological restoration of mangroves (Brown and Djamaluddin, 2017).
Barrier: Environmental � hydrodynamics.
Context and solutions: Collaboration among scientists at Blue Forests (Yayasan Hutan Biru), Charles Darwin University, and the National University of Singapore,
focused on mangrove restoration by implementing Ecological Mangrove Restoration (EMR) (Lewis, 2005). This methodology involves hydrological modi�cations
following an assessment of the current conditions and site-speci�c needs. Restoration of hydrology included strategic pond wall breaching, creating hand-dug
drainage and tidal channels, and creating mounds of substrate to facilitate mangrove colonization in deeper areas of ponds. These techniques simulated the natural
conditions to allow mangrove propagules to naturally recruit to the restoration sites. These projects are successful examples of overcoming complicated hydrological
challenges with creative solutions.

or range shift. Blue ecosystems are diverse and will su�er
diverse impacts of climate change and, as such, appropriate
restoration techniques and management will depend upon the
speci�c stressors to that system (Erwin, 2008). For example,
corals will be impacted by increased temperatures, seagrass
and kelps are sensitive to marine heatwaves, while wetland
ecosystems may be sensitive to salt water intrusion and
sea-level rise [including the impacts of �coastal squeeze�
(Mills et al., 2016)].

Modern portfolio theory, which seeks to maximize return and
minimize risk, has been applied to selected sites to minimize
risks for establishing mangroves under projected climate change
scenarios (Runting et al., 2018). A similar approach was used to
assess priorities with lowest climatic risks (i.e., risk management)
for global investment in conservation of coral reefs (Beyer et al.,

2018), but other approaches include species niche modeling
with assessment of bene�ts and costs (Johnston et al., 2002;
Adams et al., 2016). Restoration practitioners must consider
not only which restoration techniques should be used, but
also how e�ective these are under multiple potential future
climate projections, while leaving room in projects for adaptive
management of restoration projects (Perry et al., 2015). More
knowledge is needed in all blue ecosystems on how restoration
practices should change and be adapted to incorporate the e�ects
of climate change (Harris et al., 2006).

Technical Barriers
Technical barriers to blue restoration threaten project
success most often when there is poor site selection or
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BOX 3 | Chesapeake Bay, United States � seagrass restoration.
Ecosystems: Seagrass
Background: Chesapeake Bay ecosystems have been overexploited and
degraded since European settlement over 400 years ago (Cameron et al.,
2019). The seagrass, Zostera marina, was lost from 50% of its distribution,
followed by 30% decline in the 1990’s (Orth et al., 2012). In response to
bay-wide environmental degradation, the Chesapeake Bay Program
Partnership was formed in 1983. The Chesapeake Bay Foundation estimated
the economic bene�ts of cleaning up the bay watershed would total US$130
billion annually.

Photo: Zostera marina restoration in South bay, Chesapeake Bay, United
States.
Barrier: Technical � seagrass recruitment
Context and solution: Natural recovery of seagrass was slow, despite
improvements to water quality. This prompted interventions to assist seagrass
recovery. Seed-based restoration provides a greater abundance of genetically
diverse propagules. Large-scale restoration using seeds collected from areas
adjacent to Chesapeake Bay was initiated in the late 1990s (Orth et al., 2012).
This enhanced recruitment above natural levels. Currently, 72 million seeds
have been added between 1999 and 2015, to plots ranging in size from 0.01
to 2 ha, totaling 200 ha across four coastal bays. Expansion from these initial
plots to approximately 2500 ha of sea�oor is attributable to seed dispersal and
reproduction from the original plots (Orth and Reeves, 2018, pers. comm.).

limited capacity and knowledge to support restoration
projects (Figure 1).

Site Selection
Site selection has been responsible for many failed mangrove
restoration projects in low and middle income countries
(Lee et al., 2019), where the average survival of restored
mangrove seedlings is only 11% (Bayraktarov et al., 2016).
However, appropriate site selection is not necessarily an

BOX 4 | Chesapeake Bay, United States � shell�sh.
Ecosystems: Shell�sh
Background: In Chesapeake Bay, the eastern oyster (Crassostrea virginica)
provides valuable services to commercial �sheries, water �ltration, and habitat.
Over-harvesting, disease, and habitat loss has led to oyster populations <1%
of their historic levels (Wilberg et al., 2011). Oyster restoration in the
Chesapeake Bay started in 1914 and has led to restoration of 100s of
hectares (Wilberg et al., 2011).

Photo: By Will Parson/Chesapeake Bay Program of clump of oysters from
Harris Creek (Chesapeake Bay Program, 2019).
Barrier 1: Political.
Context and solution: Oyster restoration/management in the Chesapeake
has been a collaborative and coordinated approach across political
jurisdictions. This was driven by a 2009 US Executive Order (no. 13508),
which was implemented by the Chesapeake Bay Watershed Agreement
(2014), Chesapeake Bay Program (2019). Within this, the Oyster Outcome is
to Continually increase �n�sh and shell�sh habitat and water quality bene�ts
from restored oyster populations, restore native oyster habitat and populations
in 10 tributaries by 2025 and ensure their protection’ this has catalyzed oyster
restoration at scale: by 2018, 289 and 194 hectares had been restored in
Maryland and Virginia, respectively. The outcomes of this restoration has been
quanti�ed and in Maryland alone, US$51 milion has been invested in oyster
restoration, with a �sheries output bene�t valued at US$22.3 milion per year,
an additional 313 jobs per year, and between US$3-18 million in nitrogen
removal value (Chesapeake Bay Program, 2019).

easily solved problem. For example, many failed mangrove
plantings were on sites selected to avoid con�icts with private
land use (see �Land tenure and trade-o�s;� Lewis, 2005;
Lovelock and Brown, 2019). Mangrove restoration success
has been increased by development of technical guidance
including initiatives such as Ecological Mangrove Restoration
(EMR; Lewis, 2005) and the UN-led Restoration Opportunities
Assessment Methodology (ROAM; Srivastava, 2017). Similar
tools are available for shell�sh reefs, such as the Ocean
Resilience application (The Nature Conservancy, 2018) and
the Restoration Guidelines for Shell�sh Reefs (Fitzsimons
et al., 2019). In coral reefs, matching of coral phenotypic
traits with site conditions may lead to increased survival and
overall success of restoration projects (Ladd et al., 2018). For
example, sites a�ected by high water temperatures due to
climate change could require outplanting of coral genotypes
with high thermal tolerance. Further successes may be achieved
by strategic placement of coral reef restoration in areas
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where water currents minimize bleaching of restored corals
(Precht, 2006).

Capacity and Knowledge
Limited knowledge of restoration processes and skills can hinder
restoration success and implementation.

A solution to a lack of knowledge is increased investment
into research and development of blue restoration methods,
and training of project personnel. For example, AUD$100
million has been allocated to coral reef restoration research and
development on the Great Barrier Reef, which has been focused
on technological solutions for climate change impacts, such as
the restoration of bleached areas using assisted translocation
of coral larvae (RRAP, 2018). This example also underscores
an information and investment bias toward blue restoration in
nations with high-income economies. For example, Bayraktarov
et al. (2016) found that investment is greater in countries with
high income economies compared to low/lower middle economy
nations for coral (median 282,719 US$ ha�1 cf. 162,455 US$
ha�1) and mangrove restoration (52,006 US$ ha�1 cf. 1,771 US$
ha�1), while in seagrass, saltmarsh, and oyster reef restoration
there was no published evidence of investment in low/lower
middle income nations. There is limited information on blue
restoration from Africa, Asia, and South America. There needs
to be increased communication of restoration outside of the
developed world (Zhang et al., 2018). Many locally run projects
have limited access to communication with restoration experts,
and so may waste valuable time and resources developing
restoration techniques that work, or the project may su�er from
reduced success as a result. Information-sharing and publicly
available best-practice guidelines may reduce this limitation.

Social Barriers
Social approval and participation in blue restoration is often
overlooked but can be central to successful implementation of
large-scale blue restoration (Figure 1).

Rights, Responsibilities, and Cultural Value
Restoration has the potential to greatly impact the human
populations living in proximity to restoration projects and those
who are dependent on the habitats being restored. As such,
consideration of the rights and responsibilities of coastal peoples,
and inclusion of all the relevant stakeholders, is crucial to blue
restoration success (Lundquist and Granek, 2005).

The cultural value placed on blue ecosystems has the potential
to cause con�ict with restoration project objectives, particularly
where indigenous communities have rights to resource use
(e.g., burning mangrove wood for fuel; Torpey-Saboe et al.,
2015). For example, the use of mangrove tree resources was
criminalized in Para state, northern Brazil (Glaser et al.,
2003). The ban was aimed at commercial users; however,
it also restricted access to local communities who required
wood for their subsistence. The ban created social con�ict,
resource and economic insecurity, and threatened the local
use and restoration of the mangrove habitat (Glaser et al.,
2003). Similar concerns have been raised by REDD C (Reduced
Emissions from Deforestation and Degradation) projects for

mangrove conservation, noting that restoration may compromise
access to land and livelihoods by limiting indigenous and
local people from traditional use of mangrove land (Gri�ths
and Martone, 2008). Cultural harvest (i.e., resource use by
local or traditional communities) is one of the key cultural
values of restored habitats (Wehi and Lord, 2017). Inclusion
of sustainable harvest within restored habitats may increase
the cultural value of restoration projects and thereby increase
community support for restoration projects (Wehi and Lord,
2017). In Puget Sound, in the United States, people’s �sense
of place� was an important motivation for resident support
of restoration and sustainable harvesting of shell�sh (Poe
et al., 2016). In North America’s Laurentian Great Lakes,
cultural ecosystem services from restoration have guided
investment of more than US$1.5 billion into restoration,
which increased uptake and success of restoration projects
(Allan et al., 2015).

Research into the cultural ecosystem services provided by
blue ecosystems is biased toward examples from nations with
developed economies and thus does not often include cultural
use and value placed on blue ecosystems beyond western
values (Rodrigues et al., 2017). The inclusion of local peoples
in the planning and implementation of restoration projects
has enhanced the success of mangrove restoration projects in
Indonesia (Brown, 2017).

Public Perception
Public perception of the impacts of restoring ecosystems has
large implications for restoration of blue ecosystems. In Florida,
mosquitoes associated with saltmarsh and mangrove forests
can become abundant, which has negative impacts on human
health and well-being (Rey et al., 2012). Due to negative public
perception of saltmarshes and mangroves, because of their
association with mosquitoes and other biting insects, much of the
historic areas of coastal saltmarsh were drained and mangroves
impounded to reduce mosquito numbers. Restoration of coastal
wetlands therefore had to overcome the concerns of the public,
and thus as a solution, restoration of these marsh areas was paired
with mosquito control (Rey et al., 2012).

Public perceptions of the bene�ts of blue ecosystems are likely
to di�er from those quanti�ed by ecosystem service valuation
(Costanza et al., 1997), where the public values recreation
and access to food/fuel over services such as increasing water
quality. In order to bring di�ering perspectives together, it is
important to engage a variety of stakeholders (e.g., indigenous
and community groups) when planning and implementing blue
restoration projects (Lundquist and Granek, 2005).

Community Engagement and Civil Unrest
Civil unrest and con�ict can prevent restoration e�orts due to
weak governance, corruption, and disputes over land tenure
(Herr et al., 2019). For example, upstream dam construction
and prolonged drought in Senegal has stimulated estuarine
mangrove restoration, which has led to a range of social con�icts
(Manikowski and Strapasson, 2016; Cormier-Salem, 2017). Non-
government organizations have initiated large scale restoration
of mangroves, which has had co-bene�ts of restoring rice and
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seafood sources for local livelihoods (Livelihoods funds, 2019),
although social con�ict remains over the carbon �nancing used
for the project (Cormier-Salem, 2017).

Active community engagement in blue restoration projects
can combat the negative in�uence of social con�ict and be
mutually bene�cial to both restoration practitioners and other
stakeholders in the community. For example, the e�ectiveness
of strong community engagement for successful restoration
was demonstrated in Hawaiian coral restoration, where coral
reef restoration bene�ted the local community by creating
jobs, reviving cultural practices, harvest and use of coral-
associated algae, increased awareness of the marine environment,
and overall increased adaptive capacity for global change
(Kittinger et al., 2013).

Other strategies to increase community engagement, such
as citizen science, use volunteers to support river restoration
activities (Huddart et al., 2016), seagrass (Disney et al., 2017),
and coral reef restoration (Hesley et al., 2017). The use of citizen
science programs that engage with volunteers can reduce levels
of investment needed for monitoring of restoration projects.
While there may be a trade-o� in data quality and consistency
when data collection is done by many volunteers, citizen
science can contribute to project success by improving cost
e�ectiveness as well as increasing public engagement and support
(Dickinson et al., 2012).

Economic Barriers
Financing and risk management of blue restoration are major
barriers to implementation of projects at a meaningful scale
(Figure 1). Financing the costs of all components of projects
(including capital and operating costs) depends on funding
availability, �nancial bene�t, risk management (e.g., through
feasibility estimates or insurance), and a stable political climate
(Vanderklift et al., 2019).

Financing
Lack of long-term funding for restoration has been identi�ed
as one of the major barriers to restoration success (Iftekhar
et al., 2017). Most restoration projects are limited to short-term
funding (i.e., less than 3 years) and, as a result of this short
duration, successful establishment, maintenance, and ongoing
monitoring is signi�cantly restricted. This lack of long-term
funding has potentially contributed to the relatively low rates of
success in blue restoration (Bayraktarov et al., 2016). Financing
for blue restoration has historically been acquired through a
multitude of ways, including valuation of ecosystem services,
carbon �nancing (e.g., REDD C), debt-for-nature-swaps, green
taxes, biodiversity o�sets, payment for ecosystem services, impact
investments, green bonds, and parametric insurance (Herr
et al., 2019). Organizations that have provided �nance include:
(1) private for-pro�t, (2) private non-pro�t, (3) public sector
expenditure, and (4) multilateral and bilateral donors (Srivastava,
2017). In some cases, government policy is developed to support
�nancing of blue restoration. For example, in Kenya, a Climate
Compatible Development policy was applied to mangrove forests
in the Kwale District, which uses valuation of mangroves
and estimated mangrove loss to predict the future bene�ts

of sustainable mangrove management, including restoration
(Herr et al., 2019).

Insurance and Risk Management
Investment in blue restoration depends on reducing and
managing the risk of failure, since investors are generally risk-
averse and restoration success (quanti�ed as survival of restored
organisms) varies widely from 0 to 65% (Bayraktarov et al.,
2016). Reduction of risks can be achieved through insurance
in situations where it is possible to charge private stakeholders
for ecosystem services (Colgan et al., 2017). The insurance
industry is developing tools for managing environmental risks,
such as catastrophe bonds, that could be used to manage
risks associated with large-scale restoration projects (Colgan
et al., 2017). Insurance of mangroves, based on the coastal
protection they provide, has been found to be technically feasible
in Australia, but thus far has not been implemented (Bell
and Lovelock, 2013). Risk management for valuable coral reef
habitat occurred in Quintana Roo, Mexico, through parametric
insurance where the coral reef was insured for restoration by a
private-public partnership (Lab, 2017). The insured party (i.e.,
the hotel owners) bene�t from the tourism income provided by
a healthy reef, while the bene�t for blue restoration is that if the
coral reef is damaged (for example by storms), then restoration
programs will be paid out (Lab, 2017). Thus, insuring blue
ecosystems for restoration o�ers a solution to management of
risk, and could improve restoration success through increases
in the funding available for restoration projects including post-
establishment maintenance and ongoing monitoring.

Political Barriers
Political barriers to implementation of blue restoration
interventions, such as trade-o�s between con�icting objectives,
and issues with political delay of approvals and permits, can be
signi�cant barriers (Figure 1).

Land Tenure and Trade-Offs
Land conversion to agriculture, aquaculture, and urbanization
often results from a change in land ownership from public
or indigenously managed land to private land (Esteves and
Williams, 2017). In mangroves converted to aquaculture,
private landowners do not necessarily live locally and thus
may not directly bene�t from ecosystem services arising
from mangrove restoration, while the local community
may feel disempowered by land-use regimes that do not
consider community involvement (Lovelock and Brown, 2019).
Restoration of blue ecosystems on common land reduces the
social barriers, but can result in over-exploitation (Crooks
et al., 2011). Land-tenure bottlenecks can result in plantings in
inappropriate, low intertidal areas, leading to high failure rates
(Lee et al., 2019). One of the solutions to land tenure barriers is
payment for ecosystem services of restored habitat to multiple
stakeholders, which may include separating carbon and �sheries
rights from land rights (Bell-James and Lovelock, 2019).

Con�icting objectives for usage of restored ecosystems (e.g.,
recreation, �sheries, carbon or conservation) can also lead to
project failure. In the Chesapeake Bay, native oysters have

Frontiers in Marine Science | www.frontiersin.org 9 September 2020 | Volume 7 | Article 541700

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-541700 September 12, 2020 Time: 16:24 # 10

Stewart-Sinclair et al. Overcoming Barriers to Blue Restoration

been restored but trade-o�s occur where �sheries want to
harvest the restored oyster stocks, directly inhibiting restoration
e�orts, and ultimately leading to restoration failure (Beck et al.,
2011). A solution to this is early stakeholder engagement and
consultation, resulting in agreeable compromise, where oyster
stocks (for example) are harvested sustainably, allowing for
increases in the cultural value of the restoration project, while still
achieving the environmental goals (see Box 4).

Policy and Governance
Political issues that may delay or prevent approvals and
permits can delay or prevent blue restoration projects. For
example, governments can alter national or regional planning
strategies thereby reducing priority for restoration, reducing
available funds, or relaxing regulations protecting restored sites
(Vanderklift et al., 2019). Despite promotion of blue restoration
through national policies (e.g., REDD C), they can be ine�ective
when not consistently applied across landscapes, or due to a
lack of political will (Vanderklift et al., 2019). In Vietnam and
Madagascar (Markets and Mangroves project) the planning, time
and resources required to implement a REDD C project was so
extensive that the REDD C model was discarded (Wylie et al.,
2016). Failure of the REDD C scheme in Vietnam was due to the
length of time it took to ful�ll the requirements of the scheme,
whereas in Madagascar government policy, which does not
classify mangroves as forests, was the cause (Wylie et al., 2016).

The governance of blue restoration has rarely been explored
in literature, but lessons from terrestrial restoration indicate
that blue restoration would bene�t from considering the
cultural context of the restoration, incorporating social science
into restoration planning, collaborating with interdisciplinary
stakeholders, and combining knowledge from scienti�c and
local experts (France, 2016). However, governance of blue
restoration di�ers from terrestrial restoration in some key ways.
For example, land tenure rights are more complicated in blue
ecosystems, since restoration sites may not be privately owned,
leaving responsibility for restoration projects in the hands of
communities and governments. Threats and impacts on blue
ecosystems are di�erent to those in the terrestrial environment,
and feasibility of blue restoration is reduced by higher costs
and risk of failure than in terrestrial restoration. Finally,
blue ecosystems may take longer to recover than terrestrial
ecosystems, leading to a slower rate of returns and ultimately
reduced investment (Bell-James, 2016). Governments and non-
government organizations could encourage blue restoration
through subsidies, partnerships, or payment for ecosystems
services schemes to overcome these barriers (e.g., for blue carbon;
Bell-James, 2016).

CONCLUSION

Blue restoration can make an important contribution to
meeting global environmental targets. Blue restoration is a
less established �eld than terrestrial restoration, which has
moved on from simple interventions at local scales and based
on a static environment, to more advanced interventions

acknowledging and planning for changing environments. It is a
�eld that has been relatively under-funded, and predominantly
limited to smaller-scale and somewhat experimentally localized
projects. Conversely, terrestrial restoration is trending toward
large-scale restoration aiming to ful�ll multiple goals (e.g.,
conservation, ecosystem function, climate change mitigation and
adaptation), with an increased sensitivity to the societal context of
restoration (Perring et al., 2015). The success of blue restoration
depends upon progressing quickly along this trajectory, while
acknowledging unique characteristics of blue ecosystems (Bell-
James, 2016). Understanding which restoration interventions
will be most successful and where, is a crucial priority for
the �eld (Perring et al., 2015). For example, the ecological,
technical, and �nancial feasibility of a project is redundant
if socio-political contexts make projects unworkable (Lovelock
and Brown, 2019). Numerous barriers are regularly encountered
during blue restoration projects and are not con�ned to a single
ecosystem type. Understanding these barriers, as well as utilizing
the knowledge gained from projects that have approached
innovative and multi-faceted solutions to overcoming those
barriers, is key to improving the future success of blue restoration,
as well as the ability for restoration projects to be scaled
up. Successful scaling-up of blue restoration requires an inter-
disciplinary approach that addresses the barriers outlined in
this paper and doing so is the only solution to meeting global
restoration goals. Demonstrations of blue restoration projects
where solutions to common barriers have been discovered can
inspire, generate innovative solutions, and provide guidance to
the global blue restoration community.
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