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ABSTRACT  Cognitive research has found people are sometimes adept and sometimes inept at handling 
complexity. Complexity is a key concept in much of cognitive science, yet the field has scarcely incorporated 
any of the work in complexity theory. Complexity theory may generally be too abstract to easily apply to 
human cognition studies. Here, the problem is addressed by considering complexity through constructing a 
model of epistemic emergence, Cognitive-Habitat Strategy-Ecosystem, (CHSE) to act as an overarching 
framework into which different conceptions of complexity and cognition can be integrated, describing how 
they will interact to affect cognition in complex systems. This model provides value both at the micro level, 
by generating specific predictions, and at the macro level, through hypothesizing interactions between other 
cognitive theories such as cognitive load and adaptation from failure. We detail the model’s assumptions, 
functionality, and possible ways to measure variables. 

INDEX TERMS Adaptation, Biodiversity, Cognition, Cognitive Load, Complexity, Emergence 

I. INTRODUCTION 
Cognitive studies have found conditions in which people 

develop surprisingly efficient strategies for handling complex 
situations [1], [2], and others in which people persist with sub-
optimal strategies [3]–[5] or fundamental misconceptions 
about the nature of emergent phenomena [6]–[10]. Such 
studies rarely utilize a definition from complexity theory, 
possibly because most definitions from complexity theory do 
not attempt to provide testable predictions about human 
cognition (see e.g. [11]–[20]). Therefore, the field could 
benefit from a framework that facilitates the inclusion of 
theories of complexity alongside theories of cognition. 

This study distinguishes between an emergent phenomenon 
and an emergent system by also distinguishing between micro-
complexity (encompassing traditional operational definitions 
of complexity), and macro-complexity (entailing proposing a 
new operational definition). These distinctions are used to 
construct an overarching framework into which various 
theories of complexity and cognition can be integrated, and 
describing how they will then interact to determine how a 
system is experienced as emergent. It models the process of 
interaction between the person and the system: 

Conceptualizing an emergent system as a cognitive (or 
computational, for Artificial Intelligence) habitat giving rise to 
a diverse ecosystem of competing reasoning strategies. The 
model, Cognitive-Habitat Strategy-Ecosystem (CHSE), is 
informed by specific findings in cognitive science, and CHSE 
is used to interpret certain findings. 

CHSE provides specific testable predictions at a micro level 
of detail, and at a macro level provides an overarching 
framework that describes interactions between many disparate 
cognitive phenomena and theories such as causal learning, 
cognitive load theory, automatization, attention, dual process 
theory, and adaptation in the face of failure. The model’s 
assumptions, functionality, and possible ways to measure 
relevant variables are outlined. CHSE entails a range of 
interesting implications and predictions for cognition and 
learning. 

General implications for cognition are discussed along with 
specific implications for the mechanics of adaptation and 
strategy switching. 

II.  Literature Review  
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Complex problem solving (CPS) is “the successful interaction 
with task environments that are dynamic (i.e., change as a 
function of the user’s interventions and/or as a function of 
time) and in which some, if not all, of the environment’s 
regularities can only be revealed by successful exploration and 
integration of the information gained in that process” [21]. It’s 
focus, and therefore findings, have much in common with the 
study of dynamic decision-making (DDM), which involves 
“the formation of feedback loops through which the results of 
individuals’ actions define the situations that the individuals 
encounter in the future. Each new situation, in turn, alters 
future decisions” [22]. Both fields focus on dynamic systems. 
A dynamic system is a system that “contains a vector of 
variables, that is dependent on former states of the same 
vector, e.g., Y(t) = f(Y(t-1))” [23]. In other words, a dynamic 
system will change over time based on its previous condition, 
for example, due to some feedback mechanism. Predator-prey 
populations in an ecosystem, or aircraft in flight, are examples 
of dynamic systems. Fields of psychology that employ 
dynamic systems have produced an interesting array of 
findings regarding cognition and complexity. 
One of the most striking findings is people’s difficulty at 
solving problems within relatively simple dynamic systems  
[3]–[5]. “Stock-flow failure” is the term for the pervasive 
inability to infer the behavior of dynamic systems [24]. 
However, other studies have documented people’s very 
competent handling of complex systems [1], [2]. Despite this 
interesting diversity of findings in the literature, studies rarely 
quantify complexity using tools from complexity theory. The 
above studies found that factors such as feedback delay [1], 
and the transparency of the system [4] affect how well people 
can understand or control systems, but none of those factors 
made use of operational definitions from complexity theory, 
suggesting the field would benefit from a model that allows 
theories of complexity and cognition to be integrated in some 
way. 
Complexity has been defined as the amount of unpredictability 
in a stream of information: Kolmogorov Complexity [25]. But 
there are myriad other definitions, such as the balance between 
change and stability [15], self-dissimilarity at different scales 
[20], [26], among others (for reviews, see [12], [27]). In the 
psychology fields of CPS and DDM, complexity has been 
considered in terms of, for example, the number of inputs 
controlled by a user, the number of outputs the user must 
monitor, the time delays involved, or the non-linearity of the 
algorithm that describes the relationship between the inputs 
and the outputs [5], [28]. With no consensus on which 
definition of complexity is “correct”, it is left to the discretion 
of individual researchers to select (or develop) a complexity 
measure that is most suited to answering their research 
question. 
One possible reason measures produced by complexity 
theorists are rarely used in cognitive science, is that they 
generally remain too abstract, concerned more with technical 
discussion of the mathematical essence of complexity than 

with predicting human cognition. For example, [14] and [16] 
tested their models by applying them to data generated by a 
software algorithm. A model of complexity built around direct 
application in the study of humans, explained in more concrete 
terms, might be received more positively by those studying 
human cognition. This can be approached by considering a 
companion concept: Emergence. 
Emergence has proven just as troublesome as complexity for 
cognitive scientists and educators. There has been difficulty in 
teaching students about emergent processes, with 
misconceptions tenaciously persisting [6]–[10]. 
There is much debate around the exact definition and 
philosophy of emergence e.g. [29]–[39]. For example, [36] 
defines emergence as, “the arising of novel and coherent 
structures, patterns, and properties during the process of self-
organization in complex systems”. Depending on the author, 
emergence may or may not entail the following properties: 

�x Radical novelty, surprise, unpredictability and 
inexplicability: An emergent phenomenon is novel 
even with full knowledge it its constituent parts and 
the rules by which they interact. According to some, 
it is not just surprising, it is not even reducible to or 
deducible from its constituent structure [32], [34], 
[40]–[42]. 

�x Coherence, stability, resilience: An emergent 
phenomenon is not a transient, fleeting moment. It is 
a stable and coherent phenomenon, and according to 
some, even resilient, adaptive and self-preserving 
[34], [43], [44]. 

�x Discontinuity between micro and macro scales: 
There are (at least) two distinct scales, which operate 
(or appear to operate) according to different rules. 
These can be physical scales (e.g., the quantum scale 
vs the molecular scale), or time scales (e.g., a matter 
of nanoseconds, or a matter of centuries). 

�x Synergistic and heteropathic effects: The whole is 
more than the sum, in fact it is qualitatively different 
from the sum of the parts. The classic example is 
table salt: sodium chloride. Individually, either 
element would be dangerous to your health, but 
together they form something that your body needs 
to operate healthily. 

�x Downward causation: The rules operating at the 
macro scale feed back into the micro scale to affect 
it. For example, the placebo effect is arguably a case 
of the mind affecting the physical body chemistry 
[45]. 

Each of the above properties only provide a qualitative and 
binary assessment of whether or not something is emergent, 
and none have been agreed upon as either necessary or 
sufficient for emergence. This makes it difficult for anyone 
trying to determine if a specific phenomenon or system is 
emergent. 
Some have proposed a distinction between weak and strong 
emergence [32]. A phenomenon is weakly emergent if it is 
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ultimately deducible from knowing the underlying structure, 
but is merely unexpected. A phenomenon is strongly emergent 
if it is not deducible from knowing the underlying structure. 
Brodu [45] and Jost et al. [37] have gone further and suggested 
that emergence should not be conceptualized as a number of 
discrete categories, but a relative measure along a continuous 
spectrum of emergence – a thing is only emergent to a degree, 
relative to another thing that is less emergent. 
The conceptualizations of emergence are many, but the idea 
of simple rules causing complex behavior is a very common 
theme among them [29], [46]–[50]. Kitto [51] points out that 
there can often be circularity in these definitions if, for 
example, one defines a complex system as one that gives rise 
to emergence, and one defines emergence as simple rules that 
give rise to complex behavior. 
Philosophers and scientists still debate [35], [36], [45], [48], 
[52], [53] whether emergence is best considered: 

A. an objective phenomenon (ontological emergence), 
falling within the domain of complexity theory or 
information theory; or 

B. a subjective phenomenon (epistemic emergence) that 
depends on the properties of the observer, in which 
case cognitive psychology may be a better tool to 
study emergence. 

The search for a coherent and precise formal definition of 
emergence has focused on finding the conditions in complex 
systems where a different set of rules applies – rules for the 
emergent phenomenon. However, this assumes emergence is 
objective. Emergence can be a useful concept when 
considered a subjective phenomenon dependent on an 
observer. Taking this perspective is the basis for building the 
model we propose to describe how conceptions of complexity 
and cognition can interact to produce the experience of 
emergence within complex systems. 

III.  CHSE Model  
Bishop and Trout [56] argue that knowledge and theories 

should ultimately serve humans well in practical applications. 
For a formula to be of value in the pursuit for human 
knowledge, it must be not only accurate, but also easy to 
implement to solve actual problems: A formula that sacrifices 
a bit of accuracy to gain a lot of convenience is a worthwhile 
epistemic goal. Based on a similar principle, efficiency of 
prediction is a conception of emergence that has received a 
limited amount of attention [25], [37], [52], [54], [55]. It 
broadly posits that emergence is when the behavior of a 
system can be predicted more efficiently by a different 
algorithm than by the original algorithm that produced the 
behavior itself.  Efficiency can include not only the accuracy 
of the algorithm, but also its complexity or difficulty to 
calculate. Thus, the original algorithm that produced the 
system’s behavior would be very accurate if used to predict 
that behavior, but it may be prohibitively complex to calculate, 
or highly sensitive to errors in measurements. Whereas a 
simple heuristic to predict the system’s behaviour based on 

limited information and simple rules may be only moderately 
accurate, but very quick and easy to compute. 

Building from these concepts, emergence can be defined as 
the threshold where one reasoning strategy outperforms 
another in terms of bang for buck: You can get as good or 
better predictions by investing the same or less computational 
(or cognitive) resources. A reasoning strategy with a greater 
difference in utility could be described as more emergent. Note 
that this definition of emergence incorporates most of the 
common properties of emergence listed above, such as 
surprise, stability, and the possibility of discontinuity between 
scales, making it a relatively parsimonious explanation of the 
diversity of phenomena often labelled as “emergent”. 

Note that, where other definitions of emergence and 
complexity focus on properties of the system under study, here 
we examine the interface that mediates interaction with and 
understanding of the system: Reasoning strategies. A 
reasoning strategy in our model is a broad category that 
encompasses both methods of intervention to achieve a goal, 
and methods of passive prediction (without intervention). 

A reasoning strategy takes some information about the 
system (given the system is in state X), and makes a prediction 
(the system will be in state Y, after time t). A goal is simply a 
pre-determined specification of the end state Y, and an 
intervention is just a modification of the starting conditions: 
“Given the system is in state X (and the agent takes action Z), 
it will transform the system into state Y after time t”. In 
principle, one could predict the outcome Y based on the 
starting state X and the intervention Z, or one could work 
backwards using the goal outcome of Y and the starting state 
X to determine what intervention Z would be required. For 
example, the very same mental model could be used 
(depending on which variables are specified and which 
variables are deduced from those provided) to predict what the 
aircraft will do without intervention (e.g., glide), what it will 
do if the pilot banks hard left, or to deduce what the pilot 
should do to maintain a stable trajectory and altitude. This 
viewpoint blurs the distinction between a prediction from 
observation and a goal-directed strategy, and thus allows the 
easy conversion and comparison between a reasoning strategy 
for making predictions (without intervention), and a reasoning 
strategy for achieving intended goals. 

Reasoning strategy is a deliberately broad term, allowing it 
to encompass the simplest of heuristics, and the most 
comprehensive of mental models. Leaving these details open 
to elaboration allows our model to be applied using various 
different theories of cognition and problem-solving. For 
example, Instance-Based Learning Theory (IBLT) posits that 
skills develop as learners associate a particular perceptual cue 
(e.g., falling downward) with a particular motor response (e.g., 
pulling up on the joystick) [22], [23], [57], [58]. This can be 
contrasted with Causal Bayes Nets (CBNs). This learning 
theory posits that learners discover causal relationships in 
systems (e.g., relative air speed and density affect the drag 
forces on the rudder necessary for steering the aircraft) via 
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intervention (e.g., exploratorily trying different flight 
maneuvers at different altitudes and speeds), and thereby build 
a mental model [59]–[62]. Such a mental model can simulate 
what would occur in novel situations never before 
encountered, thus giving it an advantage over the library of 
experiences accumulated in IBLT. Both instance libraries and 
mental models demonstrate the diversity of theories which can 
be incorporated into our model as reasoning strategies. 

Note that reasoning strategies can vary in their specificity 
depending on how much information they include in the states. 
For example, a reasoning strategy may use absolutely all the 
information in a system state (every variable in the system is 
taken into account), and specify the exact outcome (predicting 
precisely what every variable will be). Another strategy may 
discard some information about the system, or only gather a 
few key points of information, and make predictions about 
some of the outcome (e.g., only some of the variables are 
predicted, or those predictions specify a range of possibilities). 
A strategy could even take zero information into account to 
make a prediction – this would be a static strategy that did not 
adapt according to different starting conditions and therefore 
always produced the same prediction. Similarly, a strategy 
might specify the exact same intervention, regardless of the 
starting conditions or goal (e.g., If the pitcher throws the ball 
high or low, fast or slow, just swing that bat as hard as you can 
and hope for the best). Of course, such static strategies are 
likely to have a wide margin of error in their predictions (You 
won’t always hit the ball). 

A. Measuring Degree of Emergence  
CHSE defines emergence in a relative sense. There are several 
broad ways to measure that relative degree of emergence: 
objective measures would be derived from information in the 
reasoning strategies, and subjective measures could be 
collected via empirical experiment. One objective measure of 
similarity between two reasoning strategies is utility 
difference (see below section on calculating utility). Other 
objective measures to consider are the output difference and 
the content difference. 
Output difference answers the question: Given the same 
inputs, how different are the outputs? This could be calculated 
in terms of the Euclidean distance between the output vectors, 
if the outputs are multidimensional. Going through all possible 
inputs may be possible when the possibility space is small, or 
when we are only interested in the strategies’ applicability to 
a certain set of circumstances. Using a random sampling of 
possible inputs will be necessary when the possibility space is 
too vast. 
Content difference considers what specific inputs, operations, 
and outputs they have in common. This measure attempts to 
capture how they are different to process or compute (for 
example, two programs may take the same amount of 
computation, but are composed of qualitatively different kinds 
of computation, involving different functions, operations and 
structure). When the research topic involves humans, ideally 

such a measure should accurately capture the extent to which 
humans find the thinking process to be qualitatively different 
(e.g., when a new strategy is not just an elaboration or slight 
modification of an old strategy, but seemingly completely 
unrelated). One way to measure content difference is to 
assume an information processing perspective, and treat the 
two strategies simply as computer programs composed of 
variables and functions to quantify the differences between 
these programs. However, this may not be an accurate 
reflection of human cognition. Quantifying content 
differences in humans’ reasoning strategies will likely remain 
a thorny problem for some time, leaving output and utility 
difference as the more realistic options for the near future. 
An objective measure of the distance or difference between 
reasoning strategies would be useful to compare to the 
subjective measure provided by participants. Subjective 
measures could be employed to capture the intuitive sense of 
emergence as surprising novelty: studies could measure 
participants’ ratings of degree of emergence using 
experimental or survey data to find the threshold point at 
which a reasoning strategy becomes distant enough from its 
neighbors to be considered “significantly emergent” by 
experts (or even laypeople). 
Doing this comparison between subjective and objective 
measures may be a necessary initial step in identifying the 
objective measure that most accurately captures this sense of 
strategy difference. Different objective measures could 
capture different dimensions of strategy difference and 
therefore be more appropriate to use depending on the specific 
research question of a particular study. 
Measures such as utility difference, output difference, and 
various forms of content difference could prove useful in 
providing an objective means of quantifying emergence if one 
or more of them can be found to consistently correspond to 
humans’ subjective impression of emergence or strategy 
difference. Future work will need to investigate which 
individual or combination of measures prove most useful for 
this purpose, or new measures may need to be developed. 

B.  Manipulating the Conditions for Emergence  
Previous definitions of emergence tend to focus on variables 
endogenous to the system that determine if and when 
emergence occurs. The CHSE definition of emergence, being 
epistemic, adds a whole other category of variables that 
determine the conditions for emergence: exogenous variables, 
including psychological and contextual variables. 
Psychological variables pertain to the user of the system, and 
contextual variables pertain to the situation in which that user 
interacts with the system. This means that a system that was 
once simple and non-emergent, could become emergent 
merely with a change in the context of its use, rather than a 
change in itself. Manipulation of such conditions form some 
of the most obvious ways in which CHSE can be applied to 
actual cognitive science research, and is thus open to 
falsification. Relevant factors have already been specified in 
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research on Complex Problem Solving [21], [63]–[66] and 
Cognitive Load Theory [67]–[69]. As discussed in the 
literature review, such factors tend to include the number of 
inputs, transparency of the system, the time delay in the 
system, and other properties of the system that do not 
specifically employ concepts from complexity theory. CHSE 
provides a specific place where concepts from complexity 
theory can be related to cognition (discussed below as micro-
complexity). CHSE predicts several specific manipulations 
will cause emergence. 
The variables that can be manipulated to affect whether one 
strategy outperforms another are summarized in Fig. 1. The 
broad structure of Fig. 1 has empirical support with studies 
showing an indirect connection between reasoning strategy 
accuracy and utility. Satisficing is an example of how a highly 
accurate reasoning strategy may impose too high a 
computation cost to compete with a simpler reasoning 
strategy. For example, one might purchase the car according 
to only the two most important criteria (e.g., the mileage and 
the purchase price), even though other, less important factors 
might be relevant. The result is a decision that is not optimal, 
but is good enough and saves time and effort. The simpler 
strategy achieves slightly lesser accuracy (and therefore less 
benefit), but that loss of benefit is more than compensated for 
by imposing a much lower computation cost, resulting in the 
simpler strategy achieving superior overall utility than the 
more accurate reasoning strategy. This effect has been found 
in various psychology studies on satisficing [70]–[72]. 

FIGURE 1.  Elements of Strategy Utility: The primary elements of a 
reasoning strategy according to the CHSE model.  

A full simulation of a complete mental model of the system 
will, by definition, produce extremely accurate predictions, 
making it unlikely other reasoning strategies could provide 
more bang for buck. Therefore, interventions that reduce the 
practicality of a full mental model are likely to promote 
emergence. There are several endogenous manipulations 
(changes to the system variables) that can serve this function. 
The most obvious way is to increase the number of variables 
and their interactions in the system to the point where such a 
computation is beyond the user’s cognitive abilities. Such a 
change in the system’s structural complexity increases the 
computation required for a full mental model, increasing its 
cost and lowering its utility. Another way is to make the 
system highly sensitive to initial conditions, rendering full 

simulation several steps ahead less useful since errors are 
likely to accumulate. Such a change to the system’s dynamic 
complexity decreases the accuracy of a full mental model (as 
long as there is any error in observing system feedback), which 
decreases its benefit and therefore utility. Of course, 
endogenous manipulations such as these are only possible 
when experimenters control the nature of the system, for 
example, by using a game that they designed. When dealing 
with real-world systems, exogenous variables are the only 
ones available to manipulate. 
Time pressure can be an endogenous or exogenous variable. 
Certain systems will impose time restrictions by their very 
nature, such as when driving a car. Time pressures can also be 
imposed exogenously as a contextual variable, such as when 
one must make a decision before their 10am appointment. Any 
form of time pressure imposes a practical upper limit on the 
amount of computation that can be done, and therefore, which 
reasoning strategies are viable. Another exogenous way to 
adjust the amount of available cognitive resources is to impose 
distractions or additional, parallel tasks that require the user’s 
attention. 
Psychological factors (those of the user) could also be 
manipulated, with some effort. For example, if given plenty of 
practice with a particular strategy until it becomes rote, then 
the computation cost of that strategy has been decreased, 
increasing its overall utility. Alternatively, if a flawed or 
incomplete strategy is amended with new information to 
improve its accuracy, then that will also increase its utility. 
And finally, the utility of reasoning strategies can be 
manipulated directly by the imposition of certain rewards for 
success and penalties for failure. For example, if any darts that 
land within the middle 60% of the target all achieve the same 
prize, then there is no point incurring a higher computation 
cost for any accuracy higher than 60%. In contrast, a large 
reward for any accuracy above 99%, and no reward below 
that, will likely favor very different strategies. Similar could 
be said of having an extreme penalty for failure, such as death. 
Contrast this with a scenario where there is no penalty for 
failure, and a user can repeatedly try a very poor strategy over 
and over until it works. For example, consider a game of darts 
which permits players to re-use darts as many times as they 
like without penalty, as compared to a game of darts where 
players must pay a fine for every dart that doesn’t hit the 
bullseye. 
In summary, the utility of a strategy can be manipulated by 
affecting its cost and / or benefit. These can be manipulated 
directly, or they can be affected indirectly by manipulating the 
accuracy of the strategy, or the computation. Fig. 1 represents 
these primary elements of a strategy. 

B.  Calculating Utility  
To discover when one strategy outperforms another, the first 
curve to consider is accuracy vs benefit. It may be that our only 
concern is accuracy, in which case accuracy = benefit and 
therefore x = y. In various real-world situations the curve is 
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likely more complicated, due to a combination of natural 
consequences (e.g., correctly predicting a job interviewer’s 
reactions to your answers can get you hired for the job), and 
artificial extrinsic incentives (e.g., guessing within 10% of the 
correct number of balls in the jar wins you a new car at the 
carnival). The magnitude of the benefit will, of course, need to 
be multiplied by the probability of receiving that benefit (e.g., 
a 20% chance to win $100 will be converted to an expected 
benefit of $20).  Therefore, the accuracy vs benefit curve is 
heavily situation-dependent, potentially containing many 
discontinuities, plateaus, and other complex nuances. In actual 
studies, benefit may have to be operationally defined simply 
using whatever variables are known. For example, benefit is 
often operationally defined as the monetary reward offered for 
different levels of performance in the game participants play 
in the study.  
The accuracy of a reasoning strategy could be measured in 
various ways: For example, the Brier score which verifies the 
accuracy of a forecast [73], or in terms of the Euclidean 
distance between the actual outcome, and the predicted or 
intended outcome (e.g. how far from the center of the bullseye 
your shot landed). CHSE does not mandate a particular 
definition of accuracy or judge one as the “correct” definition 
– that is beyond the scope of this paper. All that matters for 
this discussion is to assume a satisfactory operational 
definition of accuracy for reasoning strategies is within grasp. 
With this in mind, we must consider another other important 
curve: computation vs accuracy. Computation is where much 
of the reviewed literature on definitions of complexity (e.g., 
Kolmogorov complexity, or measures such as the number of 
inputs, outputs, and intermediate variables in the system) can 
be incorporated into CHSE. In the context of CHSE, such will 
be referred to as forms of micro-complexity as they can 
describe aspects of reasoning strategies, and thus should be 
distinguished from the macro-complexity of strategy 
ecosystem of the system which the strategy inhabits (Macro-
complexity requires a new operational definition provided in 
later sections). Just as CHSE is open to accommodate many 
different cognitive theories of problem solving (e.g., IBLT, or 
CBNs) under the category of reasoning strategy, it is open to 
the application of a wide variety of measures from complexity 
theory as forms of micro-complexity within CHSE. Such 
micro-complexity measures are useful in CHSE to determine 
the computational requirements of reasoning strategies, 
therefore informing their cost, and ultimately their overall 
utility. 
Any given reasoning strategy will have a certain computation 
requirement (micro-complexity quantified using an 
operational definition of complexity), and will have a certain 
level of accuracy that can be discovered via either simulation 
or empirical experiment, placing that reasoning strategy at a 
specific point on a computation vs accuracy graph. The 
accuracy scale will obviously range from 0 to 100%, but 
deciding on a scale for computation is less obvious. This 
difficult problem can be approached by considering an 

absolute scale of computation, where zero represents no 
computation (e.g., selecting at random), and one represents 
computation matching the original system in its complexity 
(e.g., a full mental simulation of the system being considered). 
On such a scale, strategies that are more complex than the 
system itself are obviously identified (exceeding a value of 
one). This scale is clearer when considering discrete units of 
computation such as the number of variables or factors taken 
into account, or the number of steps ahead in time one is 
planning or predicting. In which case, zero represents 
considering no variables at all, and one represents literally 
taking into account absolutely all of the variables involved, 
and / or fully simulating every sequence of events to the full 
conclusion that one is interested in predicting or planning for. 
For example, if there are 10 variables at play, then the X axis 
for computation would be divided into 10 discrete segments. 
If one wanted to predict three steps ahead for this hypothetical 
system, then the X axis would have 10 * 3 = 30 discrete 
segments. In reality, there will likely be additional 
complicating factors. For example, a particular strategy may 
involve the same number of variables as another strategy, but 
involve performing a much more complicated calculation with 
those variables. But for the purposes of explaining this model 
of emergence, we can achieve greater clarity by talking in 
these simplified terms (see also [54]). 
There are many ways that computation and accuracy could 
relate to each other on a graph. If a reasoning strategy’s curve 
is such that computation = accuracy, this creates a linear curve 
where the accuracy of predictions always matches the 
percentage of the system taken into consideration by the 
reasoning strategy. This would mean that there is exactly one 
way to achieve 100% accuracy, and that is to fully simulate 
the entire process. More commonly, the curve will be more 
complex, dependent on empirical results and theoretical 
models of human cognition. On a simple level, we may 
speculate that only very simple strategies are approximately as 
accurate as guessing, and that very complex strategies tend to 
have diminishing returns on accuracy. 
Note that having a curve of strategy computation vs accuracy 
makes an important simplification, but also that this 
simplification can be well justified. A virtually infinite number 
of possible strategies can have the exact same computation 
cost and different accuracies, meaning our curve would be a 
series of speckled columns (Fig. 2). 
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FIGURE 2.  Discarding Suboptimal Strategies: A graph of strategies is 
likely to con tain many poor, inefficient strategies. By only keeping the 
best available strategies, the columns of points can be reduced to a 
curve.  

However, most of the potentially infinite strategies in a 
column will be random strategies with terrible accuracy. When 
given the choice between two strategies of the same 
computational cost, but different accuracies, one would 
choose the strategy that provides the best accuracy. Therefore, 
each column can theoretically be reduced to its highest point. 
The result is a curve of the best that each column has to offer. 
Similarly, when choosing between two strategies of equal 
accuracy, one will choose the one with the lowest computation 
cost. Therefore, each row could also be reduced to its leftmost 
point if further simplification is necessary. 
There is an additional complication of not knowing every 
possible strategy, and using a sub-optimal strategy in a column 
until a better strategy is discovered. Therefore, each column in 
the scatterplot represents the known strategies so that the 
number of strategies considered is not infinite and keeping 
only the top strategy in each column is justified. 
Another curve to consider is computation vs cost. For an 
artificial intelligence, it could be that computation = cost. But 
for biological computers (e.g., humans) there are certainly 
other conceivable possibilities described by more complex 
curves. For example, some people may revel in the challenge 
of a complex computation. Or we might find that the cost does 
not scale linearly with computation, and that certain low levels 
of computation are equivalent in cost, as are certain high 
levels, resulting a ceiling effect and a floor effect. Empirical 
studies of human cognition will have to inform the details of 
this curve. However, the cost does not just capture the 
unpleasantness of the effort required for computation, but also 
other costs: Extrinsic punishments (e.g., paying a fine, or 
receiving an electric shock), or natural logical consequences 

(e.g., death and injury are possible costs of failure to drive a 
vehicle competently). Of course, the magnitude of a cost 
should be multiplied by its probability (e.g., exceeding the 
speed limit by 10kms in a residential area may increase the 
chances of a fatal accident by 20%). Also, just as with 
quantifying benefit, actual studies often have to use whatever 
operational definitions are practical, such as the amount of 
money a participant will lose if they play poorly in the game 
used in the study. 
Bringing together the accuracy vs benefit, computation vs 
cost, and computation vs accuracy curves allows us to produce 
the curve we ultimately seek: cost vs benefit. This utility curve 
tells us what strategy gives us the most benefit for the least 
cost. Other conceptions of utility, such as expected utility 
theory in economics and game theory, tend to use a slightly 
different meaning of the term, and consequently actually 
inform CHSE’s definitions of benefit and cost, thereby 
determining utility indirectly. In CHSE, the term utility is used 
simply to distinguish it from either cost or benefit, to instead 
refer to the difference between the benefit and the cost. An 
elaborated form of utility is explored in a later section, and 
therefore this simple form of utility is called basic utility. 
The concept of basic utility in CHSE can be defined 
mathematically. Let �Ú be basic utility, �>(�V) be the function 
describing the relation between benefit and accuracy (where �V 
is the measured accuracy), and �è(�œ) be the function 
describing the relation between cost (or “penalty”) and 
computation (where �œ is the amount of needed computation): 

�Ú= �>(�V) 
F �è(�œ) (1) 
The formula for the basic utility of a specific strategy in would 
be written: 

�Ú(�O) = �>(�V(�O)) 
F �è(�œ(�O)) (2) 
The question now arises as to how to quantify these variables. 
Several ways to quantify accuracy were discussed above (e.g., 
the Brier score, or the Euclidean distance between predicted 
and actual outcome in the possibility space of the system). 
Similarly, the benefit associated with different degrees of 
accuracy can in many cases be quantified in terms of the 
amount of reward (e.g., financial gains). However, while the 
amount of computation (and the associated cost) is simple to 
determine for a computer, it is much trickier for a brain. There 
are many studies using indicators of cognitive effort [69], 
[74]–[76], such as the time taken to come to a decision, by 
simple self-report, physiological measures of stress and 
concentration (e.g. galvanic skin response), or by getting 
participants to actually decide how much they are willing to 
pay to avoid computing the strategy themselves [68]. 
The measures selected should be as comparable as possible to 
allow valid comparison of the cost of computation with the 
benefit of accuracy. But actually performing these calculations 
will not be necessary to derive interesting implications and 
testable predications for CHSE. These foundations of the 
utility curve will be useful in discussing how multiple 
strategies can fit into an ecosystem together. 
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C.  Emergent Systems: The Cognitive Habitat and 
Macro -Complexity 
An emergent system supports a diverse population of 
competing reasoning strategies – a cognitive habitat for a 
diverse strategy ecosystem. If there are one or two simple and 
accurate reasoning strategies that apply broadly to almost all 
possible scenarios within that system, then they will come to 
dominate how a user understands and manipulates that system, 
and thus the system is not experienced as complex. On the 
other hand, if a user is frequently surprised by novel behavior 
of the system, and has to manage frequent switching between 
reasoning strategies,  needing to modify the strategies 
themselves and their boundaries of applicability, then that is 
an emergent system because it supports a more diverse 
strategy ecosystem. This kind of macro-complexity (the 
strategy diversity supported by the cognitive habitat) should 
be distinguished from the more conventional definition of 
micro-complexity (e.g., the complexity of individual 
strategies, making them difficult to compute, as discussed 
above). 
A utility curve can be compressed into a one-dimensional plot 
by subtracting cost from benefit to come up with a total utility 
for each strategy, and then they can be ranked vertically in a 
column (Fig. 3).  This compressed “utility column” of 
strategies is easier to compare to other “utility curves” side-
by-side by converting other curves into columns. 

 

FIGURE 3.  Utility Curve to Column: One way to compress a cost vs 
benefit curve into a column i s to subtract cost from benefit to get utility, 
and then strategies can be ranked vertically.  

 

FIGURE 4.  Example Viable Strategy Graph: Composed of one utility 
column per situation in the system.  

At the most fine-grained and mathematically-precise level, a 
situation can be defined as a point on the phase space of a 
system: A unique co-ordinate that includes exactly one value 
for all variables in the system. However, in many systems, 
there may be little practical difference between many of these 
values (e.g., there is little difference between the aircraft being 
10km above sea level, and being 10km and 3 centimeters 
above sea level). In such cases, it could be worthwhile to use 
a consistent procedure for categorizing the possibility space 
into meaningfully-similar chunks. This would achieve a 
coarser-grained definition of a situation, but also a definition 
closer to the colloquial sense of the word. When no such lines 
of categorization are self-evident, it may be necessary to 
simply group situations by an arbitrary increment (e.g., in 
cubic volumes of 1x1x1km in the aircraft example), just to 
make the number of situations more manageable for analysis. 
A viable strategy graph allows us to clearly see the openness 
of the system to different strategies. For example, compare the 
viable strategy graphs from Fig. 4 and Fig. 5. Fig. 5 has a 
lowest-common-denominator strategy that applies across all 
or most situations. Such a simple and sub-optimal, but 
universal strategy is going to be useful when someone is 
unable to store multiple strategies for specialized situations, or 
when the extra utility gained from switching to a slightly more 
optimal strategy is outweighed by the cognitive cost of 
switching strategies (see below section, Versatility Value: The 
Cost of Cognitive Switching). 
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FIGURE 5.  Dense Viable Strategy Graph: A viable strategy graph that 
is mostly full is likely to reflect a system that is dominated by one or a 
few broadly -applicable strategies.  

 

FIGURE 6.  Less Dense Viable Strategy Graph: Reducing the overall 
fullness of the viable strategy graph may not eliminate a universal 
dominant strategy, but just push down the efficiency of that strategy.  

 

FIGURE 7.  Distinguishing Strategies by Shading: It may be necessary 
to label strategies that can be identified, to determine if their utility 
varies across situations. Here, strategies are labelled with a color  for 
illustrative purposes.  

D.  Macro -Complexity: Measuring Strategy Ecosystem 
Diversity  
We previously defined an emergent system as a system that 
supports a diverse population of competing strategies – a 
cogitative habitat for a strategy ecosystem. The field of 
ecosystem biodiversity provides a reasonable starting point for 
methods to quantify the degree of strategy diversity in a 
system, and thereby give a measure of macro-complexity. 
Much like measuring micro-complexity, the question of 
measuring biodiversity has many answers that are still being 
debated and refined [77]–[79], with different proposed 
measures capturing different elements of the concept that are 
considered important. One of the most obvious measures is the 
number of species (in this case, the number of different 
reasoning strategies) living in a habitat. A second measure is 
the amount of evenness in species populations: if the habitat is 
filled almost entirely with one species and only a tiny minority 
of other species, then it is not as diverse as a habitat that has 
an even number of each species. Thirdly, the difference 
between species must be considered. For example, if all 
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species are very similar kinds of moss, then the habitat is not 
as diverse as one containing various kinds of amphibians, 
fungi, mollusks, mammals, birds and plant. 
If we can determine which strategies tend to be used for what 
situation in a system, we can reduce each utility column in the 
viable strategy graph to that single strategy that tends to be 
used. This could be achieved experimentally, or it could be 
done theoretically to get a prediction of the empirical results 
by computing the utility of these strategies and thus finding 
which ones should dominate according to their superior utility 
(see below section Versatility Value: The Cost of Cognitive 
Switching). 
Once we have done so, this allows us to consider the actual 
diversity of the strategy ecosystem. If the environment is 
represented by an image (a 2D grid), analogous to a satellite 
photograph of a section of rainforest, then each pixel can be 
colored to represent an individual of a species (a reasoning 
strategy). Individuals of the same species are the same color. 
Individuals of subspecies or related species are similar colors. 
Individuals that are very distantly related are very different 
colors. This image shows in one snapshot the number of 
different species, how related or distinct these species are, and 
how clustered or intermixed they are. For example, there 
might be a patch of very little variety in some regions, where 
one species dominates. Such a snapshot can be called a 
strategy ecosystem graph (SEG) (Fig. 8). 

 

This habitat needn’t be two-dimensional, it could be n-
dimensional: Each dimension representing a relevant variable 
of the habitat that affects the suitability of species. These 
would be the parameters of the system (i.e., the phase space). 
Therefore, the color of a pixel on a SEG is used as a unique 
identifier of the strategy employed in that situation, and the 
location of a pixel on a SEG corresponds to a situation or 
circumstance in the system. Differences in color correspond to 
differences in strategies, and distances between pixel locations 
represent differences in situations or circumstances in the 
system. Just as a pixel contains both color and location 
information, a single point or cell of a SEG contains 
information on the strategy used, and the situation in the 
system’s possibility space. Such a cell on the SEG grid can be 
more accurately called an eco-cell in lieu of pixel to avoid 
confusion with image analysis and compression techniques. 

Analyzing the distribution of the strategies across the habitat 
reveals the diversity of the strategy ecosystem. 
One simple way to do this is with a sequential neighborhood 
similarity check: For each point in the space, compare all 
adjacent points and measure how different this point is to its 
neighbors, and weight the resulting number based on distance 
between the eco-cells, distance being a measure of how 
different the situations are between the two eco-cells. 
This can be more intuitively understood as trying to get a 
measure of the bumpiness or spikiness (as opposed to 
smoothness or flatness) of a topological map by calculating the 
slope between two points. The steepness of the slope can be 
found by dividing the difference in height by the distance 
between those two points. For example, let �T and �U be two 
geographical locations on a map, �D(�ž) and �D(�Ÿ) be the 
heights of the two locations, respectively, and let �C(�ž, �Ÿ) be 
the gradient or slope between two locations. 

�C(�ž, �Ÿ) =
|�D(�ž) 
F �D(�Ÿ)|

|�ž 
F �Ÿ|
(3) 

In this analogy, the differences in strategies provide the 
differences in height, and the differences in situations across 
the possibility space of the system represent distances between 
geographical locations. Let �O(�ž) be the strategy employed in 
eco-cell �ž, let �ë(�ž) be the circumstances or situation of eco-
cell �ž, and let �ä(�ž, �Ÿ) be the uniqueness of eco-cell �ž in 
relation to eco-cell �Ÿ. 

�ä(�ž, �Ÿ) =
|�O(�ž) 
F �O(�Ÿ)|

|�ë(�ž) 
F �ë(�Ÿ)|
(4) 

However, this direct application of calculating gradient to 
measure the diversity in a SEG makes some simplifying 
assumptions. Rather than a simple subtraction, a complex 
function will likely be necessary to determine the degree of 
difference or similarity between either a strategy, or situation. 
Let �ä(�ž, �Ÿ) be the uniqueness of eco-cell �ž in relation to eco-
cell �Ÿ, let �Ü(�O(�ž), �O(�Ÿ)) be our chosen function to calculate 
the difference between strategies (see above section 
Measuring Degree of Emergence), and �@(�ë(�ž), �ë(�Ÿ)) be a 
measure of the distance between the two situations. 

�ä(�ž, �Ÿ) =  
�Ü(�O(�ž), �O(�Ÿ))

�@(�ë(�ž) , �ë(�Ÿ))
(5) 

The total value of an eco-cell’s uniqueness can be found by 
summing together its uniqueness relative to each other eco-
cell, and then normalizing that value by dividing by the 
maximum possible uniqueness (if uniqueness is normalized, 
then this just means dividing by the number of points). Let 
�ä(�ž) be the uniqueness of eco-cell �T, and �ä(�ž, �Ÿ) be the 
uniqueness of eco-cell �ž in relation to eco-cell �Ÿ. 

�ä(�T) =  
�Ã �ä(�ž, �Ÿ)�á

�Ü�@�5

�J
(6) 

Therefore, macro-complexity (strategy ecosystem diversity) 
can be calculated as the sum of the uniqueness of each eco-
cell. This value can be normalized by dividing it by the 
maximum score: where every eco-cell is 100% unique. If 
maximum eco-cell uniqueness is one, then this simply means 
dividing the sum of uniqueness scores by the number of cells 
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in the possibility space. Let �? be macro-complexity of a 
system, and �ä(�T) be the uniqueness of eco-cell �T. 

�? =  
�Ã �ä(�ž)�á

�Ü�@�5

�J
(7) 

The easiest and most direct way to quantify situation distance 
�@(�ë(�ž), �ë(�Ÿ)) is the Euclidean distance of the vectors in the 
phase space. However, this is arguably too simplistic in that it 
doesn’t capture the experienced similarity between situations 
- two points on the phase space may be very close to each 
other, but result in very different behavior in the system, such 
as when there are multiple attractors for a dynamic system, or 
with topological mixing. Similarly, two points could be very 
far away in the phase space, but trivially similar and could be 
treated almost the exact same way, for all intents and purposes. 
However, we must be careful here not to create a circular 
definition wherein situation distance is defined as the ability 
to apply the same strategy equally well. 
Another approach to conceptualize situation similarity is in 
terms of who or what is having to learn the system. While a 
computer may well deal directly with the parameters of the 
phase space, a human perceives the system through the filter 
of their senses, and therefore situation similarity could be 
measured in terms of perceptual similarity. For example, a 
large and significant change in one dimension of the system 
might result in only subtle, minor perceptible changes for the 
human learner (e.g., a large change in the external temperature 
causes a slight change in the needle of the gauge in the 
cockpit), whereas a comparatively miniscule change in 
another dimension might result in large and obvious changes 
for the user to observe (e.g. a slight change in the pitch or bank 
of the aircraft causes the entire horizon to shift noticeably). 
Another relevant consideration is how likely and how quickly 
the system is to transition between those two states. For 
example, two situations might be perceptually very similar, 
but the only way to get from one to the other is a very slow 
and difficult process, so they may as well have a wall between 
them (e.g., changing from an altitude of 10km to 0km may be 
quite easy, but going from 0km to -1km may first require 
navigating to a geographical location below sea level). One 
possible measure of this is the amount of time (t) it takes for 
the system, unperturbed from any external input from a user, 
to naturally transition from the starting state to the other state. 
Of course, if the starting state is within a stable attractor to a 
fixed point or an orbit in the phase space, then it will never 
escape that without external intervention, in which case this 
number could be infinite. With chaotic systems, it may be 
unclear whether the system will ever reach the new state, or 
just meander infinitely everywhere else, no matter how long 
we observe the system being simulated (depending on the 
nature of the specific chaotic system). For example, weather 
can be considered a chaotic system. The question of how long 
it takes, on average, to get from a state of clement weather in 
Europe, to a state of a category 7 hurricane hitting Europe, 
may be indeterminate – if it never happens while measuring, 
it is impossible to know if it cannot ever happen, or if we 

simply didn’t wait long enough. As such, this measure of state 
proximity is not without its flaws. 
A similar measure could consider the probability of the system 
transitioning between the two states, given random inputs 
from a user (or random external shocks to the system). The 
larger the shocks needed to reach the other state, the less 
probable (or more difficult) the transition. This measure could 
absorb the previous measure by including the time taken as a 
factor rolled into the difficulty; For example, the difficulty of 
reaching state B from state A equals the size of the shock 
required multiplied by the time it takes to eventually reach its 
destination. The actual difficulty would ultimately be found by 
averaging this number across all (or a random sampling) of 
possible shocks. Or in some cases, depending on the research 
question, it may be appropriate to take the maximum or the 
minimum instead of the average. 
Another measure of overall ecosystem diversity worth 
discussing is temporal: How the ecosystem of strategies 
evolves over time. This would be how much the strategy 
ecosystem graph changes over time. It might be very static and 
stable. Or it might oscillate. It could be chaotic. The relative 
dominance of strategies could actually remain static, while the 
situations to which they applied shifted dramatically. Apart 
from fluctuating in their level of relative dominance, strategies 
could go extinct entirely, and new strategies could be born. 
This would be a measure of macro-complexity over time, or 
temporo-macro-complexity. 

IV.  Implications for Cognition: Mechanics of 
Adaptation  
When computation costs decrease and / or prediction benefits 
increase for an alternative reasoning strategy, the new strategy 
will be adopted when it is more efficient than the current 
strategy. This will result in largely distinct reasoning occurring 
between the old and the new situation, with each strategy 
having largely independent learning improvements with 
practice. Such improvements could take the form of 
decreasing computation costs by automatization, and/or 
increasing prediction accuracy by a more elaborated and 
nuanced mental model. The important prediction is that such 
improvements of practice will be independent for different 
reasoning strategies for different situations and thus learning 
an emergent system will be highly non-linear in terms of 
improvement over time with practice. 
The traditional conception of learning involves adding to and 
elaborating one’s understanding of the system, one’s mental 
model growing in complexity, comprehensiveness and 
cohesion [59], [80]–[82]. For example, it is common to 
assume that new evidence is (or should be) interpreted in a 
way that maximizes the cohesion of one’s existing worldview 
[83]. But CHSE suggests that sometimes, the model doesn’t 
increase in comprehensiveness or cohesion, but branches off, 
or subdivides like a cell, into multiple models that grow more 
distinct and specialized as they develop, not more cohesive, 
and that this can be advantageous. 
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This would help explain how mental models of a single system 
can often have internal contradictions. This is consistent with 
research on mental models in design and HCI research. This 
line of study has revealed that people’s mental models can end 
up incomplete or self-contradicting, leading to poor decisions 
[84]–[87]. 
This prediction that learning improvements will be largely 
independent for different strategies in an emergent system, 
also has implications for dual process theories of cognition. 
Dual process theories are a family of models of cognition that 
split knowledge and learning into two processes: type 1 and 
type 2, or implicit and explicit [1], [88]–[92]. These models 
attempt to explain, for example, how knowing how to ride a 
bike, and knowing the physics of riding a bike, are not one and 
the same. Or more broadly, how one could select a correct 
answer based on intuition, or select a correct answer based on 
careful reasoning. Dual-process theories are controversial, 
attracting various critics [93]. For example, [94] found that 
automatic decisions can also be flexible and goal-dependent. 
Moors and De Houwer [95] reviewed the research on 
automatic processes and concluded that none of the four traits 
examined (efficient, unintentional, uncontrollable, and 
unconscious) reliably co-occurred, and thus no traits were 
good indicators of whether or not a process was automatic. 
Processes classically considered automatic often lack some or 
all of these traits. They concluded that rather than looking for 
such traits as signs of automaticity, researchers should look for 
and report whatever specific traits are present or absent. 
Although controversial, dual-process theory is nonetheless 
interesting to consider in the context of CHSE. It maps almost 
directly on to emergence as being when simple rules give rise 
to complex behavior: Learning about the simple rules (e.g., 
being given explicit knowledge of the system’s rules) would 
not be sufficient to predict the complex behavior, or having 
learned the complex behavior, it would be difficult to infer the 
simple underlying rules. Therefore, such emergent systems 
could separate explicit and implicit learning into independent 
processes that could, theoretically, be re-united into a single 
process by any of the interventions discussed previously to 
manipulate the degree of emergence. 
As already mentioned, emergence is more likely in a system 
where full simulation of a complete mental model is not 
practical. If it was practical, then such a mental model would 
be very accurate in virtually all situations in that system, 
resulting in only one dominant strategy, and therefore no 
emergent situations where an alternate strategy performs 
better (emergence is still possible, but less likely). Such a 
mental model is isomorphic to the system, meaning it has 
structural one-to-one correspondence, which is why it is aptly 
called a “complete simulation”, and why it is so accurate for 
so many situations. Such isomorphic knowledge is a good 
example of explicit knowledge of the system that a participant 
might develop in a dual process study. For example, a user 
might be taught the details of the algorithms behind a flocking 
algorithm, but that doesn't mean they will be able to predict or 

control that flock in real time. Explicit computation of the 
algorithm might be perfectly accurate, but it is too slow to 
implement in real time. Instead, one would have to spend time 
learning to predict or control the flock in real time to develop 
those implicit skills. Similarly, if one were only given that 
hands-on time to learn, it is unlikely one would have also 
developed the explicit knowledge of the algorithm. 
In other words, emergence in a system is likely to cause 
separation of implicit and explicit knowledge, such that 
learning one is independent of learning the other. This 
prediction is concordant with the common features of 
‘surprise’ and ‘non-deducibility’ of emergent phenomena. In 
contrast, if a system is very simple, then it is likely that being 
told how it works would enable one to apply that knowledge 
to control the system very easily, and vice versa, hands-on 
learning to master the system would enable one to articulate 
its simple functionality. A separation between implicit and 
explicit learning should arise when conditions (be they 
endogenous to the system, or exogenous) render an 
isomorphic mental model unviable. These are the same 
conditions for emergence. For example, as previously 
discussed, adjusting the sensitivity to initial conditions 
(without changing the rules of the system) could render a full 
mental model impractical and therefore cause a separation of 
implicit and explicit learning. 
Implicit or explicit, when multiple strategies coexist in a 
cognitive habitat, the question arises as to when and how one 
switches from one strategy to another. 

A.  When to Switch Strategies  
A person’s reasoning strategies can be arranged in a network, 
where each node is a reasoning strategy and each link would 
describe the conditions for transitioning from one strategy to 
another. 
This would help explain some aspects of human cognition. 
Conceptualizing these strategies as a network contrasts with a 
completely flat, library-like conceptualization that one might 
expect of a computer. A computer might simply check the 
current situation and select the best strategy from the list. 
Humans, on the other hand, will most likely already be 
employing a strategy of some kind, and therefore occupy a 
node on the network. The default action is to execute the 
strategy, not to check for the best one of all possible options. 
They will proceed with the strategy until some salient cue 
signals that a transition to a new strategy is advantageous. If 
they are familiar with the system and have several strategies 
already developed, then they might simply recognize that the 
current conditions warrant a specific transition to another 
strategy. However, if they are unfamiliar with the system then 
this salient cue will most likely take the form of a surprising 
event – a failure for the strategy to yield accurate predictions. 
This method of waiting for a salient cue to signal the need for 
a new strategy, is more computationally efficient than re-
assessing the relevance of all possible strategies all the time. 
This can be referred to as strategy inertia. 
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Theories of attention and automatization [58], [93]–[95] could 
be incorporated into this space of CHSE: How automatization 
reduces computation cost of a reasoning strategy, increasing 
strategy inertia. Even if an alternate strategy is superior, if it is 
never even considered due to a lack of salient cues then it can’t 
become dominant. Therefore, we would expect that once a 
strategy becomes dominant, attention to alternate strategies 
begins to stochastically atrophy creating a positive feedback 
loop reinforcing the one habitual strategy. 
Fu and Gray [96] found that the preferred sub-optimal 
strategies when using software tend to be broadly-applicable 
and provide perceptual feedback with every action to confirm 
it was correctly executed. The regular perceptual feedback has 
the advantage that if an action is taken and the expected result 
does not occur (a salient cue), then the automatized procedure 
can abort and one can select or create a new strategy. But in 
many cases, it works well enough. The broad-applicability of 
the preferred strategy gives it greater general utility. This 
creates a positive feedback loop: The strategy’s cost decreases 
with use, and it is used very often, because it is broadly-
applicable to many tasks, meaning it is automatized quickly, 
decreasing its cost and again increasing its overall utility (for 
how this dominance could be quantified, see below section 
Versatility Value: The Cost of Strategy Switching). Thus, 
when a new strategy is revealed that would save a single step 
and a few seconds of time in a very specific case, its benefits 
have to compete with its costs of being an unfamiliar strategy 
that is much more cognitively taxing than the familiar, 
automatized strategy. The outcome bang (the time saved by 
changing the habit) is not worth the computation buck (extra 
cognitive effort needed to perform an unfamiliar procedure 
versus the almost effortless execution of a rote procedure). 
This helps explain why sub-optimal strategies can come to 
dominate. 
Emergent systems have the ability to deviate from this 
phenomenon due to macro-complexity: The cognitive 
environment is such that, though favorite strategies develop, 
frequently a novel situation will prompt (or require) the user 
to switch between strategies or (in the case of temporo-macro-
complexity) to improvise a creative solution that was not in 
their repertoire of known strategies. 
When a strategy fails or there is surprising data, there are 
several choices within the framework of CHSE: 

1. Persist 
a. Persist – Irrelevant: Ignore or discard this data. Persist 

with the usual strategy. 
b. Persist – Outlier: Assume this data point is an outlier 

or an anomaly, and so the reliably-successful strategy 
should resume its effectiveness on the next trial. But 
revise the accuracy of the strategy in light of this new 
data – sometimes the strategy can fail. This treats the 
phenomenon as a stochastic black box, paying 
attention only to frequency of outcome and not cause 
of outcome. 

2. Adapt 

a. Adapt – New Rules: Assume that a change in the rules 
has occurred. This may be the most practical (or 
necessary) option in cases of emergence. 

i. Adapt – Change of Rules: Discard the old 
reasoning strategies (or just the portions that are 
contradicted by this data) and try to figure out new 
ones that match this data. This seems to focus on 
getting results as soon as possible, not on finding 
the truth, given that the user doesn’t seem 
concerned with why the rules appear to have 
changed in the first place. 

ii.  Adapt – Emergence: If one assumes it is a case of 
emergence then the course of action is very 
similar, but instead of completely discarding the 
old strategy, one simply demarcates these current 
conditions as being outside the domain of 
application of the old strategy. Therefore, a new 
strategy (or a variation of the old strategy) needs 
to be developed to handle these special 
conditions. The old strategy is kept but its 
boundaries of application are refined. 

b. Adapt – Incomplete Rules: Assume that one’s current 
strategy is incomplete. Instead of discarding the old 
strategy entirely (or assuming it doesn’t apply to these 
special conditions), try to expand and adjust it to be 
able to explain both the old and the new data, and thus 
to broaden its domain of applicability. 

These options progress on a scale of curiosity, starting with an 
interest in moving right along and getting the task over with 
(option 1a), and ending with an interest in getting to the hidden 
truth and attaining the fullest understanding possible (option 
2b). This is analogous to the distinction between performance 
orientation (being concerned with getting a high score on the 
test) and learning orientation (concerned with improving one’s 
abilities) in education [97], [98]. 
When one does encounter a surprising result in an otherwise 
familiar system, what would/should one do? Adjust down the 
perceived predictive power of their model, leave one’s old 
model aside and start building a new one (emergent strategy), 
or try to expand and refine one’s old model to accommodate 
this anomaly? That is an open question requiring further study. 
But some existing research points in interesting directions. 
For example, learning studies have found that the main aim of 
the activity affects learning outcomes [57], [67], [99], [100]. 
When participants are told that the goal is to control the system 
to a specific outcome, they tend to develop strategies that 
(while effective for that specified goal) do not transfer well to 
achieving other goals (option 1). In contrast, when told that the 
goal is to learn how the system works, they generally develop 
a deeper understanding that empowers them to achieve new 
goals in new situations (option 2b). This is similar to the 
distinction between performance and learning orientation. 
Osman [101] had participants learn how to adjust the variables 
in a digital water purification simulation to achieve a certain 
quality of the water. In this study the rules of the water purifier 
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didn’t change, but instead they told one group (regardless of 
how well they did) that they were doing very well, and in 
another condition told participants that they were doing worse 
than average. When they were told they were doing well, they 
accepted the variability of their water quality as just random 
noise that can be ignored (they persisted with their strategy). 
But when told that they were doing badly, they seemed to 
experiment with different strategies, suggesting that they no 
longer accepted the variation in their results as acceptable 
random noise and instead were determined to identify the 
cause of the variability in order to eliminate it. People’s 
tendency to persist or adapt could be manipulated by telling 
them that their margin of error was too big or just fine. In 
CHSE terms, this refers to adjusting the benefit vs accuracy 
curve by use of a threshold that marks a certain degree of 
accuracy or higher as “good”, and any lower accuracy as 
“bad”. 

B.  Versatility Value: Strategy Management Costs  
The philosophy and logic literature on meta-induction [102] 
explores how an actor should select among many prediction 
methods to maximize their chances of predicting correctly. For 
example, how one might select among many weather forecast 
services, weather simulations, or strategies for forecasting the 
weather, to adopt the predictions that are most likely to be 
correct. However, such work is generally normative rather 
than positive, describing what an ideal rational agent ought to 
do, and consequently there is less focus on human elements 
such as the cognitive cost and inertia of switching strategies, 
or the emotional rewards for success or failure. CHSE 
considers how such psychological factors could give rise to a 
diverse ecosystem of competing reasoning strategies. 
Just as with operational definitions from complexity theory 
and theories from cognitive science, CHSE doesn’t seek to 
replace or supersede meta-induction. Meta-induction theories 
could be useful to augment CHSE in terms of discriminating 
the most accurate strategy, but selecting and integrating a 
theory of meta-induction is beyond the scope of this paper, and 
not necessary for the present discussion. Instead, we now 
focus on the psychological factors that affect strategy 
switching. 
An additional computation cost incurred when dealing with an 
emergent system is the cost of strategy switching: Monitoring 
for a salient cue or set of conditions that indicate the system 
has entered a new mode of behavior that requires a different 
strategy to handle. More complicated criteria for switching 
will incur a greater computational cost, and subtler perceptual 
cues will incur a greater attentional cost. Having a larger 
number of potential transitions between strategies to consider 
also increases computational cost. As discussed above (see 
above section When to Switch Strategies), a strategy 
ecosystem can be considered as a network of strategies (nodes) 
and transitions between strategies (links). If a node in the 
strategy network has many different links to other strategies to 
denote possible transitions to other strategies, then keeping 

track of all those different sets of transition conditions will be 
more taxing than a node that has only one link to one other 
strategy. 
This generates the interesting prediction is that a user’s 
strategy network will tend towards fewer connections per node 
in order to minimize monitoring for switching conditions, and 
therefore prefer to string strategies in series where possible, 
creating long chains with few branching points (Fig. 9). 
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FIGURE 9.  Strategy Transition Networks: The cost of strategy 
switching suggests possible transitions to monitor should be 
minimized , creating long chains in a strategy transition network.  

 However, the tendency to minimize strategy transitions due 
to monitoring costs will also depend on the relative 
computational cost of a given strategy in the situation. For 
example, a very complicated strategy will leave few resources 
left for strategy switching, so will prefer to have fewer 

linkages. On the other hand, a very simple strategy will leave 
plenty of cognitive resources available and so can support 
many more linkages to other strategies (however people will 
still likely prefer to minimize cognitive effort where possible). 
The extent to which active monitoring is necessary, is likely 
inversely proportional to cue salience: If the cues that indicate 
the need for a transition are subtle, then one will have to pay 
close attention; But if the cues are jarringly obvious and 
attention-grabbing, then actively monitoring may not be 
necessary, and one can simply wait for it to become obvious. 
The actual act of mentally switching to another strategy is 
likely to incur a cost as well, due to breaking the mental routine 
of the previous strategy (see [103] for a discussion of cognitive 
switching). 

The overall cost of strategy switching can be termed strategy 
management, given that it is composed of two distinct costs: 
Monitoring for switching cues, and the actual process of 
switching strategies. Note that monitoring is a constant, 
ongoing cognitive cost, likely ameliorated by cue salience. 
Whereas strategy switching is a one-time cost, only incurred 
when the time comes to actually switch to another strategy. 
This cost is mitigated by the probabilistic frequency of 
switching – the less frequently one has to switch, the less 
switching cost will be an issue. The frequency or probability 
of switching strategies can be visualized in the SEG of a 
system (Fig. 8). 
The SEG for a system can be used not just to derive a measure 
of the macro-complexity of the system, but to help predict 
individual behavior when dealing with that system. Primarily, 
it helps determine strategy dominance based on strategy 
versatility. Equation (1) introduced above provided a way to 
calculate the basic utility of a strategy based on its 
computation cost and accuracy, but a strategy’s versatility is 
also a relevant variable to its overall utility – A strategy with a 
wide area of applicability (even if it doesn’t perform optimally 
in most of those situations where it can apply) can save 
computation by limiting strategy switching. Thus, there is a 
secondary level of computation cost and utility at play that has 
to be layered on top of the basic utility considered in (1). This 
can be called secondary utility to distinguish it from basic 
utility defined above. It is actually simpler to describe this 
level of utility not in terms of the benefits from versatility, but 
the costs of specialization. The primary additional variable at 
this layer is the management cost of the strategy: The cognitive 
cost imposed by the needing to administrate, monitor, manage, 
and switch to other strategies (i.e., the inverse of the benefits 
gleaned from the versatility of a strategy). 



 

VOLUME XX, 2017 9 

Let �Q(�O) be the secondary utility of strategy �O, let �Ú(�O) be the 
basic utility of the strategy as explained above (see the above 
section Calculating Utility), and �I (�O) be the management 
cost of the strategy. 

�Q(�O) = �Ú(�O) 
F �I (�O) (8) 
As basic utility was defined above, what remains is to 
determine monitoring costs based on a SEG. Total strategy 
management cost for a strategy could be broken down into 
monitoring costs and switching costs. Monitoring costs are 
ongoing, imposed constantly by the need to check or consider 
if one might need to switch strategies. Switching costs, on the 
other hand, are transient spikes in cost imposed by the actual 
act of switching from one mental routine to another. Let �I (�O) 
be total strategy management cost of a strategy �O, and �ç(�O) be 
the monitoring cost of the strategy, and �º(�O) be the switching 
cost of the strategy. 

�I (�O) =  �ç(�O) + �º(�O) (9) 
Each of these variables could be broken down further into 
more specific elements for study. For example, the monitoring 
cost of a strategy could be composed of the costs imposed by 
the subtlety of the cues one needs to be mindful of (subtler 
cues imposing a higher cognitive cost to monitor for), and the 
complexity of the criteria or calculation needed to determine 
if switching would be appropriate (for example, “switch if the 
speedometer goes higher than 60kph”, is a  much simpler 
criterion to calculate then, “switch if the reading of the 
speedometer is less than half the square root of the fuel gauge, 
plus 53”). The cost of switching itself could also be broken 
down into the cost imposed by breaking the habit of the current 
strategy (a very familiar strategy that has been used implicitly 
or automatically for a long stretch of continuous time may be 
more difficult to stop than a very unfamiliar or esoteric 
strategy that required constant conscious effort to enact), and 
the cost imposed by the act of retrieving the new strategy (if 
one is switching to a very simple, intuitive, and familiar 
strategy, it may be as easy as riding a bike, but if one is 
switching to an entirely unfamiliar or very complex strategy, 
it may be considerably more difficult to remember it). 
Different combinations of these factors could result in 
different monitoring and switching costs (Tables I and II). 

TABLE I 

MONITORING COSTS 

 Cue Perceptual Subtlety/Salience 

 

Clear, Obvious 

Cues 

Subtle, Obscure 

Cues 

Criteria 

Complexity 

Simple 

Criterion 

Low cue cost. 

Low criteria cost. 

High cue cost. 

Low criteria 

cost. 

Complex 

Calculation 

Low cue cost. 

High criteria 

cost. 

High cue cost. 

High criteria 

cost. 
How the two factors of criteria complexity and cue subtlety or salience 

interact to determine monitoring costs of a strategy. 

TABLE II  

SWITCHING COSTS 

 

Old Strategy (Switching From) 

 

Familiar Unfamiliar 

New 

Strategy 

(Switching 

To) 

Familiar or 

Simple 

High breaking 

cost. 

Low acquiring 

cost. 

Low breaking 

cost. 

Low acquiring 

cost. 

Unfamiliar 

or Complex 

High breaking 

cost. 

High acquiring 

cost. 

Low breaking 

cost. 

High acquiring 

cost. 
How the novelty or complexity of the starting strategy and the 

subsequent strategy interact to determine switching costs.  
For simplicity and concision, this discussion will not break 
down monitoring or switching costs further. If such additional 
specificity proves useful, CHSE can be easily expanded in 
future. 
Each management cost component (monitoring and switching 
costs) for a given strategy will be the sum of such costs for 
each transition from that strategy to another strategy (each link 
away from the node in question to another node in Fig. 9). 
And the need to monitor will be attenuated by the frequency 
or probability of needing to switch to another strategy. If one 
never needs to switch, then one never needs to worry about 
detecting transition criteria.  
Total monitoring cost is simply the sum of these costs, for all 
possible transitions from this strategy. Let �ç
k�O�Ý
o be total 
monitoring cost for strategy �O�Ý, and �ç(�P�æ�Õ,�æ�Ô) be the 
monitoring cost of a specific transition (a link in the network) 
from strategy �O�Ý to �O�Ü, and �2(�P�æ�Õ,�æ�Ô) be the probability of such 
a transition occurring. 

�ç
k�O�Ý
o=  
Í �ç(�P�æ�Õ,�æ�Ô)�2(�P�æ�Õ,�æ�Ô)
�á

�Ü�@�5
(10) 

If the need to switch for individual transitions can’t be 
obtained, then the monitoring cost for the strategy could be 
estimated using the strategy’s overall need to switch to other 
strategies (shown here as �2
k�O�Ý�"
o, the probability of the applied 
strategy being not strategy �O�Ý): 

�ç
k�O�Ý
o=  �2
k�O�Ý�"
o 
Í �ç(�P�æ�Õ,�æ�Ô)
�á

�Ü�@�5
(11) 

Switching cost would be calculated in much the same way. Let 
�º
k�O�Ý
o be total switching cost for strategy �O�Ý, and �º(�P�æ�Õ,�æ�Ô) be 
the switching cost of a specific transition (a link in the 
network) from strategy �O�Ý to �O�Ü, and �2(�P�æ�Õ,�æ�Ô)  be the 
probability of such a transition occurring. 

�º
k�O�Ý
o=  
Í �º(�P�æ�Õ,�æ�Ô)�2(�P�æ�Õ,�æ�Ô) 
�á

�Ü�@�5
(12) 

Or it could be estimated using the probability �2
k�O�Ý�"
o, of not 
applying strategy �O�Ý. 

�º
k�O�Ý
o=  �2
k�O�Ý�"
o 
Í �º( �P�æ�Õ,�æ�Ô)
�á

�Ü�@�5
(13) 

This requires a way of determining the probability of the 
strategy being applied (or not applied). This can be calculated 
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as the strategy’s area of applicability – the percentage of the 
possibility space of the SEG that is covered in the 
corresponding color of the strategy in question. 
The broadness (and commonness) of the domain of 
application is a significant factor determining the actual 
ultimate utility of a reasoning strategy. However, area of 
applicability is a secondary factor in a strategy’s utility, 
because it is moderated by the cost of switching strategies. For 
example, if the cost of switching was zero, then there would 
be no reason not to switch, and the area of applicability would 
not be a factor at all in strategy utility. Similarly, if the area of 
applicability was 100% of the system, then that would also 
eliminate the cost of strategy management. To handle such 
variability, we must be able to separate out the broadness of 
the area of applicability component of the strategy’s utility. 

 

FIGURE 10.  Area of Applicability Affects Utility: Overview of the 
factors contributing to management cost of a strategy, and how this 
feeds back in to determine strategy utility.  

One simple way to capture area of applicability is to look at 
the SEG, and tally up all the appearances of the same strategy. 
This entails finding the set of situations in the possibility space 
where the strategy in question is applied. Define a new set 
�	(�O) containing all situations �ë in the entire set �	 where the 
strategy applied in that situation �O(�ë) is the strategy in 
question �O. 

�	(�O) = {�ë �Ð �	 | �O(�ë) = �O} (14) 
The area of applicability (or the probability of the strategy 
occurring) is not simply the sum of these situations. Each 
situation should be weighted by its probability. For example, 
a strategy may be dominant in a large number of individual 
situations, but all those situations might be negligibly rare. 
Another strategy might only appear in a small number of 
situations, but those situations are extremely common. The 
variation in frequency or probability of different situations in 
a system can be represented visually by the saturation or 
brightness of pixels (Fig. 11), which can be overlayed on the 
strategy ecosystem graph.  

 

FIGURE 11.  Example Situation Frequency Graph: Darker pixels 
represent more common or probable situations in the system. 
Strategies that occupy the darker pixels will have more versatility value 
than those which occupy lighter pixels.  

To calculate this area of applicability, one must first gather 
together the situations where the strategy is viable, and then 
go through the list and sum the probabilities of these situations 
(where the probability of a situation describes the percentage 
of the time that strategy is likely to occur when dealing with 
the system). The resulting total describes what percentage of 
the time engaging with the system that a user can spend using 
this strategy. Let �2(�O) be the broadness of the area of 
applicability of strategy �O (its probability of being applied), �ë 
be a situation in the set �	(�O) defined above (i.e., situations 
where the strategy is applied), and �2(�ë�Ü) be the probability of 
such a situation occurring. 

�2(�O) =  
Í �2(�ë�Ü)
�á

�Ü�@�5
(15) 

Note that it must be limited to the situations where the strategy 
is viable, because summing all of probabilities together would 
always total to 100%. As noted previously, one could apply an 
infinite number of strategies to all situations. But the vast 
majority would perform about as well as guessing, and thus 
would not be worth their computation cost. Therefore, one 
needs some criteria by which one decides a strategy is not 
viable for a situation. One of the most basic requirements is 
that the strategy performs better than chance. Another is to 
ensure the strategy’s basic utility is positive – that its benefits 
outweigh its computation costs. These are the most basic of 
inclusion criteria for viability, but future work might justify 
more sophisticated and discriminating criteria. 
A more fine-grained measure could be achieved by finding a 
continuous measure of a strategy’s viability in a situation, and 
weighting each situation by the specific degree of viability of 
the strategy in that situation. Basic utility, as calculated above 
in the Calculating Utility section, could serve such a role. The 
frequency of each situation could then be weighted by the 
strategy’s usefulness (i.e., its basic utility as calculated) in that 
situation, to ensure that situations where the strategy is more 
prominent are given more weight in calculating its area of 
applicability. Note that this process, by including utility, also 
gives a measure of simply the overall utility (or dominance) of 
a strategy. Let �Ú(�O) be the generally predicted basic utility of 
a strategy, �2(�ë�Ü) be the probability of a situation where the 
strategy is viable, and �Ú(�O,�ë�Ü) be the basic utility of the 
strategy in that situation. 

�Ú(�O) =  
Í �2(�ë�Ü)�Ú(�O,�ë�Ü)
�á

�Ü�@�5
(16) 

In order for this to be valid, the cost of switching will have to 
be measured on the same scale as the basic utility (including 
the benefits and the costs). For example, if strategy benefit in 
a study is measured in how many dollars the participant will 
receive at the end of the experiment, then the computation cost 
and the switching cost both need to be converted to dollar 
values to be put on the same scale, before they can be added 
or subtracted from each other. This will undoubtedly be an 
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easier task for studies in computer science and artificial 
intelligence, where cost simply equals computation required, 
and is therefore a precise, knowable quantity. 
These calculations could be used to take any strategy that 
appears on the viable strategy graph, or the entire possibility 
space, and adjust its basic utility by its overall versatility value 
(or rarity penalty). Doing so will incorporate the area of 
applicability into the utility of the strategy and therefore 
determine if, for example, the broadness of its applicability is 
enough to make it a dominant strategy. It will also determine 
if the narrowness of a strategy’s area of applicability 
overpowers its basic utility to render it an inefficient strategy 
that will not be used. This will solve the problem of the 
simplifying assumptions made in our original description of 
how to construct a viable strategy graph. Those simplifying 
assumptions did not take into account the value of broadness 
of area of applicability of a strategy, and so may have pruned 
away strategies that might turn out to dominate. By 
performing this adjustment to strategy utility to incorporate 
versatility value, such dominant strategies should rise to the 
top of the utility column in a very clear and obvious manner. 
Therefore, this adjustment also provides precise testable 
predictions on if, when, and which strategies will come to 
dominate due to area of applicability. 

V. Summary  
It is difficult to interpret the somewhat mixed results in 
cognitive science about learning complex systems [1]–[5].  
Yet such cognitive studies investigating complex systems 
rarely employ any measures of complexity from complexity 
theory. This could be because most complexity theory work is 
too abstract to have obvious application to cognition. An 
overarching framework could specify how exactly various 
theories of complexity and cognition can be brought together 
to explain the experience of emergence in complex systems. 
CHSE conceptualizes an emergent system as a cognitive 
habitat that gives rise to a diverse ecosystem of reasoning 
strategies. Within CHSE, emergence is the condition where 
one reasoning strategy outperforms another in terms of costs 
vs benefits, derived from computation vs accuracy. The 
model’s assumptions, functionality, and possible ways to 
measure relevant variables were discussed, along with a range 
of interesting implications and testable predictions for 
cognition. 

A.  Predictions  
CHSE claims that sometimes, a learner’s mental model 
doesn’t increase in comprehensiveness and cohesion, but 
actually splits up into multiple specialized modules that can 
grow more distinct and divergent as they develop. A new 
strategy will be adopted when its overall utility is greater than 
the previous strategy, conceptualized in terms of the prediction 
bang for the computation buck. Once we have developed ways 
to measure the variables involved and we’d then be able to 
calculate when this would occur using the procedures 

described above. Once it has, we would expect largely distinct 
reasoning to occur, meaning that the old and the new strategy 
should have relatively independent learning gains. Such gains 
could take the form of improved accuracy and / or reduced 
computation costs, for example through automatization. 
Various experimental manipulations should be able to 
promote such a strategy transition (i.e., emergence), by acting 
through variables that are either endogenous or exogenous to 
the system that participants are learning. Adding variables and 
interactions to the system would reduce the utility of a 
completely accurate full simulation of a complete mental 
model, thereby improving the viability of simpler reasoning 
strategies (e.g., heuristics). Similarly, making the system 
sensitive to initial conditions increases the chances of errors 
accumulating when attempting to predict several steps ahead 
in time, again reducing the effectiveness of a complete mental 
simulation. An example of this effect could manifest as a 
separation of implicit and explicit learning, if the explicit 
learning is (as is often the case) an isomorphic mental model 
of a system that is impractical to fully mentally simulate. This 
predicts that emergent systems are likely to cause implicit and 
explicit learning to occur independently of each other, whereas 
simple systems and likely to tightly couple implicit and 
explicit learning. 
Introducing time restrictions (either endogenously or 
exogenously) will reduce the quantity of acceptable 
computation by increasing the need for quick thinking. 
Lowering the acceptable upper limit on computation is likely 
to affect which reasoning strategies are viable. Other ways to 
reduce available cognitive resources include occupying 
participants’ minds with additional parallel tasks or 
distractions. 
Prediction bang could be manipulated by providing 
participants with better information or by correcting a 
misconception, thereby increasing the accuracy of predictions 
with a strategy. Alternatively, the computation cost of a 
strategy could be reduced by giving participants practice to 
better automatize the strategy. Either approach will increase 
the overall utility of a strategy, potentially to the point where 
it outperforms a previously dominant strategy. 
A more direct approach would be to manipulate the actual 
benefits and costs of strategies. For example, if only 
accuracies 95% and higher result in any reward, then that will 
promote very different strategies than the same system but 
with equal rewards given for any accuracy better than 55%. 
Alternatively, one could keep the accuracy threshold the same, 
and change the magnitude of the rewards and penalties. 
A system with a more fully populated viable strategy graph 
will be more prone to developing a singular or small number 
of broadly-applicable dominant strategies, and therefore will 
have lesser macro-complexity, and therefore will be 
experienced as less complex than a system with a sparser 
viable strategy graph. 
Manipulations that cause a system to have a slightly less open 
and populated viable strategy graph will not necessarily result 
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in a significant increase in macro-complexity, but may simply 
reduce the utility of the small number of versatile dominant 
strategies. It depends if the bump downward in utility is equal 
to or greater than the cognitive cost of strategy switching. 
A system with greater macro-complexity will support a greater 
diversity of reasoning strategies and will consequently be 
experienced as more complex than a system with less macro-
complexity. 
A system with greater temporo-macro-complexity will require 
more frequent adaptation and refinement of strategies, 
including refining the boundaries of strategies' areas of 
applicability, and potentially the need to create new strategies 
to deal with situations that arise. 
Available reasoning strategies can be considered as nodes in a 
network, connected by links denoting the conditions that 
justify switching strategies. CHSE implies that one is likely to 
occupy a node on the network with some degree of inertia. 
Rather than constantly check the relevance of all possible 
strategies, one is likely to continue with a strategy and wait 
until a salient cue signals that a switch is necessary or 
advantageous. With past experience of the system, such a cue 
might be a recognized set of conditions that demarcate the 
boundary of the current strategy’s area of applicability. But if 
it is a novel system, then that salient cue will likely take the 
form of a surprising event – a failure of the strategy to yield 
accurate predictions. Waiting for such a cue is often more 
efficient than constantly re-evaluating the relevance of all 
possible strategies. 
Maintaining a large list of possible transitions from any one 
strategy is likely to be cognitively taxing. To keep more 

cognitive resources available for actually computing the 
strategy, one is likely to try to minimize the number of possible 
transitions from a strategy. This means minimizing the number 
of links coming from a node in the strategy network. 
Consequently, CHSE predicts that a strategy network will tend 
to string strategies in series to create long chains with few 
branching points, where possible. 
However, this effect is likely modulated by the micro-
complexity of individual strategies. A strategy (node) that is 
relatively simple leaves available more cognitive resources 
that can be devoted to monitoring for cues that signal the need 
for a strategy transition – The node is able to support more 
links to other nodes. More complex strategies will not leave 
many cognitive resources for transition monitoring. However, 
even if ample cognitive resources are available, one is still 
likely to try to minimize cognitive effort, and thus still try to 
minimize the links coming from any node. 
Finally, CHSE predicts that the local, basic utility of a strategy 
in a situation can be overpowered by versatility value. For 
example, a strategy may be optimal for one situation, but if the 
utility gained by switching is lesser than the cost of switching 
to this strategy, then switching is not the optimal choice. Thus, 
strategies that have a broad area of applicability have an 
inflated overall utility, making them more likely to dominate. 
We proposed methods to calculate this kind of versatility value 
if and when reliable measures for the relevant variables are 
developed. 
Fig. 12 presents a flowchart of some possible ways to use 
CHSE to derive predictions. 
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FIGURE 12.  Example CHSE Usage Flowchart : Some of the ways  in which CHSE could be used to generate predictions from data . 

 

B.  Future Work  
Some of the predictions and claims described have promising 
corresponding findings in existing literature, but most will 
need to be empirically tested in future studies. Additionally, 
there are many areas in which CHSE should be elaborated and 
expanded. 
Possible ways to measure or quantify relevant variables were 
suggested throughout the explanation of CHSE, but none in 
particular are obviously ideal at this stage. Therefore, future 
work should propose and investigate the validity of different 
ways of measuring and quantifying the variables in the model 
of CHSE. 
CHSE would benefit from studies developing objective 
measures for strategy difference or degree of emergence and 
comparing these measures with participants’ subjective 
reports of degree of emergence. This work will be necessary 
to determine which objective measures best capture what 
makes a strategy qualitatively different, and also to determine 
if there is a threshold of degree of emergence that people 
consistently report as being the threshold at which a 
phenomenon becomes significantly emergent. Utility 
difference, output difference, and different forms of content 
difference may prove useful here, or new measures may need 
to be developed. 

A related open question is how to quantify the computation 
cost of strategies for humans. Future studies will need to 
investigate the relationship between indicators of cognitive 
effort (e.g., time taken to decide, Likert scale ratings, or price 
willing to pay to avoid cognitive effort) and the nature of the 
strategies themselves, to find if certain measures of micro-
complexity from information theory correspond to humans’ 
experience of strategy complexity. 
It would be valuable to calculate the prediction accuracy of the 
various different parts of CHSE. However, there are as yet no 
accepted, standardized methods of quantifying many of the 
variables in the equations. As such, embarking on such a task 
is outside the scope of this study and will have to be 
undertaken in future work. 
Criteria were suggested to decide if a strategy is viable in a 
situation, and thus worthy of inclusion in a viable strategy 
graph, a strategy ecosystem graph, or versatility value 
calculations: the strategy performs better than chance, and / or 
the strategy’s local raw utility is positive. Future work could 
look into explaining and justifying more sophisticated criteria, 
or even proposing a continuous measure of viability. For the 
latter, we suggested that local raw utility could serve such a 
function, but a dedicated viability measure is certainly worth 
considering. Similarly, there would be value in developing 
precise definitions of a ‘situation’: consistent, standardized 
procedures for categorizing the possibility space into 
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meaningfully-related sections to treat as a singular situation 
for the purposes of analyzing strategy dominance. 
CHSE could also be improved by a better understanding of the 
costs of strategy switching. Some factors were suggested, such 
as the micro-complexity of the switching criteria/conditions, 
the perceptual subtlety of switching cues, the number of 
possible transitions, and the actual act of switching by 
breaking the current mental routine. Future work may suggest 
additional factors, or ways to quantify them. Attention was 
mentioned as a factor, but attention could be more fully 
incorporated into CHSE on a more fundamental level, perhaps 
in relation to computation costs. 
While CHSE provides certain predictions on how and when 
adaptation and strategy switching will occur, there are still 
many unresolved questions. Temporo-macro-complexity (the 
dynamics of a changing strategy ecosystem) should be further 
elaborated in order to generate specific predictions for strategy 
switching and adaptation. Even without the temporal 
component, there are still many unanswered questions: When 
exactly is it appropriate to use a surprising event to merely 
adjust one’s understanding of a strategy’s accuracy, or to 
adjust the boundaries of applicability for that strategy, or to try 
to expand and refine that strategy to explain both the old and 
the new data? And how exactly does one go about constructing 
a new strategy or modifying an existing one? 

VI. Conclusion  
Cognitive studies have investigated people’s ability to handle 
complex systems and situations, but no standard conception of 
complexity has been adopted from the complexity theory 
literature. This could be due to the fact that most of that 
literature is not focused on generating testable predictions 
about human cognition, but more on very technical and 
abstract mathematical discussions. Here, we sought to address 
this by proposing a model that can function as an integrating 
framework that specifies how different theories of complexity 
and cognition can be brought together to explain how a system 
is experienced as emergent. The model of emergence we 
proposed, CHSE, was specifically built around its implications 
for human cognition. But CHSE also has relevance to related 
domains such as artificial intelligence and machine learning. 
CHSE models an emergent system as a cognitive habitat 
capable of supporting a diverse ecosystem of competing 
reasoning strategies. We detailed the structure of this model 
and consequent predictions for cognition and learning within 
a complex system. We used CHSE to provide new 
interpretations of some previous studies of human cognition, 
and in turn used such studies to inform the CHSE model. 
CHSE not only provides specific predictions, but also 
describes relations and interactions between disparate 
concepts in cognitive science, such as causal learning, 
cognitive load theory, automatization, attention, dual process 
theory, and adaptation to surprising events. 
There are many promising directions for future work in 
relation to CHSE, not just in terms of testing the many 

predictions it generates, but in expanding and elaborating the 
model to provide better tools with which to study cognition. 
By building a model of complexity specifically to generate 
testable predictions of human cognition, and by explaining the 
model in more concrete terms than the average complexity 
theory paper, CHSE should prove much easier to incorporate 
into cognitive research than many preceding definitions of 
complexity. 

REFERENCES 
[1] D. Kahneman and G. Klein, “Conditions for Intuitive Expertise: 

A Failure to Disagree,” Am. Psychol., vol. 64, no. 6, pp. 515–
526, 2009. 

[2] K. Richardson and S. H. Norgate, “Does IQ measure ability for 
complex cognition?,” Theory Psychol., vol. 24, no. 6, pp. 795–
812, 2014. 

[3] D. H. Meadows and D. Wright, Thinking in systems: a Primer. 
Chelsea Green Publishing, 2008. 

[4] E. A. J. A. Rouwette, A. Größler, and J. A. M. Vennix, 
“Exploring influ�H�Q�F�L�Q�J���I�D�F�W�R�U�V���R�Q���U�D�W�L�R�Q�D�O�L�W�\�×�����$���O�L�W�H�U�D�W�X�U�H���U�H�Y�L�H�Z��
of dynamic decision making studies in system dynamics 
�(�[�S�O�R�U�L�Q�J���L�Q�I�O�X�H�Q�F�L�Q�J���I�D�F�W�R�U�V���R�Q���U�D�W�L�R�Q�D�O�L�W�\�×�����$���O�L�W�H�U�D�W�X�U�H���U�H�Y�L�H�Z��
of dynamic decision making studies in system dynamics,” Syst. 
Res. Behav. Sci. Syst. Res, vol. 21, pp. 351–370, 2004. 

[5] J. D. Sterman, Business dynamics: Systems thinking and 
modeling for a complex world. 2000. 

[6] E. S. Charles and S. T. Apollonia, “Developing a conceptual 
framework to explain emergent causality: Overcoming 
ontological beliefs to achieve conceptual change,” Proc. 26th 
Annu. Cogn. Sci. Soc., pp. 210–215, 2004. 

[7] M. T. H. Chi, “Commonsense conceptions of emergent 
processes,” J. Learn. Sci., vol. 14, no. 2, pp. 161–199, 2005. 

[8] M. T. H. Chi, R. D. Roscoe, J. D. Slotta, M. Roy, and C. C. 
Chase, “Misconceived causal explanations for emergent 
processes,” Cogn. Sci., vol. 36, no. 1, pp. 1–61, 2012. 

[9] M. J. Jacobson, M. Kapur, H.-J. So, and J. Lee, “The ontologies 
of complexity and learning about complex systems,” Instr. Sci., 
vol. 39, no. 5, pp. 763–783, 2011. 

[10] U. Wilensky and M. Novak, “Teaching and Learning Evolution 
as an Emergent Process: The BEAGLE Project,” Epistemol. Sci. 
Educ. Underst. Evol. vs. Intell. Des. Controv., no. Chapter 10, 
pp. 213–242, 2010. 

[11] M. H. Behringer, “Classifying network complexity,” Proc. 2009 
Work. Re-architecting internet - ReArch ’09, p. 13, 2009. 

[12] D. Bonchev and G. A. Buck, “Quantitative Measures of Network 
Complexity,” in Complexity in chemistry, biology, and ecology, 
Springer US, 2005, pp. 191–235. 

[13] J. Du, “The ‘weight’ of models and complexity,” Complexity, 
vol. 21, no. 3, pp. 21–35, 2014. 

[14] F. Emmert-Streib, “Statistic complexity: Combining 
Kolmogorov complexity with an ensemble approach,” PLoS 
One, vol. 5, no. 8, pp. 8–13, 2010. 

[15] N. Fernandez, C. Maldonado, and C. Gershenson, “Information 
Measures of Complexity, Emergence, Self-organization, 
Homeostasis, and Autopoiesis,” Guid. self-organization 
Inception, pp. 19–51, 2014. 

[16] �&�����*�H�U�V�K�H�Q�V�R�Q���D�Q�G���1�����)�H�U�Q�D�Q�G�H�]�����³�&�R�P�S�O�H�[�L�W�\���D�Q�G���,�Q�I�R�U�P�D�W�L�R�Q�×����
Measuring Emergence, Self-organiztion, and Homeostasis at 
Multiple Scales,” Complexity, vol. 18, no. 2, pp. 29–44, 2012. 

[17] S. M. Manson, “Simplifying complexity: A review of 
complexity theory,” Geoforum, vol. 32, no. 3, pp. 405–414, 
2001. 

[18] J. McAllister, “Effective complexity as a measure of information 
content,” Philos. Sci., vol. 70, no. 2, pp. 302–307, 2003. 

[19] M. Prokopenko, “Information dynamics at the edge of Chaos: 
Measures, examples, and principles,” IEEE Symp. Artif. Life, 
vol. 2013-Janua, no. January, pp. 140–144, 2013. 

[20] D. Wolpert and W. Macready, “Self-dissimilarity as a high 
dimensional complexity measure,” Int. Conf. Complex Syst. 



 

VOLUME XX, 2017 9 

2004, 2004. 
[21] P. A. Frensch, “Definitions, traditions, and a general framework 

for understanding complex problem solving,” in Complex 
Problem Solving – The European Perspective1, 1995. 

[22] C. Gonzalez and J. Quesada, “Learning in Dynamic Decision 
�0�D�N�L�Q�J�×�����7�K�H���5�H�F�R�J�Q�L�W�Lon Process Learning in Dynamic 
�'�H�F�L�V�L�R�Q���0�D�N�L�Q�J�×�����´��Decis. Sci., vol. 6242, no. 412, pp. 1–28, 
2003. 

[23] A. Fischer, S. Greiff, and J. Funke, “The process of solving 
complex problems,” J. Probl. Solving, vol. 4, no. 1, pp. 19–42, 
2012. 

[24] H. Fischer and C. Gonzalez, “Making Sense of Dynamic 
Systems: How Our Understanding of Stocks and Flows Depends 
on a Global Perspective,” Cogn. Sci., vol. 1, no. 17, 2015. 

[25] M. Prokopenko, F. Boschetti, and Al. J. Ryan, “An Information-
Theoretic Primer on Complexity, Self-Organization, and 
Emergence,” Complexity, vol. 15, no. 1, pp. 11–28, 2008. 

[26] D. H. Wolpert and W. G. Macready, “Self-Dissimilarity: An 
Empirically Observable Measure of Complexity,” in Unifying 
Themes in Complex Systems, Y. Bar-Yam, Ed. Perseus Books, 
2000. 

[27] D. Chu, R. Strand, and R. Fjelland, “Theories of complexity: 
Common denominators of complex systems,” Complexity, vol. 
8, no. 3, pp. 19–30, 2003. 

[28] P. A. Frensch and J. Funke, Complex Problem Solving: The 
European Perspective, no. JANUARY 1995. New York: 
Psychology Press, 2014. 

[29] F. M. Atay, “Synchronization and emergence in complex 
systems,” Pramana - J. Phys., vol. 77, no. 5, pp. 855–863, 2011. 

[30] P. a. Corning, “The re-emergence of ‘emergence’: A venerable 
concept in search of a theory,” Complexity, vol. 7, no. 6. pp. 18–
30, 2002. 

[31] S. C. Pepper, “Emergence,” J. Philos., vol. 23, pp. 241–245, 
1926. 

[32] D. J. Chalmers, “Varieties of emergence,” 2002. 
[33] C. W. Johnson, “What are Emergent Properties and How Do 

They Affect the Engineering of Complex Systems?,” Reliab. 
Eng. Syst. Saf., vol. 91, pp. 1475–1481, 2006. 

[34] T. De Wolf and T. Holvoet, “Emergence versus self-
organisation: Different concepts but promising when combined,” 
in International Workshop on Engineering Self-Organising 
Applications, 2005, vol. 3464 LNAI, pp. 96–110. 

[35] J. Deguet, Y. Demazeau, and L. Magnin, “Elements about the 
emergence issue: A survey of emergence definitions,” 
Complexus, vol. 3, no. 1–3, pp. 24–31, 2006. 

[36] J. Goldstein, “Emergence as a Construct: History and Issues,” 
Emergence, vol. 1, no. 1, pp. 49–72, 1999. 

[37] J. Jost, N. Bertschinger, and E. Olbrich, “Emergence,” New 
Ideas Psychol., vol. 28, no. 3, pp. 265–273, 2010. 

[38] J. Kim, “Making sense of emergence,” Philos. Stud., vol. 95, no. 
1, pp. 3–36, 1999. 

[39] T. O’Connor, “Emergent properties,” Am. Philos. Q., vol. 31, no. 
2, pp. 91–104, 1994. 

[40] M. Buchmann, “Emergent Properties,” in International 
Encyclopedia of the Social & Behavioral Sciences, N. J. Smelser 
and P. B. Baltes, Eds. Amsterdam: Elsevier, 2001, pp. 4424–
4428. 

[41] P. Henle, “The Status of Emergence,” J. Philos., vol. 11, no. 4, 
pp. 71–85, 2009. 

[42] R. Hosseinie and M. Mahzoon, “Irreducibility and Emergence in 
Complex Systems and the Quest for Alternative Insights,” 
Complexity, vol. 17, no. 2, pp. 10–18, 2011. 

[43] J. Fromm, “Ten Questions about Emergence,” arXiv Prepr. 
nlin/0509049, p. 13, 2005. 

[44] T. Moncion, P. Amar, and G. Hutzler, “Automatic 
characterization of emergent phenomena in complex systems,” J. 
Biol. Phys. Chem., vol. 10, pp. 16--23, 2010. 

[45] N. Brodu, “A Synthesis and a Practical Approach to Complex 
Systems,” Complexity, vol. 15, no. 1, pp. 36–60, 2008. 

[46] R. Abbott, “Emergence Explained: Abstractions,” Complexity, 
vol. 12, no. 1, pp. 13–26, 2006. 

[47] M. Berrondo and M. Sandoval, “Defining Emergence: Learning 

from Flock Behavior,” Complexity, 2015. 
[48] F. Boschetti and R. Gray, “A Turing test for Emergence,” Adv. 

Appl. self-organizing Syst., pp. 1–16, 2013. 
[49] J. P. Crutchfield, “Between order and chaos,” Nat Phys, vol. 8, 

no. February, pp. 17–24, 2011. 
[50] R. J. Nunn, “Complexity theory applied to itself,” Emerg. 

Complex Organ, vol. 9, no. 1/2, p. 93, 2007. 
[51] K. Kitto, “High end complexity,” Int. J. Gen. Syst., vol. 37, no. 

6, pp. 689–714, 2008. 
[52] A. Aksentijevic and K. Gibson, “Psychological complexity and 

the cost of information processing,” Theory Psychol., vol. 22, 
no. 5, pp. 572–590, 2012. 

[53] A. J. Ryan, “Emergence is coupled to scope, not level,” 
Complexity, vol. 13, no. 2, pp. 67–77, 2007. 

[54] T. Sambrook and A. Whiten, “On the Nature of Complexity in 
Cognitive and Behavioural Science,” Theory Psychol., vol. 7, no. 
2, pp. 191–213, 1997. 

[55] C. R. Shalizi and C. Moore, “What Is a Macrostate? Subjective 
Observations and Objective Dynamics,” pp. 1–15, 2003. 

[56] M. A. Bishop and J. D. Trout, Epistemology and the Psychology 
of Human Judgement. Oxford University Press, 2005. 

[57] B. W. Geddes and R. J. Stevenson, “Explicit learning of a 
dynamic system with a non-salient pattern.,” Q. J. Exp. Psychol. 
A Hum. Exp. Psychol., vol. 50A, no. 4, pp. 742–765, 1997. 

[58] G. D. Logan, “Toward an instance theory of automatization.,” 
Psychol. Rev., vol. 95, no. 4, pp. 492–527, 1988. 

[59] A. Gopnik and L. E. Schulz, Causal learning: Psychology, 
philosophy, and computation. Oxford University Press, 2007. 

[60] A. Gopnik and H. M. Wellman, “Reconstructing constructivism: 
Causal models, Bayesian learning mechanisms, and the theory 
theory.,” Psychol. Bull., vol. 138, no. 6, pp. 1085–1108, 2012. 

[61] J. Ross, “Assessing Understanding of Complex Causal Networks 
Using an Interactive Game,” 2013. 

[62] M. Steyvers, J. B. Tenenbaum, E. J. Wagenmakers, and B. 
Blum, Inferring causal networks from observations and 
interventions, vol. 27, no. 3. 2003. 

[63] J. Funke, “Experimental Research on Complex Problem 
Solving,” Complex Problem Solving – The European 
Perspective. pp. 243–268, 1995. 

[64] J. Funke, “Complex problem solving,” Encycl. Sci. Learn., vol. 
38, no. 2004, pp. 682–685, 2012. 

[65] P. Liu and Z. Li, “Task complexity: A review and 
conceptualization framework,” Int. J. Ind. Ergon., vol. 42, no. 6, 
pp. 553–568, 2012. 

[66] J. Quesada, W. Kintsch, and E. Gomez, “Complex problem-
solving: a field in search of a definition?,” Theor. Issues Ergon. 
Sci., vol. 6, no. 1, pp. 5–33, 2005. 

[67] J. Wirth, J. Künsting, and D. Leutner, “The impact of goal 
specificity and goal type on learning outcome and cognitive 
load,” Comput. Human Behav., vol. 25, no. 2, pp. 299–305, 
2009. 

[68] A. Westbrook, D. Kester, and T. S. Braver, “What Is the 
Subjective Cost of Cognitive Effort? Load, Trait, and Aging 
Effects Revealed by Economic Preference,” PLoS One, vol. 8, 
no. 7, pp. 1–8, 2013. 

[69] L. M. Naismith and R. B. Cavalcanti, “Validity of cognitive load 
measures in simulation-based training: A systematic review,” 
Acad. Med., vol. 90, no. 11 Association of American Medical 
Colleges Medical Education Meeting, pp. S24–S35, 2015. 

[70] C. Lee, “Bounded rationality and the emergence of simplicity 
amidst complexity,” J. Econ. Surv., vol. 25, no. 3, pp. 507–526, 
2011. 

[71] R. Radner, “Bounded and Costly Rationality,” in International 
Encyclopedia Of The Social & Behavioral Sciences, N. J. 
Smelser and P. B. Baltes, Eds. Amsterdam: Elsevier, 2001, pp. 
1298–1303. 

[72] K. P. O’Hara and S. J. Payne, “The effects of operator 
implementation cost on planfulness of problem solving and 
learning.,” Cogn. Psychol., vol. 35, no. 1, pp. 34–70, 1998. 

[73] G. W. Brier, “Verification of Forecasts Expressed in Terms of 
Probability,” Mon. Weather Rev., vol. 78, no. 1, pp. 1–3, 1950. 

[74] F. Paas, J. Tuovinen, H. Tabbers, and P. W. M. Van Gerven, 



 

VOLUME XX, 2017 9 

“Cognitive Load Measurement as a Means to Advance Cognitive 
Load Theory,” Educ. Psychol., vol. 1520, no. 38, pp. 43–52, 
2010. 

[75] K. E. DeLeeuw and R. E. Mayer, “A Comparison of Three 
Measures of Cognitive Load: Evidence for Separable Measures 
of Intrinsic, Extraneous, and Germane Load,” J. Educ. Psychol., 
vol. 100, no. 1, pp. 223–234, 2008. 

[76] E. Cooper-Martin, “Measures of Cognitive Effort,” Mark. Lett., 
vol. 5, no. 1, pp. 43–56, 1994. 

[77] L. Jost, “Partitioning diversity into independent alpha and beta 
components,” Ecology, vol. 88, no. 10, pp. 2427–2439, 2007. 

[78] A. Purvis and A. Hector, “Getting the measure of biodiversity,” 
Nature, vol. 405, no. 6783, p. 212, 2000. 

[79] A. R. H. Whittaker, “Evolution and Measurement of Species 
Diversity,” Taxon, vol. 21, no. 2/3, pp. 213–251, 1972. 

[80] A. Boyan and J. L. Sherry, “The Challenge in Creating Games 
for Education: Aligning Mental Models With Game Models,” 
Child Dev. Perspect., vol. 5, no. 2, pp. 82–87, 2011. 

[81] M. K. Kim, “Models of learning progress in solving complex 
problems: Expertise development in teaching and learning,” 
Contemp. Educ. Psychol., vol. 42, pp. 1–16, 2015. 

[82] D. E. Kieras and S. Bovair, “The Role of a Mental Model in 
Learning to Operate a Device,” Cogn. Sci., vol. 8, no. 1964, pp. 
255–273, 1964. 

[83] J. Faust, “Can religious arguments persuade?,” Ethics Belief 
Essays Tribut. to D.Z. Phillips, no. June 2007, pp. 71–86, 2008. 

[84] J. K. Doyle, M. J. Radzicki, and W. S. Trees, “Measuring 
�&�K�D�Q�J�H���L�Q���0�H�Q�W�D�O���0�R�G�H�O�V���R�I���'�\�Q�D�P�L�F���6�\�V�W�H�P�V�×�����$�Q���(�[�S�O�R�U�D�W�R�U�\��
Study,” Soc. Sci., vol. 1, no. 14, pp. 1–41, 1998. 

[85] D. Gentner, “Mental Models, Psychology of,” in International 
Encyclopedia of the Social & Behavioural Sciences, N. J. 
Smelser and P. B. Baltes, Eds. Amsterdam: Elsevier, 2001, pp. 
9683–9687. 

[86] D. A. Norman, “Some observations on mental models,” in 
Mental Models, Hillsdale, NJ: Erlbaum, 1983, pp. 7–14. 

[87] K. Oatley, “Emotion in Cognition,” in International 
Encyclopedia of the Social & Behavioral Sciences, Neil J. 
Smelser and Paul B. Baltes, Eds. Amsterdam: Elsevier, 2001, pp. 
4440–4444. 

[88] J. S. B. T. Evans, “Questions and challenges for the new 
psychology of reasoning,” Think. Reason., vol. 18, no. 1, pp. 5–
31, 2012. 

[89] C. Harteis, B. Morgenthaler, C. Kugler, K. P. Ittner, G. Roth, 
and B. Graf, “Professional Competence and Intuitive Decision 
Making: A Simulation Study in the Domain of Emergency 
Medicine,” Vocat. Learn., vol. 5, no. 2, pp. 119–136, 2012. 

[90] E. R. Smith and J. DeCoster, “Dual-process models in social and 
cognitive psychology: Conceptual Integration and Links to 
Underlying Memory Systems,” Personal. Soc. Psychol. Rev., 
vol. 4, no. 2, pp. 108–131, 2000. 

[91] R. Sun, X. Zhang, P. Slusarz, and R. Mathews, “The interaction 
of implicit learning, explicit hypothesis testing learning and 
implicit-to-explicit knowledge extraction,” Neural Networks, 
vol. 20, no. 1, pp. 34–47, 2007. 

[92] R. Sun and X. Zhang, “Top-down versus bottom-up learning in 
cognitive skill acquisition,” Cogn. Syst. Res., vol. 5, no. 1, pp. 
63–89, 2004. 

[93] M. Osman, “An evaluation of dual-process theories of 
reasoning.,” Psychon. Bull. Rev., vol. 11, no. 6, pp. 988–1010, 
2004. 

[94] R. R. Hassin, J. A. Bargh, and S. Zimerman, “Automatic and 
flexible: the case of nonconscious goal pursuit,” Soc. Cogn., vol. 
27, no. 1, pp. 20–36, 2009. 

[95] A. Moors and J. De Houwer, “Automaticity: a theoretical and 
conceptual analysis.,” Psychol. Bull., vol. 132, no. 2, pp. 297–
326, 2006. 

[96] W. T. Fu and W. D. Gray, “Resolving the paradox of the active 
user: Stable subuptional performance in interactive tasks,” Cogn. 
Sci., vol. 28, no. 6, pp. 901–935, 2004. 

[97] A. J. Elliot and H. a McGregor, “A 2x2 achievement goal 
framework,” Journal of Personality and Social Psychology, vol. 
80. pp. 501–519, 2001. 

[98] J. A. Litman, “Interest and deprivation factors of epistemic 
curiosity,” Pers. Individ. Dif., vol. 44, no. 7, pp. 1585–1595, 
2008. 

[99] B. D. Burns and R. Vollmeyer, “Goal specificity effects on 
hypothesis testing in problem solving,” Q. J. Exp. Psychol., vol. 
55A, pp. 241–261, 2002. 

[100] J. Künsting, J. Wirth, and F. Paas, “The goal specificity effect on 
strategy use and instructional efficiency during computer-based 
scientific discovery learning,” Comput. Educ., vol. 56, no. 3, pp. 
668–679, 2011. 

[101] M. Osman, “The effects of self set or externally set goals on 
learning in an uncertain environment,” Learn. Individ. Differ., 
vol. 22, no. 5, pp. 575–584, 2012. 

[102] �*�����6�F�K�X�U�]�����³�7�K�H���0�H�W�D�(�L�Q�G�X�F�W�L�Y�L�V�W�¶�V���:�L�Q�Q�L�Q�J���6�W�U�D�W�H�J�\���L�Q���W�K�H��
Prediction Game: A New Approach to Hume’s Problem*,” 
Philosophy of Science, vol. 75, no. 3. pp. 278–305, 2008. 

[103] L. Moradzadeh, “Components of Cognitive Flexibility in 
Adults,” York University, Toronto, Ontario, 2009. 

 


	I. INTRODUCTION
	II.  Literature Review

