
Computational Complexity of Compliance and Conformance:
Drawing a Line Between Theory and Practice

Author
Tosatto, Silvano Colombo, Governatori, Guido

Published
2021

Journal Title
Journal of Applied Logics- IfCoLog Journal of Logics and their Applications

Version
Version of Record (VoR)

Rights statement
© Tosatto, Silvano Colombo and Governatori, Guido and College Publications 2021. This is
an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND 4.0) License, which permits
unrestricted, non-commercial use, distribution and reproduction in any medium, providing that
the work is properly cited.

Downloaded from
http://hdl.handle.net/10072/406182

Link to published version
http://collegepublications.co.uk/ifcolog/

Griffith Research Online
https://research-repository.griffith.edu.au

http://hdl.handle.net/10072/406182
http://collegepublications.co.uk/ifcolog/
https://research-repository.griffith.edu.au

Computational Complexity of Compliance
and Conformance:

Drawing a Line Between Theory and
Practice

Silvano Colombo Tosatto
Data61, CSIRO

silvano.colombotosatto@data61.csiro.au

Guido Governatori
Data61, CSIRO

guido.governatori@data61.csiro.au

Abstract
In the present chapter we focus our attention on the computational com-

plexity of proving regulatory compliance of business process models. While the
topic has never received the deserved attention, we argue that the theoretical
results, both existing and yet to find, are far reaching for many areas related
to the problem of proving compliance of process models. Therefore, we provide
here and discuss the existing results concerning the theoretical computational
complexity of the problem, as well as discussing some further areas that can
potentially advance the knowledge about the issue, and other closely related
disciplines that can either bring or take insights to this area.

1 Introduction
In this chapter we investigate the computational complexity of the problem of prov-
ing regulatory compliance of process models. This problem consists of verifying
whether a process model, representing a set of executions of an organisation’s pro-
cedures, complies with some given regulations. We consider an execution to be
compliant with some regulations when no violations occurs in such execution with
respect of the regulations. Different degrees of compliance are determined depend-
ing on whether every execution in a model comply with the regulations, when some
comply, and when none comply.

Vol. 8 No. 4 2021
Journal of Applied Logics — IfCoLog Journal of Logics and their Applications

Colombo Tosatto and Governatori

Proving regulatory compliance has been receiving more attention during the past
years, as shown by approaches of varying complexity being proposed in the literature
(Some of the recently proposed approaches: [41, 34, 35]). Analysis of the current
expenses [57] from real businesses and companies towards showing their compliance
with the relevant regulations, have brought an interests in finding automated solu-
tions in order to bring down such costs. For a recent survey of the approaches to
business process compliance and open research question in the field see Hashmi et
al. [37].

Despite the various approaches proposed to address the problem of proving the
regulatory compliance of business process models, meaning “ensuring that, executing
such a business process model to achieve a business objective, is compliant with the
regulations”, or dealing with conformance: “verifying whether existing executions,
usually logs, have been performed in accordance to the regulatory requirements”,
in general, the computational complexity of the problem it has been for the most
part ignored. Despite knowing that in general the problem is NP-complete [10],
many approaches have shown to be able to solve current real problem without being
hindered by the theoretical complexity of it. While this allows currently to use
this kind of solutions without any sort of big issue, due to the current race towards
automation, it is only bound that the business process models and the regulatory
frameworks required to be verified in the future are increasing in size and complexity.
This, in turn could potentially put a hard stop to the approaches currently used,
due to them ignoring such theoretical complexity concerns.

In this chapter we first provide a computational complexity analysis of the gen-
eral problem of proving regulatory compliance of business process models, and its
variants obtainable by manipulating the properties of the regulatory framework be-
ing used. We consider three different properties that a regulatory framework can
have: the number of regulations contained in the framework, whether the regula-
tions affect the entirety of the executions of a business process model, or whether
some parts of them given some additional conditions. The third property concerns
whether the regulations are expressed using atomic boolean propositions, or full
formulae. Given these binary properties we identify 8 variants of the problems, for
which we study and provide their computational complexity classes.

Additionally, the computational complexity of the problem can change depending
on the features of the business process models being verified. Taking as the basic
variant in this scenario structured business process models, namely process models
whose structure can be defined as a properly nested structure, which has technical
advantages over processes not following such constraints, which in turn ends up
being more expressive. We consider some additional features that can be desirable
to represent real life processes, such as unstructured process models and the inclusion

1024

Computational Complexity of Compliance and Conformance

of loops, and we discuss how these additions influence the computational complexity
of the problem’s variants.

After having discussed the theoretical computational complexity of the problem,
we consider some of the existing approaches aimed at solving the problem of proving
regulatory compliance of business process models, and we assign them to the prob-
lem variants identified in this chapter, hence associating them to a computational
complexity class. Starting form this classification, we provide a preliminary study of
the behaviour of these approaches in a future where the components of the problem
increase in size and complexity, namely the business process models and / or the
regulatory frameworks. We aim with this preliminary analysis to provide some in-
sights concerning which approaches may be hindered by the theoretical complexity
limitations of the problem as bigger and more complex problems will be required to
be solved, and which may be potentially be still used to tackle these larger problems.

Furthermore, we discuss a problem related to the problem of proving regula-
tory compliance: conformance, discussing a few of the techniques used to solve this
tangential problem.

Finally, we conclude this chapter by discussing some of the open problem con-
cerning the computational complexity analysis of the problem of proving regulatory
compliance of business process models.

2 The Problem: Proving Regulatory Compliance
In this section, we introduce the problem of proving regulatory compliance of busi-
ness process models analysed in this chapter. The problem consists of two compo-
nents:

i) the business process model compactly describing a set of possible executions, and

ii) a regulatory framework, describing the compliance requirements.

2.1 Structured Business Processes
Generally, process models can be seen as a compact way to represent the set of
possible ways that a company have to achieve some given business objectives. These
models contain the tasks, which correspond to the atomic activities that can be
executed to bring forward the achievement of the business objective pursued by the
executions included in the model. These tasks are organised within the process
model and describe a set of possible orders in which they can be executed. Example
1 illustrates an instance of a process that can be possibly used to describe the sale
procedures in a shop.

1025

Colombo Tosatto and Governatori

Example 1 (Shop Sale Process). Considering the scenario of a shop selling goods
to costumers, the sale procedure can be summarised as a process by considering the
sequence of steps listed below:

1. The customer chooses the goods he/she wants to purchase.

2. The total cost of the goods is tallied up.

3. The customer pays the calculated amount.

4. The sale is concluded.

Using such formal models to represent their business procedures, companies allow
to ensure that such procedures follow the required regulations by checking these
models.

In this paper we focus our analysis on structured process models, such type
of processes is similar to structured workflows defined by [44]. The advantage of
focusing our initial analysis on these kind of processes is that their soundness1 can
be verified in polynomial time with respect to their size, and that the amount of
possible executions belonging to the process model is finite, as it does not contain
loops that can be potentially iterated any number of times, leading to business
process models containing an infinite amount of possible executions.

Despite their simplicity, such kind of business process models can be used to
represent 406 out of 604 processes in the SAP reference model [42], as shown by
[55], illustrating also that unstructured processes, under certain conditions, can be
translated into structured process models.

Definition 1 (Process Block). A process block B is a directed graph: the nodes
are called elements and the directed edges are called arcs. The set of elements of a
process block are identified by the function V (B) and the set of arcs by the function
E(B). The set of elements is composed of tasks and coordinators. There are 4 types
of coordinators: and_split, and_join, xor_split and xor_join. Each process block B
has two distinguished nodes called the initial and final element. The initial element
has no incoming arc from other elements in B and is denoted by b(B). Similarly the
final element has no outgoing arcs to other elements in B and is denoted by f(B).

A directed graph composing a process block is defined inductively as follows:

• A single task constitutes a process block. The task is both initial and final
element of the block.

1A process is sound, as defined by van der Aalst [67, 68], if it avoids livelocks and deadlocks.

1026

Computational Complexity of Compliance and Conformance

• Let B1, . . . , Bn be distinct process blocks with n > 1:

– SEQ(B1, . . . , Bn) denotes the process block with node set ⋃n
i=0 V (Bi) and

edge set ⋃n
i=0(E(Bi) ∪ {(f(Bi), b(Bi+1)) : 1 ≤ i < n}).

The initial element of SEQ(B1, . . . , Bn) is b(B1) and its final element is
f(Bn).

– XOR(B1, . . . , Bn) denotes the block with vertex set ⋃n
i=0 V (Bi) ∪ {xsplit,

xjoin} and edge set ⋃n
i=0(E(Bi) ∪ {(xsplit, b(Bi)), (f(Bi), xjoin) : 1 ≤ i ≤

n}) where xsplit and xjoin respectively denote an xor_split coordinator and
an xor_join coordinator, respectively. The initial element of XOR(B1, . . . ,
Bn) is xsplit and its final element is xjoin.

– AND(B1, . . . , Bn) denotes the block with vertex set ⋃n
i=0 V (Bi) ∪ {asplit,

ajoin} and edge set ⋃n
i=0(E(Bi) ∪ {(asplit, b(Bi)), (f(Bi), ajoin) : 1 ≤ i ≤

n}) where asplit and ajoin denote an and_split and an and_join coordina-
tor, respectively. The initial element of AND(B1, . . . , Bn) is asplit and its
final element is ajoin.

By enclosing a process block as defined in Definition 1 along with a start and
end task in a sequence block, we obtain a structured process model. Therefore, a
structured process model can be understood as a structure recursively composed by
process blocks, where at the lowest recursion level are the process blocks representing
the tasks of the process model.

The effects of executing the tasks contained in a business process model are
described using annotations as shown in Definition 2.

Definition 2 (Annotated process). Let P be a structured process and T be the set
of tasks contained in P . An annotated process is a pair: (P, ann), where ann is a
function associating a consistent set of literals to each task in T : ann : T 7→ 2L.

The status of the process execution is represented by a process’ state. Such state
contains a set of literals representing what is considered to be the case at that step
of the execution. The literals contained in the process’ state is determined by the
sequence of the task being executed, and it is updated after each task execution.

The update between the states of a process during its execution is inspired by
the AGM2 belief revision operator [2] and is used in the context of business processes
to define the transitions between states [23, 39], which in turn are used to define the
traces.

2The approach is named after the initials of the authors introducing it: Alchourrón, Gärdenfors,
and Makinson.

1027

Colombo Tosatto and Governatori

Definition 3 (State update). Given two consistent sets of literals L1 and L2, rep-
resenting the process state and the annotation of a task being executed, the update
of L1 with L2, denoted by L1 ⊕ L2 is a set of literals defined as follows:

L1 ⊕ L2 = L1 \ {¬l | l ∈ L2} ∪ L2

Definition 4 (Executions and Traces). Given a structured process model identified
by a process block B, the set of its executions, written Σ(B) = {ε|ε is a sequence and
is an execution of B}. The executions contained in Σ(B) are recursively constructed
as follows:

1. If B is a task t, then Σ(B) = {(t)}

2. if B is a composite block with sub-blocks B1, . . . , Bn:

(a) If B = SEQ(B1, . . . , Bn), then Σ(B) = {ε1 +E · · · +E εn|εi ∈ Σ(Bi)} and
+E the operator concatenating two executions.

(b) If B = XOR(B1, . . . , Bn), then Σ(B) = Σ(B1) ∪ · · · ∪ Σ(Bn)
(c) If B = AND(B1, . . . , Bn), then Σ(B) = {the union of the interleavings of:

ε1, . . . , εn|εi ∈ Σ(Bi)}

Given an annotated process (B, ann) and an execution ε = (t1, . . . , tn) such that
ε ∈ Σ(B), a trace θ is a finite sequence of states: (σ1, . . . , σn). Each state σi ∈ θ is
a pair: (ti, Li) capturing what holds after the execution of a task ti, expressed by a
set of literals Li. A set Li is constructed as follows:

1. L0 = ∅

2. Li+1 = Li ⊕ ann(ti+1), for 1 ≤ i < n.

To denote the set of possible traces resulting from a process model (B, ann), we
use Θ(B, ann).

Example 2. Annotated Process Model. Fig. 1 shows a structured process containing
four tasks labelled t1, t2, t3 and t4 and their annotations. The process contains an
AND block followed by a task and an XOR block nested within the AND block. The
annotations indicate what has to hold after a task is executed. If t1 is executed, then
the literal a has to hold in that state of the process.

1028

Colombo Tosatto and Governatori

Local A local obligation Oo〈c, t, d〉, where o ∈ {a,m} represents whether the obliga-
tion is achievement or maintenance. The element c represents the fulfilment
condition of the obligation, the element t the trigger, and the element d the
deadline.

While the in force interval of a global obligation spans the entire duration of a
trace, the in force interval of a local obligation is determined as a sub-trace where
the first state of such a sub-trace satisfies the trigger, and the last state satisfies the
deadline.

Generally the trigger, deadline and condition of an obligation are defined as
propositional formulae. Assuming the literals from L contained in a state to be
true, then a propositional formula is true when that state implies it.

Finally, in the semantic we study for each obligation we allow a single in force
interval at any given time. Meaning that when an in force interval is already active
for an obligation, further triggers would not produce additional in force intervals.
This has the consequence that it simplifies the analysis as it is not required to keep
track of multiple in force instances, and which in force instance is satisfied by which
event when executing a task.

Evaluating the Obligations.

Whether an in force obligation is fulfilled or violated is determined by the states of
the trace included in the in force interval of the obligation. Moreover, whether an
in force obligation is fulfilled depends on the type of an obligation, as described in
Definition 6.

Definition 6 (Achievement and Maintenance Obligations). How an in force obli-
gation is fulfilled depends on its type as follows:

Achievement If this type of obligation is in force in an interval, then the fulfilment
condition specified by the obligation must be satisfied by the execution in at least
one point in the interval before the deadline is satisfied. If this is the case, then
the obligation in force is considered to be satisfied. Otherwise it is violated.

Maintenance If this type of obligation is in force in an interval, then the fulfilment
condition must be satisfied continuously in all points of the interval until the
deadline is satisfied. Again, if this is the case, then the obligation in force is
then satisfied, otherwise it is violated.

1030

Computational Complexity of Compliance and Conformance

Process Compliance.

The procedure of proving whether a process is compliant with a regulatory frame-
work can return different answers. A process is said to be fully compliant if every
trace of the process is compliant with the regulatory framework3. A process is par-
tially compliant if there exists at least one trace that is compliant with the regulatory
framework, and not compliant if there is no trace complying with the framework.

Definition 7 (Process Compliance). Given a process (P, ann) and a regulatory
framework composed by a set of obligations O, the compliance of (P, ann) with respect
to O is determined as follows:

• Full compliance (P, ann) `F O if and only if
∀θ ∈ Θ(P, ann), θ satisfies each obligation in O.

• Partial compliance (P, ann) `P O if and only if
∃θ ∈ Θ(P, ann), θ satisfies each obligation in O.

• Not compliant (P, ann) 6` O if and only if
¬∃θ ∈ Θ(P, ann), θ satisfies each obligation in O.

Note that we consider a trace to be compliant with a regulatory framework if it
satisfies every obligation belonging to the set composing the framework.

3 Theoretical Computational Complexity in Structured
Process Models

In this section we discuss the existing results concerning verifying regulatory com-
pliance of structured business process models. We first introduce the acronyms used
through the section to identify the different variants of the problem, and then we
separately analyse and discuss the computational complexity results related to full,
and partial compliance separately.

3.1 Problem Acronyms
Before discussing the existing computational complexity results, we first introduce
a compact system to refer to different variants of the problem dealing with veri-
fying compliance of structured process models. Notice that the acronyms refer to

3Notice that by “compliant with the regulatory framework”, we refer to a trace fulfilling each
in force interval along the trace itself for each obligation belonging to the regulatory framework.

1031

Colombo Tosatto and Governatori

the properties of the regulatory framework being evaluated against the structured
process model.

Definition 8 (Compact Acronyms). The variants of the problem we refer to in this
paper constantly aim to check regulatory compliance of a structured process model.
The acronym system refers to the properties of the obligations being checked against
the process model.

1/n Whether the structured process is checked against a single (1) or a set of (n)
obligations.

G/L Whether the in force interval of the obligations is Global, meaning that it
spans the entirety of an execution of the model, or it is Local, meaning that
the in force interval is determined by the trigger and deadline elements of an
obligation.

-/+ Whether the elements of the obligation being checked on the structured process
model are composed by literals (-), or by propositional formulae (+).

For instance, the variant 1G- consists of verifying whether a structured pro-
cess model is compliant with a single obligation, whose condition is expressed as a
propositional literal and its in force interval spans the entire execution of the process
model.

Note that in the binary properties of the problems considered in this paper, the
leftmost, i.e., 1 in 1/n represents a subset of the right side. Intuitively, the case on
the right side is at least as complex as the left case. For instance, a solution for a
problem including a set of regulations requires also to solve the case where the set
of regulations is composed of exactly one regulation.

3.2 Partial Compliance

We focus now on discussing the computational complexity of proving partial com-
pliance of structured business process models. As we see in the remainder of this
section, many of the variants belong to the NP-complete computational complexity
class. Thus we provide quick reminder before proceeding by discussing the existing
results.

Definition 9 (NP-complete). A decision problem is NP-complete if it is in the set
of NP problems and if every problem in NP is reducible to it in polynomial-time.

1032

Computational Complexity of Compliance and Conformance

To prove membership in NP of a variant of the problem of proving partial
compliance, we show that a process is partially compliant with a set of obligations
if and only if there is a certificate whose size is at most polynomial in terms of the
length of the input (comprising the business process model and the set of obligations)
with which we can check whether it fulfils the regulatory framework in polynomial
time. As a certificate we use a trace of the model and we check whether it satisfies
the regulatory framework.

We illustrate in the following Algorithm 1 how 1G- is solvable in time polyno-
mial. Notice that, while the algorithm reported applies only to achievement obliga-
tions, in the original paper by Colombo Tosatto et al. [14], from which we took this
approach, an algorithm dealing with a regulatory framework composed of a main-
tenance obligation is also provided. Moreover, notice that the algorithm reported is
capable to prove either partial, full, and non-compliance in polynomial time.

Algorithm 1 (1G- is in P). Given an annotated process (P, ann) and a regulatory
framework O containing a single global achievement obligation Oa〈c〉, this algorithm
returns whether (P, ann) is compliant with O.
1: if ∀ task t in P, c 6∈ ann(t) then
2: return (P, ann) 6` O
3: else
4: if Remove(P, {t | t is a task in P and c ∈ ann(t)}) = ⊥ then
5: return (P, ann) `F O
6: else
7: return (P, ann) `P O
8: end if
9: end if
Where the Remove functions removes the tasks from P having c annotated, and

later checks whether there is a path, in other words an execution, from the start to
the end of the process. If no such path exists then the function returns ⊥, which
means that there is no execution that does not execute a task having c annotated.
Meaning that the process is fully compliant.

In Reduction 1 we show the reduction provided by Colombo Tosatto et al. [10],
and showing that the problem of finding whether a graph contains an Hamiltonian
path can be reduced to the problem of proving partial compliance in nL-. Meaning
that the computational complexity of nL- is at least the same as proving whether
a graph contains an Hamiltonian path, which is in NP-complete.

Definition 10 (Hamiltonian Path). Let G = (N,D) be a directed graph where
the size of N is n. A hamiltonian path ham = (v1; . . . ; vn) satisfies the following

1033

Computational Complexity of Compliance and Conformance

The process block of P is structured as an AND block. The AND block contains
in each branch a single task Nodei for each node in the given directed graph:
AND(Node1, . . . , Noden).
Intuitively a serialisation of the AND block represents a tentative hamiltonian
path. Annotations and obligations are used to verify that two adjacent nodes in
the serialisation can be indeed also adjacent in an hamiltonian path (explained
in detail in 2).

2 In this reduction we use the annotations to identify which node is being selected in
the sequence constituting the tentative hamiltonian path. Thus we use for the
annotations a language containing a literal for each node in G. The annotation
of each task in (P, ann) is the following:

• ∀i|1 ≤ i ≤ k, ann(Nodei) = {¬l1, . . . ,¬ln} ⊕ {li}

The obligations are used to represent the directed edges departing from a vertex,
in other words which vertices are the suitable successors in the hamiltonian
path. The set O contains the following local maintenance obligations:

• ∀vi, vj |(vi, vj) 6∈ D,O = Om〈¬lj , li,¬li〉

Using the proposed reduction, verifying whether the constructed process model is
partially compliant corresponds to identifying whether the original graph contains a
hamiltonian path. Concluding that the problem of verifying partial compliance is at
least as hard as finding whether a graph contains a hamiltonian path.

We collect in Table 2 the existing computational complexity results concern-
ing solving the variants of the problem of proving partial compliance of structured
process models.

Notice that given the three binary properties associated to the regulatory frame-
work being checked against the structured process model, of the 8 possible problem
variants, only 7 computational complexity results are provided in Table 2. This
is more apparent by illustrating the results in Figure 3, where the problem’s vari-
ants have their computational complexities associated and the relations between the
variants are highlighted by the connections in the picture. Notice that the directed
arrows connecting one variant of the problem to another refer, according to their di-
rection, that the computational complexity of a variant of the problem at the origin
of an arrow, is at most as difficult as the variant of the problem which is pointed at
by the same arrow.

1035

Colombo Tosatto and Governatori

Problem Variant Source Complexity Class
1G- Colombo Tosatto et al. [14] P
nG- Colombo Tosatto et al. [11] NP-complete
1G+ Colombo Tosatto et al. [11] NP-complete
nG+ Colombo Tosatto et al. [11] NP-complete
nL- Colombo Tosatto et al. [10] NP-complete
1L+ Colombo Tosatto et al. [11] NP-complete
nL+ Colombo Tosatto et al. [10] NP-complete

Table 2: Partial Compliance Complexity

1G− 1L−

nG− nL−

1G+ 1L+

nG+ nL+

P

NP-c

NP-c

NP-c

?

NP-c

NP-c

NP-c

Figure 3: Partial Compliance Complexity Lattice.

It can be noticed in Figure 3, that the variant 1L- does not have a computational
complexity classification yet. While the computational complexity analysis for the
considered problem is currently incomplete, Colombo Tosatto et al. [11] conjectured
that this variant of the problem to in P. However, while we have not yet managed
to provide a conclusive computational complexity classification, we conjecture that
1L- is instead in NP-c as explained in Conjecture 1

Conjecture 1 (1L- is in NP). We currently have no information about the compu-
tational complexity of 1L-. That is, we cannot infer its belonging to a computational
complexity class in a similar way as for nG+, as in this case the simpler variant
(1G-) is in P.

While it seems like that moving from G to L seems to not increase the complexity
of the problem as much as when moving from - to +, or from 1 to n, we believe that
such movement should be still be capable of bringing the computational complexity
of the problem’s variant into NP-c.

We back our conjecture using the intuition that by moving towards conditional

1036

Computational Complexity of Compliance and Conformance

obligations, allows multiple instances of the same obligation to be in force over a
single trace. Which means that even for the variant 1L-, multiple instances would
be required to be verified for every trace. Which resembles the variant nG-, where
multiple obligations are required to be verified over a trace, and it is in NP-c.

Mind that the conjecture does not represent a computational complexity result
in itself, hence identifying the computational complexity of the variant 1L- remains
an open problem.

3.3 Full Compliance
We focus now on discussing the computational complexity of the variants of the
problem of proving full compliance of a structured process model. As many of the
variants of the problem belong to the coNP-complete computational complexity
class, we provide its definition before proceeding with the discussion.

Definition 11 (coNP-complete). A decision problem is coNP-complete if it is in
coNP and if every problem in coNP is polynomial-time many-one reducible to it. A
decision problem is in coNP if and only if its complement is in the complexity class
NP.

We show in Reduction 2 how Colombo Tosatto et al. [10] have shown that check-
ing for full compliance in a variant of the problem 1L+ is in coNP-complete.

Definition 12 (Tautology). A formula of propositional logic is a tautology if the for-
mula itself is always true regardless of which evaluation is used for the propositional
variables.

Reduction 2 (Tautology to Proving Full Compliance in 1L+). Considering the
problem to decide whether a given formula is a Tautology as described in Definition
12.

Let ϕ be a propositional formula for which we want to verify whether it is a
tautology or not, and let L be the set of literals contained in ϕ. We include in L
only the positive version of a literal, for instance if l or ¬l are contained in ϕ, then
only l is included in L.

For each literal l belonging to L we construct an XOR block containing two tasks,
one labeled and containing in its annotation the positive literal (i.e., l) and the
other the negative literal (i.e., ¬l). All the XOR blocks constructed from L are then
included within a single AND block. This AND block is in turn followed by a task
labeled “test" and containing a single literal in its annotation: ltest. The sequence
containing the AND block and the task test is then enclosed within a start and an
end, composing the process (P, ann), graphically represented in Figure 4.

1037

Computational Complexity of Compliance and Conformance

introduced by Colombo Tosatto et al. [12], capable of proving full compliance of the
variant nL- of the problem in time polynomial with respect to the problem size.

Definition 13 (Process Tree Model). Let P be a structured process model. A Pro-
cess Tree PT is an abstract hierarchical representation of P , where:

• Each process block B in P corresponds to a node N in PT .

• Given a process block B(B1, . . . , Bn), where B1, . . . , Bn are the process blocks
directly nested in B, the nodes N1, . . . , Nn in PT , corresponding to B1, . . . , Bn

in P , are children of N , corresponding to B in P . Mind that the order between
the sub-blocks of a process block is preserved between the children of the same
node.

Algorithm 2. The approach is based on identifying whether a structured business
process model, in its tree representation form as described in Definition 13, contain
a trace violating one of the obligations belonging to the regulatory framework.

The advantage of looking for a violating condition, is that finding a single in-
stance within a process model where such condition is positively evaluated, it is a
sufficient condition to return the answer that the structured process being evaluated
is not fully compliant with the regulatory framework.

The tree representation of a process model has as its leaves the tasks composing
the process. Considering a generic obligation Oo〈c, t, d〉, each of the leaves in a
process tree associated to a task having t annotated are considered trigger leaves.
A bottom up aggregation of the properties of the leaves of the tree, in accordance
to their associated annotated tasks, and to the violation condition being looked for,
leads to allow whether a process tree contains a violation for a given trigger leaf in
a number of steps equal to the number of nodes in the process tree.

Repeating this procedure for each trigger leaf, for each violation condition of each
obligation in a regulatory framework, allows to decide, when no violation condition
is satisfied, that the business process model being evaluated is fully compliant, and
this is decidable in time polynomial with respect to the size of the problem.

Table 3 outlines the existing complexity results concerning some of the variants
of the problem of proving full compliance of structured process models.

Similarly as for partial compliance, we illustrate the result concerning the com-
putational complexity of proving full compliance of a process model graphically in
Figure 5.

Notice that Figure 5 contains a result for the problem variant nG-, which is not
included in Table 3. This result is derived from other existing ones. As the relations

1039

Colombo Tosatto and Governatori

Problem Variant Source Complexity Class
1G- Colombo Tosatto et al. [14] P
1L- Colombo Tosatto et al. [12] P
nL- Colombo Tosatto et al. [12] P
1G+ Colombo Tosatto et al. [13] coNP-complete
nG+ Colombo Tosatto et al. [13] coNP-complete
1L+ Colombo Tosatto et al. [10] coNP-complete
nL+ Colombo Tosatto [9] coNP-complete

Table 3: Full Compliance Complexity

1G− 1L−

nG− nL−

1G+ 1L+

nG+ nL+

P

P

coNP-c

coNP-c

P

coNP-c

coNP-c

P

Figure 5: Full Compliance Complexity Lattice.

in the lattice in Figure 5 represent the relation ≤ between the computational com-
plexities of the variants of the problem, if we consider the three variants 1G-, nL-,
and nG-, the follow relationship holds regarding their computational complexity:
1G- ≤ nG- ≤ nL-. Therefore, by knowing that both 1G- and nL- are in P, it
follows that also nG- is in P.

3.4 Climbing the Polynomial Hierarchy

The computational complexity results reported so far concerning the problems of
proving both partial and full compliance of structured process model, rely on an
assumption regarding how formulae composing the obligations are evaluated over
the states composing the traces.

Assumption 1 (States Satisfying Formula). Given a state σ, composed by a set
of positive and/or negative literals, and a propositional formula ϕ, ϕ is satisfied by
σ if and only if considering every literal in σ true, is a sufficient interpretation to

1040

Computational Complexity of Compliance and Conformance

make ϕ true. This is equivalent to evaluate a formula over a partial set of possible
interpretations, the ones that explicitly appear in the state.

While the assumption does not appear to be too surprising, it can lead to some
interesting behaviours, such as the following: consider the formula α ∨¬α, which is
a tautology. Now, if we consider whether an empty state of a trace would satisfy,
the formula, then the answer is counter-intuitively no in accordance to Assumption
1.

The effect of Assumption 1 on how formulae composing the obligations are ver-
ified over the states of the traces, is to simplify the verification, as the only inter-
pretation required to be verified is the one where every proposition in the state is
considered as true. If such interpretation is sufficient to evaluate the formula as
true, then its associated effects, according to its place in the obligation, are ap-
plied. Differently, if the interpretation provided by the state is not sufficient to fully
evaluate the formula, then it is assumed to be false in that state. Normally, with-
out Assumption 1, when a state does not contain a sufficient interpretation, then
the various cases are considered for the propositions which have not an assigned
truth value. This can potentially increase the computational complexity of solving
the problem, as evaluating a formula over a state can be reduced to a Satisfiability
problem, which is known to be NP-complete. In order to properly classify the vari-
ants of the problem when Assumption 1 is dropped, we need first to introduce the
Polynomial Hierarchy.

The Polynomial Hierarchy is a hierarchy of computational complexity classes
describing both the classes already discussed in the present chapter (P, NP and
coNP), as well as more complex classes. In the Polynomial Hierarchy P is also
represented as either ΣP

0 or ΠP
0 , while NP and coNP are respectively represented

as ΣP
1 and ΠP

1 .

Definition 14 (ΣP
1). A problem P is in ΣP

1 if there exists a polynomial time Turing
machine T and a polynomial p such that:

for each instance x of P : there exists a solution s, |s| ≤ p(|x|), T (x, s) = true

Definition 15 (ΠP
1). A problem P is in ΠP

1 if there exists a polynomial time Turing
machine T and a polynomial p such that:

for each instance x of P : for each solution s, |s| ≤ p(|x|), T (x, s) = true

Considering now the problem of proving partial compliance of a structured pro-
cess model, when Assumption 1 is dropped. We have that for the variants of the
problem allowing formulae to describe the elements of the obligations, the problem
becomes the following: there exists a trace of the model such that, for each state

1041

Colombo Tosatto and Governatori

state in the trace, and for each possible interpretations of the state the formulae
composing the obligations are satisfied in such a way that no obligation is violated.
It can be noticed, that this problem involves an existential quantifier followed by two
universal quantifiers: ∃∀∀. While not delving too much into the technical details,
when multiple quantifier of the same type directly follow each other, they can be
collapsed as a single quantifier of the same type. Given that, and Definition 16, we
can see that the variants of the problem of proving partial compliance, and allow
formulae in their obligations, can be classified as ΣP

2 . Furthermore, notice that the
variants restricting the expressivity of their obligations to simple propositions are
not affected and remain in ΣP

1 .

Definition 16 (ΣP
2). A problem P is in ΣP

2 if there exists a polynomial time Turing
machine T and a polynomial p such that:

for each instance x of P : there exists a solution s, |s| ≤ p(|x|) such that each s′,
|s′| ≤ p(|x|), T (x, s, s′) = true

The lattice with the computational complexity classifications according to the
Polynomial Hierarchy, after dropping Assumption 1, is shown in Figure 6.

1G− 1L−

nG− nL−

1G+ 1L+

nG+ nL+

ΣP
0

ΣP
1

ΣP
2

ΣP
2

?

ΣP
2

ΣP
2

ΣP
1

Figure 6: Partial Compliance Complexity Lattice with Polynomial Hierarchies.

Similarly, we can consider the problem of proving full compliance of structured
process models, when Assumption 1 is dropped. Again, we have that for the variants
allowing formulae in their obligations the problem becomes: for each trace of the
model such that, for each state state in the trace, and for each possible interpreta-
tions of the state the formulae composing the obligations are satisfied in such a way
that no obligation is violated. It can be noticed, that this problem involves three
universal quantifiers: ∀∀∀. Again, we can collapse the quantifiers of the same type
with the neighbouring ones, which leads to a single universal quantifier in this case.
It can be noticed that these problems do not have the sufficient properties to be

1042

Computational Complexity of Compliance and Conformance

classified as ΠP
2 , as described in Definition 17, but they can be classified as ΠP

1 , as
described in Definition 15.

Definition 17 (ΠP
2). A problem P is in ΠP

2 if there exists a polynomial time Turing
machine T and a polynomial p such that:

for each instance x of P : for each solution s, |s| ≤ p(|x|) such that there exists
a s′, |s′| ≤ p(|x|), T (x, s, s′) = true

Therefore we can conclude that for the problem of proving full compliance, re-
leasing Assumption 1 does not increase the complexity, as the variants allowing
propositional formulae are still in coNP. For completeness we show the lattice with
the Polynomial Hierarchy classifications for the variants of the problem of proving
full compliance if Figure 7.

1G− 1L−

nG− nL−

1G+ 1L+

nG+ nL+

ΠP
0

ΠP
0

ΠP
1

ΠP
1

ΠP
0

ΠP
1

ΠP
1

ΠP
0

Figure 7: Full Compliance Complexity Lattice with Polynomial Hierarchies.

3.5 Summary
The computational complexity results illustrated in this section show that, when
considering variants of the problem only allowing literals to represent the components
of the obligations, proving full compliance of structured process model is generally
easier than proving partial compliance. Intuitively, the former is easier since it is
sufficient to find a violation for an obligation in one of the traces of the model, while
for the former, it is required to identify a trace, and ensure that no obligation is
violated in such a trace.

Moreover, it can be noticed from the computational complexity lattice in Figure
7, that for full compliance the computational complexity is be governed by the com-
plexity of the language, namely by how expressively we can represent the elements
representing the obligations.

1043

Colombo Tosatto and Governatori

Differently, partial compliance seems to be more complex to verify, as it does not
seem to allow an easy way to identify its complement, and identifying a compliant
trace in a process model is shown to be intractable apart from the the easiest, or
maybe two easiest, variant(s) of the problem as illustrated in Figure 6.

Finally, we have also shown that by dropping Assumption 1, the computational
complexity of the problem of proving partial compliance starts to climb the Polyno-
mial Hierarchy.

4 Computational Complexity of Additional Business
Process Features

The variants of the problem discussed earlier in this chapter have their computational
complexity depending solely on the varying properties of the regulatory framework
while keeping the properties of the process model static. Additional computational
complexity analysis can be done when considering more complex variants of the
process models used.

In this section we discuss about the computational complexity of proving com-
pliance of process models by including additional features in the process models. In
particular we discuss about the computational complexity of verifying compliance of
unstructured process model, and the computational complexity impact of including
loops in business process models.

4.1 Unstructured Process Models

The computational complexity analysis included in Section 3 focused on problems
where the the process models were structured. As mentioned earlier, one of the
advantages of such models is that their soundness can be verified in time polynomial
with respect to the size of the model. Verifying soundness means to check whether
every execution in the model is a proper execution, and capable of reaching the
end of the model. In other words checking that the process model do not contain
livelocks and or deadlocks preventing any of the contained execution to successfully
complete.

Unstructured business process models, which are not composed by properly
nested process blocks, as the instance shown in Figure 8, do not guarantee that
their soundness can be verified in polynomial time. As it has been shown by van der
Aalst [66], and Lohmann et al. [47], the semantics of business process models can be
captured by Petri Nets [52]. While this does not provide any direct result concerning
the computational complexity about verifying compliance of unstructured process

1044

Computational Complexity of Compliance and Conformance

However, the theoretical computational complexity of the variants of the problem
identified in Section 3, with the inclusion of loops, is at least as difficult as the ones
not including loops. This is due to the additional complexity brought by including
the loops in the process model. While the added complexity may not necessarily be
enough to increase the computational complexity class of the variants to harder ones,
a through analysis of the computational complexity of the new variants including
loops is still required in order to properly classify them.

Relating to Complete Turing Machines

We discuss now the intuition concerning why introducing loops in business process
model, in addition to including conditions in the decision points5, would allow poten-
tially to simulate universal Turing machines using these extended business process
models.

Definition 18 (Turing Completeness). In computability theory, a system of data-
manipulation rules (such as a computer’s instruction set, a programming language,
or a cellular automaton) is said to be Turing complete or computationally universal
if it can be used to simulate any Turing machine.

Considering now adding into the business process models conditions for its loops,
like starting and exit conditions, and decision condition for the mutual exclusive
paths in the process model, it becomes more and more evident how the elements of
a business process model can simulate different structures common to programming
languages, such as various type of cycles and decision blocks. As these programming
languages are generally known to be Turing complete languages, such as for instance
Java and C++, considering the process state as the computational state of Turing
machine, and the possible executions of a model as the possible computations of
the Turing machine, then we can conclude that with these additions, such models
become Turing complete.

As a consequence, considering the halting problem6 [65] affecting Turing ma-
chines, it would then also affect the problem of proving regulatory compliance of
business process models including loops. Which, in turn, would make the problem
of proving compliance in general undecidable.

5We consider as decision points XOR blocks and loops, where a decision is required to be made
concerning which branch to execute, or whether to exit the loop.

6The halting problem is the problem of determining, from a description of an arbitrary computer
program and an input, whether the program will finish running or continue to run forever.

1047

Colombo Tosatto and Governatori

Relation to Fairness

Given the relation between the problem of proving regulatory compliance of business
process models and computer programs, which becomes particularly clear when loops
and conditions are introduced within the process model. It is only fair to discuss
some of the related work dealing with the termination of computer programs, in
particular as the computational complexity of dealing with such more advanced
variants of the problem is related to the undecidability of halting problem.

The relation we are going to discuss is the one with the concept of fairness for
model checking verification as discussed earlier by Francez [21], which can be intu-
itively understood as the following: given two properties of comparable importance
for a problem, if a certain effort is put into the verification of one of the property,
then it is only fair that the same amount of effort is put towards the verification of
the other property. Such concept led to Cook et al. [15] to investigate the verifica-
tion of liveness properties of programs in addition to their safety properties. Others,
such as Dobrikov et al. [17] proposed implementations under fairness assumptions,
capable of verifying how fairly model checking approaches perform, with limited
overhead. Moreover, Kesten et al. [43] propose a fairness based approach based on
LTL for model checking verification, showing that the introduction of fairness allows
to close the gap with other approaches using CTL, as by using strong fairness, LTL
properties can be verified on the model being checked without having to completely
unfold the model to generate the possible states.

Adopting fairness to verify properties of models allows to do so without having
to unfold these models and explicitly verify the possible states, in particular by
adopting strong fairness, which is also referred as compassion. This requirement,
compassion, stipulates that, given two types of states, then in every computation
which verifies infinitely many of one of the types, is also required to verify infinitely
many of the other type.

Considering now the problem of verifying regulatory compliance of business pro-
cess models including loops, and assuming the existence of conditions governing
choices such as mutually exclusive paths in the model, and whether a loop should
be repeated or exited. It can be noticed that fairness based approached for model
checking can be adapted to deal with such kind of problems. In particular, if we con-
sider loops in a process model and its entering and exiting conditions as conditions
leading to two different types of states for which we require strong fairness, then
approaches verifying compliance, even by analysing the traces of the model explic-
itly, would be required to analyse an equivalent amount of states within and outside
loops, guaranteeing to consider in such a way traces that represent full executions
of the model. While this technique can prove useful to verify partial compliance

1048

Computational Complexity of Compliance and Conformance

of process models, as it requires to find a compliant trace, further analysis may be
necessary when dealing with full compliance, as in order to be classified as such,
every possible trace must be considered and verified.

4.3 Summary
Despite the added expressivity introduced by using unstructured business process
models and loops can be useful to represent real world problems more faithfully,
how such additions would affect the computational complexity of the variants of the
problem discussed in Section 3 remain for the major part an unanswered research
question.

5 Classification of Existing Approaches
In this section we consider and classify according to the variants identified in the
present chapter some of the existing approaches proposed in the literature, and
aiming to prove regulatory compliance of business process models. We organise the
approaches according to the main technique used to solve the problem of proving
regulatory compliance.

5.1 Control-Flow Based
These approaches focus on checking the execution order of the tasks in the business
process models. To do so, temporal logic is generally used to verify properties over
the execution orders of the tasks, some instances of this type of solution have been
provided by Awad et al. [4], and by Lu et al. [48]. As the properties expressed
through temporal logic formulae apply through the whole extents of the executions
of the model, and refer directly to the tasks7, then we can assign these approaches
to the variant nG- of the problem.

Other approaches based on the control-flow can use different formalisms to rep-
resent the constraints between the execution order of the tasks. One of such ap-
proaches proposed by Groefsema et al. [34], uses CTL*8 to describe the constraints
between the execution order of the tasks. As this approach allows to express con-
ditional constraint, it can then be classified as belonging to the variant nL-. Mind

7Having constraints referring directly to the tasks, in this case where temporal logic is used,
it means that some constraint over the execution order is expressed between two particular tasks.
When this is the case, the constraints refer to the labels of the tasks, which can be considered as
propositional literal.

8CTL* is a combination of computational tree logic and linear temporal logic, which allows to
combine path quantifiers and temporal operators.

1049

Colombo Tosatto and Governatori

that the approach proposed by [34] adopts also some practical optimisation, as it
does reduce the space-state while preserving the information contained in the con-
current components of the model. This provides only a practical optimisation for
the problem, while the theoretical computational complexity still holds for its worst
case scenarios.

5.2 Temporal Logic Related
The approach proposed by Elgammal et al. [18] introduces a new language to repre-
sent the execution constraints between the tasks of a business process model. This
language, named Compliance Request Language, is used by [18] to define patterns
that must be followed by the executions of the model. While the language proposed
allows to compactly express these patterns, the authors shows that Linear Temporal
Logic can be used to represent the patterns. As the constraints over the executions
of the business process model are conditional, we can assign this approach to the
variant nL-.

5.3 Classical Logic Related
Considering now approaches [45, 23, 41, 35] adopting classical logic formalisms to
represent the constraints over the execution of the process model, the introduction
of logical formulae allows to represent more complex conditions and constraints.
For instance the constraint over the order execution of a task can be conditional
with respect to the execution of a set of tasks, or the combined effects of a set of
tasks must be achieved before a given deadline. Given the expressivity that can be
achieved by such approaches, then we classify as belonging to the variant nL+.

5.4 Modal Logic Related
Other approaches, such as the ones proposed by Sadiq et al. [59], and Governa-
tori [24], adopt modal logic to represent the constraints over the allowed execution
orders of the tasks of a business process model. While the inclusion of modalities
over classical logic based approaches allows to improve the expressivity of the con-
straints, the more expressive constraints are still compatible with the variant nL+
of the problem.

5.5 Practical Optimisations
Given the inherent computational complexity of the problem, several approaches
have adopted techniques allowing to reduce the search state-space of the problem to

1050

Computational Complexity of Compliance and Conformance

Problem Variant Approach
nG- Control-Flow Based [4]

Control-Flow Based [48]
nL- Control-Flow Based using CTL* [34]

Temporal Logic [18]
Practical Optimisation [53]
Practical Optimisation [8]
Practical Optimisation [60]
Practical Optimisation [20]
Practical Optimisation [39]

nL+ Classical Logic [45]
Classical Logic [23]
Classical Logic [41]
Classical Logic [35]
Modal Logic [59]
Modal Logic [24]

Table 4: Classifying Existing Approaches

limit the state explosion in concurrent processes. However, these approaches either
generate large amounts of overhead, such as for instance the one introduced by
Nakajima [53], or lose information on concurrency and the orders of local tasks due
to the linearisation of the concurrent components of the process model, as shown
in the following approaches [8, 60, 20, 39]. We classify the approaches based on
practical optimisations as belonging to the variant nL-.

5.6 Summary
We conclude this section by summarising the classification of some of the existing
approaches in Table 4.

The first thing that can be noticed is that every single approach falls into the
NP-complete computational complexity class when the goal is to prove partial com-
pliance of a business process model. Differently, if the aim is to verify whether a
model is fully compliant with the given regulations, then the logic based approaches
are in coNP-complete, while the others can be theoretically solved in polynomial
time.

The second and final observation over Table 4, concerns the distribution of the
approaches over the various variants of the problem. We would like to point out that
when global ordering constraints, as given in control-flow based approaches, then

1051

Colombo Tosatto and Governatori

the problem lies in the nG- variant. Introducing conditional constraints, usually
through the adoption of temporal logics or derivates, moves the problems into the
nL- variant. Finally, when full fledged logical formalisms are used to represent the
constraints, then the problem reaches the most difficult variant discussed in this
chapter: nL+.

6 Conformance and Normative Reasoning
In this section we discuss some disciplines related to the problem of proving regula-
tory compliance of business process models. In particular we discuss conformance,
verifying whether a trace from a log is a proper execution of a given process model,
and normative reasoning, the discipline tasked with reasoning and deal with norma-
tive concepts, such as obligations and violations.

In addition to discuss the relations of these disciplines with the problem dis-
cussed in this chapter, we also discuss their computational complexity and how it
relates to the results presented in this chapter for the problem of proving regulatory
compliance.

6.1 Conformance Checking
Conformance checking, as defined by van der Aalst [69], refers to the discipline
of verifying whether the executions contained in a given event log are the proper
executions of a given process model. To put it differently, using van der Aalst words:
“The goal is to find commonalities and discrepancies between the modeled behaviour
and the observed behaviour.”

While conformance checking and compliance checking are orthogonal disciplines,
mainly related as both deal with business process models, both prove useful in
verifying the properties of models and their actual behaviour, and used together
allows to ensure the compliance of the actual behaviours of business process models
in real life scenarios. Considering a business process model used by an organisation,
its compliance can be verified by using one of the many available techniques. In
particular, if we focus on the case where full compliance is being proven for such a
model, what is verified is that every proper execution of the model is compliant with
the regulatory framework in place. However, while this is indeed a desirable property
of a business process model, as van der Aalst mentions, its not always the case that
the modelled behaviour of a business process model in an organisation, perfectly
reflects the actual observed behaviour of how such organisation performs its business.
Therefore, conformance becomes extremely important to verify whether the actual
behaviour follows the modelled one, ensuring in this way that the organisation is

1052

Computational Complexity of Compliance and Conformance

compliant with the regulations. Moreover, when discrepancies are detected, it is
desirable to realign the modelled behaviour of the organisation with the observed
one, using available techniques such as for instance process mining [70]9, in such
a way the compliance of the realigned model can be rechecked and if the actual
behaviour of the organisation keeps following the realigned model, then regulatory
compliance is assured.

Token Replay

A technique to verify conformance of traces in a given event log with respect to a
business process model is by using token replay [58]. This technique, as the name
suggests, consists of trying to replay the traces over the model. One thing to notice,
is that this technique is originally designed to verify the conformance of event logs
with workflow models based on petri nets, such as the approach proposed by [1], as
described in Chapter 4, Part 2, Section 2.2. Despite this difference, the technique
can be adapted to deal with business process models as well, especially given their
similarities as pointed out by [44].

The original technique, replaying traces over workflow models constructed using
petri nets, is based on going through the list of tasks representing the trace being
checked whether it conforms with the workflow model. The workflow is setup having
a token in its starting place, and each task in the trace is then checked to verify
whether the current state of the model allows its execution, in accordance to the state
of the tokens10. After, tokens in the precondition set are consumed and recreated
in the postcondition set of the task in the model. This is repeated for every task
composing the trace, and at the end of the analysis, every discrepancy detected, like
missing required tokens to execute a task in the order defined by the trace, as well
as remaining tokens in the model’s places, with the exception of the final place11, is
considered to determine how much deviation there is between the observed behaviour
and the expected behaviour of a model. Naturally, when the trace is a proper trace
of the model, then no discrepancies are detected.

9With the term process mining, we refer to techniques capable of distilling a business process
model fitting a given event log of traces. Such techniques can be used to construct a process model
from scratch, or to adapt existing process models to properly fit the actual observed behaviour.
While this is another relevant discipline related to business process models, we do not delve in
its details in this chapter as it is only marginally related to the problem of proving regulatory
compliance.

10As a reminder, in a Petri Net a task, also referred to as a transition, can be executed if every
place in its precondition set contains a token.

11A workflow model based on Petri Nets, is considered to be sound if it is executable without
leaving tokens within its internal places after the execution is concluded.

1053

Colombo Tosatto and Governatori

Data Driven Conformance

Understanding whether an execution, composed by simple sequence of tasks, belongs
to a process model is important. Considering only the execution sequence may be in
fact not enough to properly measure conformance. The execution of business process
models involves additional factors, such as the state of the execution, in other words
the data corresponding to the execution. This is represented in the present chapter
as the process’ states and associated to the execution of the tasks of the process in
their corresponding traces.

Efforts towards this taking into account data while measuring conformance has
already been made, as for instance by De Leoni et al. [16], which adopt an approach
using A∗ to calculate the alignment12 between the trace being evaluated and the pro-
cess model, which allows to evaluate data and resources in addition to the execution
order of the tasks in a trace.

While De Leoni et al. [16] claim their approach to be sub-linear in time with
respect to the size of the log and model being evaluated, it must be considered
that being A∗ heuristic based, hence trying to optimise the search space being in-
vestigated by smartly reducing it, there is always the possibility that part of the
search space containing the optimal solution (or a solution) for the problem to be
discarded. In general, conformance verification procedures are solvable in time poly-
nomial with respect to the size of the problem, as for instance the approach proposed
by Sun and Su [64], based on solving syntactic characterisations of some subclasses
of DecSerFlow constraints13.

Conformance and Legal Requirements

In addition to data, sometimes it is necessary to verify whether the actual behaviour
of an organisation (its logs) conforms with the legal requirements in place. While
business process regulatory compliance represents a way to indirectly verify this
through its pairwise use with conformance checking, sometimes a more direct ap-
proach is desirable in particular to determine if the actual execution of instances of
the process do not violate legal requirements. In this case, we can speak of run-time
compliance (if checked while a process instance is executed) or auditing (if it is a
post-mortem analysis of the instances). Generally, run-time compliance with the le-
gal requirements can be handled with the same techniques adopted for design-time
compliance. However, there are a few differences: the first is about the data to be

12Alignment is a measure related to conformance, and it measure how close, aligned, is a given
execution with the possible executions of a given process model.

13DecSerFlow is an extensible language, which stands for: declarative service flow language. It
can be used to specify and monitor service flows, in addition to verify their conformance.

1054

Computational Complexity of Compliance and Conformance

used for the annotations. At design time, we do not know the actual value for the
data (and most approaches assume annotations expressed as propositional/boolean
variables) and those values must be instantiated by the actual value occurring in
the instances of the processes. After the data has been instantiated, the theoretical
complexity of auditing is reduced to the complexity of the underlying logic/frame-
work given that the number of states is linear and it is determined by the number
of entries in the process log (and every instance corresponds to a single trace of the
process model). For run-time compliance, the issue is whether one is interested to
check if the current instance at the then current task is compliant, in which case
the complexity is the same as the complexity of auditing (given that the problem is
reduced to the case of a single trace); alternatively, one can check if it is possible
to terminate the current instance with no violations or all possible terminations are
compliant. Clearly, both cases reduce to the situation where we have to determine
if a sub-process model is compliant; in particular the (sub-)process model obtained
by the original process model where we delete all paths not passing from the current
task, and identifying the start of the (sub-)process model with the current task.
Hence, the problem of determining if there is a compliant termination is reduced
to the case of partial compliance, and all possible termination are compliant to full
compliance.

6.2 Normative Reasoning
Finally, after having discussed the relation between business process compliance and
conformance, we discuss the further relations with the area of Normative Reasoning,
tasked about reasoning about norms and normative concepts, and how they affect
various type of environment. While many different formalisms/logics/frameworks
have been proposed for normative reasoning, ranging from various deontic logics
[22], different systems of non-monotonic reasoning [56, 40, 25], event calculus [61],
Input/Output logic [50] and various forms of expert systems and AI and Law systems
[5], the study of the complexity of legal and normative reasoning has been largely
neglected. Despite this, the complexity classes for the different approach is well
understood: modal logic [46, 36] for deontic logics, though, with almost no results
for conditional and dyadic deontic logic14; complexity of default logic, argumentation
[6] for non-monotonic reasoning, and ad hoc results for event calculus [7]. Practically,
all approaches are NP-complete or with higher computational complexity. In what
follows we briefly discuss some notable exceptions.

Some of the work dedicated to the complexity of normative reasoning concerns
14In general conditional logics received much less attention than their modal counterparts, for

some complexity results see [3].

1055

Colombo Tosatto and Governatori

the investigation of the complexity of Input/Output logic [62, 63] where the com-
plexity of some I/O variants is investigated also in connection to the representation
of norms (including I/O with permissive norms; however, the work is dedicated to
the study the complexity of logics, and not to normative reasoning problems. Most
the problems (e.g., consistency, fulfilment) discussed by Sun and co-workers are not
tractable. For example, consistency is some of the basic I/O logic (simple-minded
I/O logic) is NP-complete, and fulfillment is coNP-complete, with higher complex-
ity for constrained I/O logics.

The second area of research related to computational complexity and normative
reasoning is the work on Defeasible Deontic Logic. Contrary to the work reported
above the Defeasible Deontic Logic (also known as PCL15 [31]), is computationally
feasible. [29] and [26] extended the result by [49] proving that the extensions of
Defeasible Logic with deontic operators and violation operator of [27] is still com-
putationally feasible, and the extension of a defeasible theory can be computed in
P, more specifically, the problem is linear in the size of the theory, where the size
of a theory is given by the number of rules and instances of literals in the theory.
The result was further extended to included permission and weak permissions [25].
Similarly, [33] prove that temporalising PCL, allowing for explicit deadlines, and
compensation does not increase the complexity of the logic, and the temporal ex-
tension can still be computed in time linear to the size of the theory, where, in this
case, the size depends also on the distinct instants of time explicitly appearing in
the given theory; this extends the result in [32].

[26] applied the work to the execution of business contracts, thus the performance
of a contract can be executed in linear time. Furthermore, they discussed the issue of
comparing contracts and proposed a normalisation procedure to this end. However,
they did not investigate the complexity of the normalisation problem. [33] address
this issue in the context of a temporal extension of the logic, and while they do not
give a complexity result they provide an (exponential) upper-bound. Accordingly,
they conjecture the problem to be computationally hard but argue that it might not
be a problem for real life applications since the problematic cases are typically not
very frequent and limited in the number of parameters.

In [28] the logic was used for modelling agents, in particular to the modelling
of the so called social agents, i.e., agents where there is a conflict between one of
their intention and a norm, they give an higher preference to the norm, dropping
thus the conflicting intention. However, Governatori and Rotolo shown that there
are situations where, even for social agents, adhering to the agent plan ends up in a
non-compliant situation. Accordingly, the restoring sociality problem is to identify

15Process Compliance Logic.

1056

Computational Complexity of Compliance and Conformance

a set of agent’s intentions to drop to prevent the agent’s plan to be non-compliant.
Governatori and Rotolo proved that when norms and agents are represented using
Defeasible Deontic Logic the restoring sociality problem is NP-complete. The logic
employed in [28] can be used to model business processes, after all, one can consider
a business process as the set of traces, where each trace is a sequence of task, where
the annotations corresponds to the effects of the tasks, and the states include the
preconditions of the tasks. Hence, the plan library of an agent can be understood as
business process (or a set of business processes), where the intentions and the facts
of a theory determine what are the traces/processes/sub-processes to be executed.
Accordingly, the restoring sociality problem can be seen as a special case to recovery
from non-compliance for business processes (in the nL- space).

7 Summary and Open Problems
In this chapter we focused our attention on the computational complexity of prov-
ing regulatory compliance of business process models. We first describe the vari-
ants of the problem by reusing the same classification used by Colombo Tosatto et
al. [11]. After discussing the existing computational complexity results, we moved
to discussing neighbouring areas which still require much investigation, in order to
understand the computational complexity of a broader spectrum of the variants of
the problem.

Finally, we conclude this chapter by listing the open problems identified.

7.1 Proving Partial Compliance for the Variant 1L-
This particular variant of the problem of proving regulatory compliance, identified
by Colombo Tosatto et al. [11], involves verifying whether a structured business
process model is compliant with a single conditional obligation whose parameters
are represented by using propositional literals.

While Colombo Tosatto et al. proposed a conjecture, reported in Conjecture 2,
stating that the variant 1L- should be able to be solved in time polynomial with
respect to the size of the problem, we proposed in the present paper the opposite
conjecture in Conjecture 1. However, no formal proof have been provided to show
that the conjecture is correct. Therefore, proving that either 1L- belongs to the
computational complexity class NP-c, or to the class P, remains a problem to be
solved.

Conjecture 2 (1L- is in P). We currently have no information about the computa-
tional complexity of 1L-. That is, we cannot infer its belonging to a computational

1057

Colombo Tosatto and Governatori

complexity class in a similar way as for nG+, as in this case the simpler variant
(1G-) is in P.

Our conjecture is that the computational complexity of 1L- is in P. We have
proven that moving from - to +, or from 1 to n, definitely brings the complexity
into NP-c. In general, solutions tackling such variants have to explore the entire set
of possible executions in the worst case scenarios, which precludes efficient solutions.
Despite moving from G to L seems to definitely increase the complexity, we strongly
believe that it does not influence the computational complexity of the problem enough
to move it into NP-c, and polynomial solutions are still possible.

7.2 Proving Regulatory Compliance of Unstructured Process Mod-
els

While the computational complexity of proving regulatory compliance of structured
business process models has been extensively studied, the same cannot be said for
unstructured process models. Therefore, a thorough analysis of the computational
complexity for these unstructured variants of the problem is still an open problem.
Considering that unstructured process models become structurally very similar to
petri nets, investigating this similarity can be the initial step towards this analysis.

Moreover, as currently for structured process models, the variants of the problem
are identified solely on adopting different properties of the regulatory framework
being used to check regulatory compliance, identifying a set of structural properties
of the models would allow to identify additional variants of the problem on the top
of the ones already identified. The advantage in this case could be to allow a divide
and conquer approach for studying the computational complexity of the problem,
and possibly identifying simpler and harder versions of the problem.

Finally, given the relations with petri nets, correlating the structural properties
of the variants of the compliance problems involving unstructured processes with
known issues of petri nets (i.e., the undecidability of coloured Petri Nets) may be
able to provide interesting results, which can potentially benefits both problems.

7.3 The Impact of Loops

Loops can be included in the business process models to improve the expressivity of
the problem, allowing the repeated execution of tasks. Despite the obvious usefulness
of including these type of constructs in process models, how much their inclusion
increases the computational complexity of the problem in either structured and
unstructured variants has not yet been studied.

As discussed in this chapter, introducing loops in business process models brings

1058

Computational Complexity of Compliance and Conformance

them closer to complete Turing machines, which also leads to the inheritance of the
problems affecting them (i.e., undecidability due to the halting problem). Therefore,
as mentioned while discussing the open problems related to proving compliance of
unstructured processes, identifying a set of properties allowing to identify a relevant
number of variants can help in the computational complexity analysis, as well as
allowing to identify, if it exists, the line between these problem’s variants separating
the ones which can be considered complete Turing machines from the ones which
cannot.

7.4 Conformance

While only tangentially related to the problem of proving regulatory compliance of
business process models, the solutions for these problem can be used in combination
to ensure stronger properties. While the computational complexity of verifying
conformance has been shown to not be a big obstacle for the problems considered,
their scope can be definitely broadened to cover more interesting variants, such
as for instance considering the regulatory requirements provided by a regulatory
framework while conformance is being verified, where the additional challenges are
related to the data (how to ensure that the “concrete” data at run-time/auditing
correspond to the “abstract” data specified in the annotations of the tasks. In
addition, normative requirements can span across multiple instances of the process
(and multiple processes) and, in general, the instances are not synchronised.

References
[1] Arya Adriansyah, Boudewijn F. van Dongen, and Wil M.P. van der Aalst. Towards

robust conformance checking. In International Conference on Business Process Man-
agement, pages 122–133. Springer, 2010.

[2] Carlos E. Alchourrón, Peter Gärdenfors, and David Makinson. On the logic of theory
change: Partial meet contraction and revision functions. Journal of Symbolic Logic,
50(2):510–530, 1985.

[3] Régis Alenda, Nicola Olivetti, and Gian Luca Pozzato. Nested sequent calculi for
normal conditional logics. Journal of Logic and Computation, 26(1):7–50, 2016.

[4] Ahmed Awad, Gero Decker, and Mathias Weske. Efficient compliance checking us-
ing BPMN-Q and temporal logic. In International Conference on Business Process
Management, pages 326–341. Springer, 2008.

[5] Trevor Bench-Capon, Michał Araszkiewicz, Kevin Ashley, Katie Atkinson, Floris Bex,
Filipe Borges, Daniele Bourcier, Paul Bourgine, Jack G. Conrad, Enrico Francesconi,
et al. A history of AI and Law in 50 papers: 25 years of the international conference
on AI and Law. Artificial Intelligence and Law, 20(3):215–319, 2012.

1059

Colombo Tosatto and Governatori

[6] Marco Cadoli and Marco Schaerf. A survey of complexity results for non-monotonic
logics. The Journal of Logic Programming, 17(2-4):127–160, 1993.

[7] Luca Chittaro and Alberto Montanari. Efficient temporal reasoning in the cached event
calculus. Computational Intelligence, 12(3):359–382, 1996.

[8] Yongsun Choi and J. Leon Zhao. Decomposition-based verification of cyclic workflows.
In Automated Technology for Verification and Analysis, pages 84–98. Springer, 2005.

[9] Silvano Colombo Tosatto. Proving Regulatory Compliance: Business Processes, Logic,
Complexity. PhD thesis, University of Luxembourg and Università di Torino, 2015.

[10] Silvano Colombo Tosatto, Guido Governatori, and Pierre Kelsen. Business process
regulatory compliance is hard. IEEE Transactions on Services Computing, 8(6):958–
970, 2015.

[11] Silvano Colombo Tosatto, Guido Governatori, and Nick R.T.P. van Beest. Checking
regulatory compliance: Will we live to see it? 09 2019.

[12] Silvano Colombo Tosatto, Guido Governatori, and Nick R.T.P. van Beest. Business
process full compliance with respect to a set of conditional obligation in polynomial
time. https://arxiv.org/abs/2001.10148, 1 2020.

[13] Silvano Colombo Tosatto, Guido Governatori, and Nick R.T.P. van Beest. Proving
regulatory compliance: A comprehensive computational complexity analysis. TBD,
2021 forthcoming.

[14] Silvano Colombo Tosatto, Pierre Kelsen, Qin Ma, Marwane El Kharbili, Guido Gover-
natori, and Leendert W.N. van der Torre. Algorithms for tractable compliance prob-
lems. Frontiers of Computer Science, 9(1):55–74, 2015.

[15] Byron Cook, Alexey Gotsman, Andreas Podelski, Andrey Rybalchenko, and Moshe Y.
Vardi. Proving that programs eventually do something good. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’07, pages 265–276, New York, NY, USA, 2007. ACM.

[16] Massimiliano de Leoni, Wil M.P. van der Aalst, and Boudewijn F. van Dongen. Data-
and resource-aware conformance checking of business processes. In Witold Abramowicz,
Dalia Kriksciuniene, and Virgilijus Sakalauskas, editors, Business Information Systems,
pages 48–59, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[17] Ivaylo Dobrikov, Michael Leuschel, and Daniel Plagge. Ltl. pages 204–211, 07.
[18] Amal Elgammal, Oktay Turetken, Willem-Jan van den Heuvel, and Mike Papazoglou.

Formalizing and appling compliance patterns for business process compliance. Software
& Systems Modeling, 15(1):119–146, 2016.

[19] Javier Esparza. On the decidability of model checking for several µ-calculi and petri
nets. In Sophie Tison, editor, Trees in Algebra and Programming — CAAP’94, pages
115–129, Berlin, Heidelberg, 1994. Springer Berlin Heidelberg.

[20] Sven Feja, Andreas Speck, and Elke PulvermÃĳller. Business process verification. In
GI Jahrestagung, pages 4037–4051, 2009.

[21] Nissim Francez. Fairness. Springer-Verlag, Berlin, Heidelberg, 1986.
[22] Dov Gabbay, Jeff Horty, Xavier Parent, Ron van der Meyden, and Leendert W.N.

1060

Computational Complexity of Compliance and Conformance

van der Torre, editors. Handbook of deontic logic and normative systems. College
Publication, 2013.

[23] Aditya Ghose and George Koliadis. Auditing business process compliance. In ICSOC
2007, pages 169–180, 2007.

[24] Guido Governatori. The Regorous approach to process compliance. In 2015 IEEE 19th
International Enterprise Distributed Object Computing Workshop, pages 33–40. IEEE,
2015.

[25] Guido Governatori, Francesco Olivieri, Antonino Rotolo, and Simone Scannapieco.
Computing strong and weak permissions in defeasible logic. Journal of Philosophical
Logic, 42(6):799–829, 2013.

[26] Guido Governatori and Duy Hoang Pham. DR-CONTRACT: an architecture for e-
contracts in defeasible logic. International Journal of Business Process Integration and
Management, 4(3):187–199, 2009.

[27] Guido Governatori and Antonino Rotolo. Logic of violations: A Gentzen system for
reasoning with contrary-to-duty obligations. Australasian Journal of Logic, 4:193–215,
2006.

[28] Guido Governatori and Antonino Rotolo. BIO logical agents: Norms, beliefs, intentions
in defeasible logic. Journal of Autonomous Agents and Multi Agent Systems, 17(1):36–
69, 2008.

[29] Guido Governatori and Antonino Rotolo. A computational framework for institutional
agency. Artificial Intelligence and Law, 16(1):25–52, 2008.

[30] Guido Governatori and Antonino Rotolo. A conceptually rich model of business process
compliance. In Sebastian Link and Aditya Ghose, editors, 7th Asia-Pacific Conference
on Conceptual Modelling, volume 110 of CRPIT, pages 3–12. ACS, 2010.

[31] Guido Governatori and Antonino Rotolo. Norm compliance in business process mod-
eling. In Proceedings of the 4th International Web Rule Symposium: Research Based
and Industry Focused (RuleML 2010), volume 6403 of LNCS, pages 194–209. Springer,
2010.

[32] Guido Governatori and Antonino Rotolo. Computing temporal defeasible logic. In
RuleML 2013, pages 114–128, 2013.

[33] Guido Governatori and Antonino Rotolo. Time and compensation mechanisms in check-
ing legal compliance. Journal of Applied Logics – IFCoLog Journal of Logics and their
Applications, 6(5):817–847, 2019.

[34] Heerko Groefsema, Nick R.T.P van Beest, and Marco Aiello. A formal model for com-
pliance verification of service compositions. IEEE Transactions on Services Computing,
11(3):466–479, 2018.

[35] Stephan Haarmann, Kimon Batoulis, and Mathias Weske. Compliance checking for
decision-aware process models. In International Conference on Business Process Man-
agement, pages 494–506. Springer, 2018.

[36] Joseph Y. Halpern and Yoram Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial intelligence, 54(3):319–379, 1992.

1061

Colombo Tosatto and Governatori

[37] Mustafa Hashmi, Guido Governatori, Ho-Pun Lam, and Moe Wynn. Are we done with
business process compliance: State-of-the-art and challenges ahead. Knowledge and
Information Systems, 01 2018.

[38] Mustafa Hashmi, Guido Governatori, and Moe Thandar Wynn. Normative require-
ments for regulatory compliance: An abstract formal framework. Information Systems
Frontiers, 18(3):429–455, 2016.

[39] Jörg Hoffmann, Ingo Weber, and Guido Governatori. On compliance checking for
clausal constraints in annotated process models. Information Systems Frontiers,
14(2):155–177, 2012.

[40] John F. Horty. Deontic logic as founded on nonmonotonic logic. Annals of Mathematics
and Artificial Intelligence, 9(1-2):69–91, 1993.

[41] Conrad Indiono, Walid Fdhila, and Stefanie Rinderle-Ma. Evolution of instance-
spanning constraints in process aware information systems. In OTM Confederated
International Conference “On the Move to Meaningful Internet Systems", pages 298–
317. Springer, 2018.

[42] Gerhard Keller and Thomas Teufel. SAP R/3 Process Oriented Implementation.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1998.

[43] Yonit Kesten, Amir Pnueli, Li-On Raviv, and Elad Shahar. Model checking with strong
fairness. Formal Methods in System Design, 28(1):57–84, Jan 2006.

[44] Bartek Kiepuszewski, Arthur H.M. ter Hofstede, and Christoph Bussler. On structured
workflow modelling. In Proceedings of the 12th International Conference on Advanced
Information Systems Engineering, CAiSE ’00, pages 431–445, London, UK, UK, 2000.
Springer-Verlag.

[45] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Holger Pfeifer, and Peter
Dadam. On enabling data-aware compliance checking of business process models. In
International Conference on Conceptual Modeling, pages 332–346. Springer, 2010.

[46] Richard E. Ladner. The computational complexity of provability in systems of modal
propositional logic. SIAM journal on computing, 6(3):467–480, 1977.

[47] Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations for
Business Processes – A Survey, pages 46–63. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2009.

[48] Ruopeng Lu, Shazia Sadiq, and Guido Governatori. Compliance aware business process
design. In International Conference on Business Process Management, pages 120–131.
Springer, 2007.

[49] Michael J. Maher. Propositional defeasible logic has linear complexity. Theory and
Practice of Logic Programming, 1(6):691–711, 2001.

[50] David Makinson and Leendert W.N. van der Torre. Permission from an input/output
perspective. Journal of philosophical logic, 32(4):391–416, 2003.

[51] Mediatrix Makungu, Michel Barbeau, and Richard St-Denis. Synthesis of controllers of
processes modeled as colored petri nets. Discrete Event Dynamic Systems, 9:147–169,
05 1999.

1062

Computational Complexity of Compliance and Conformance

[52] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the IEEE,
77(4):541–580, 1989.

[53] Shin Nakajima. Verification of Web service flows with model-checking techniques. In
Proceedings of First International Symposium on Cyber Worlds, pages 378–385, 2002.

[54] Artem Polyvyanyy, Luciano García-Bañuelos, Dirk Fahland, and Mathias Weske. Max-
imal structuring of acyclic process models. The Computer Journal, 57, 01 2014.

[55] Artem Polyvyanyy, Luciano García-Ba nuelos, and Marlon Dumas. Structuring acyclic
process models. Information Systems, 37(6):518 – 538, 2012.

[56] Henry Prakken and Giovanni Sartor. Law and logic: A review from an argumentation
perspective. Artificial Intelligence, 227:214–245, 2015.

[57] PWC. 2017 Risk and Compliance Benchmarking Survey, 2017.
[58] Anne Rozinat and Wil M.P. Van der Aalst. Conformance checking of processes based

on monitoring real behavior. Information Systems, 33(1):64–95, 2008.
[59] Shazia Sadiq, Guido Governatori, and Kioumars Namiri. Modeling control objectives

for business process compliance. In International conference on business process man-
agement, pages 149–164. Springer, 2007.

[60] Shazia Sadiq, Maria E. Orlowska, and Wasim Sadiq. Specification and validation of
process constraints for flexible workflows. Information System, 30(5):349–378, 2005.

[61] Marek J. Sergot, Fariba Sadri, Robert A. Kowalski, Frank Kriwaczek, Peter Hammond,
and H. Terese Cory. The british nationality act as a logic program. Communications
of the ACM, 29(5):370–386, 1986.

[62] Xin Sun and Diego Agustín Ambrossio. Computational complexity of input/output
logic. In Antonis Bikakis and Xianghan Zheng, editors, Multi-disciplinary Trends in Ar-
tificial Intelligence - 9th International Workshop, MIWAI 2015, Fuzhou, China, Novem-
ber 13-15, 2015, Proceedings, volume 9426 of Lecture Notes in Computer Science, pages
72–79. Springer, 2015.

[63] Xin Sun and Livio Robaldo. On the complexity of input/output logic. Journal of
Applied Logic, 25:69–88, 2017.

[64] Yutian Sun and Jianwen Su. Conformance for decserflow constraints. In Xavier Franch,
Aditya K. Ghose, Grace A. Lewis, and Sami Bhiri, editors, Service-Oriented Computing,
pages 139–153, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[65] A. M. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, s2-42(1):230–265, 01
1937.

[66] Wil M.P. van der Aalst. A class of Petri nets for modeling and analyzing business
processes. Computing science reports. Technische Universiteit Eindhoven, 1995.

[67] Wil M.P. van der Aalst. Verification of workflow nets. In Proceedings of the 18th
International Conference on Application and Theory of Petri Nets, ICATPN ’97, pages
407–426, London, UK, 1997. Springer-Verlag.

[68] Wil M.P. van der Aalst. The application of petri nets to workflow management. Journal
of Circuits, Systems, and Computers, 8(1):21–66, 1998.

1063

Colombo Tosatto and Governatori

[69] Wil M.P. van der Aalst. Distributed process discovery and conformance checking.
In Juan de Lara and Andrea Zisman, editors, Fundamental Approaches to Software
Engineering, pages 1–25, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[70] Wil M.P. van der Aalst. Process Mining: Data Science in Action. Springer, Heidelberg,
2 edition, 2016.

Received 1 February 20211064

