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Abstract— Face recognition can be studied as an associative
memory (AM) problem and kernel-based AM models have
been proven efficient. In this paper, a hierarchical Kernel
Associative Memory (KAM) face recognition scheme with
a multiscale Gabor transform, is proposed. The pyrami-
dal multiscale Gabor decomposition proposed by Nestares,
Navarro, Portilla and Tabernero not only provides a very
efficient implementation of the Gabor transform in the
spatial domain, but also permits a fast reconstruction of
images. In our method, face images of each person are
first decomposed into their multiscale representations by a
quasicomplete Gabor transform, which are then modelled
by Kernel Associative Memories. In the recognition stage,
a query face image is also represented by a Gabor mul-
tiresolution pyramid and the reconstructions from different
KAM models corresponding to even Gabor channels are
then simply summed to give the recall. The recognition
scheme was thoroughly tested using several benchmarking
face datasets, including the AR faces, UMIST faces, JAFFE
faces and Yale A faces, which include different kind of
face variations from occlusions, pose, expression and illu-
mination. The experiment results show that the proposed
method demonstrated strong robustness in recognizing faces
under different conditions, particularly under occlusions,
pose alterations and expression changes.

Index Terms— biometrics, face recognition, Gabor wavelet
transform, associative memory, kernel methods

I. INTRODUCTION

Face recognition as an important field of biometrics
is currently an active research area in computer vision.
Research interests are mainly motivated by the demands
from security, finance, law enforcement and military.
Mug-shot database matching, identity authentication for
credit card or drivers license, access control and video
surveillance are the typical examples of potential appli-
cations. Many influencial methods have been proposed
in the past, such as Eigenface [14], Fisherface [15], and
Elastic Graph Matching [16]. Recent years have also

This paper is based on “Robust Face Recognition by Multiscale
Kernel Associative Memory Models Based on Hierarchical Spatial-
Domain Gabor Transforms,” by B. Zhang and C. Leung, which appeared
in the Proceedings of the 7th International Conference on Automatic
Face and Gesture Recognition (FGR 2006), Southampton, UK, April
2006. c� 2006 IEEE.

seen considerable progresses made on other related prob-
lems such as facial expression recognition, face tracking
and detection. Despite the substantial effort and some
successes, the face recognition problem remains one of
the most challenging research topics. One of difficulties
arises from the robustness of face recognition systems
to such factors as occlusion, expressional alterations,
illumination variations and viewing direction changes.
Recently, methods have been proposed to handle the
problems individually [5]. The general questions about
robust face recognition, however, are largely unsolved.

Two fundamental issues in designing a face recognition
system are feature extraction and classification. Facial
feature extraction attempts to find the most appropriate
representation of the face images. Among the different
schemes proposed in the literature, one of the early
approaches is geometric feature based [26], in which
major face components and/or facial feature points are
detected and the distances between the feature points
and the relative sizes of the major face components are
computed. The efficiency and accuracy of the feature
points detection are the main problems of these kinds of
methods. Subsequently, appearance based methods have
become dominant, which use the holistic features [14, 15]
or analytic local feature of face images [16]. The appear-
ance based approaches, however, are usually sensitive to
variations from pose, illumination and expression.

In recent years, facial feature description based on
Gabor filtering has been recognized as one of the most
successful methods. The 2D Gabor functions proposed by
Daugman [1] are local spatial bandpass filters that achieve
the theoretical limit for conjoint resolution of information
in the 2D spatial and 2D Fourier domains. An important
insight that has been generally understood is that simple
cells in the visual cortex can be modeled by such Gabor
functions. Because of the biological relevance and some
desirable computational properties, Gabor filters have
been extensively used in image analysis, for example,
texture analysis. Gabor filters also bring a number of
advantages in face recognition, largely due to the si-
multaneous description of spatial frequency structure and
orientation selectivity. The Dynamic Link Architecture
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(DLA) model propounded by Lades and coworkers [9]
is the pioneering work of applying Gabor filters in face
recognition, which extracts Gabor jets on a grid overlaid
on the face image. The DLA model was later extended
by Wiskott and coworkers by utilizing Gabor transform
around given facial landmarks as attributes [6]. Recently,
Gabor wavelets have also been used differently for face
or facial expression recognition. For example, in [10] and
[12], a face image is convolved with Gabor filters and
features extracted from the face images are subject to
LDA or other classification algorithms. All these applica-
tions of Gabor transforms, however, are computationally
expensive.

Classifying facial images based on the chosen features
is another important issue in face recognition. Given face
images as training samples for a set of subjects, a face
recognition system should identify a specific subject by
a query face image. From a general pattern recognition
point of view, a subject to be identified from a facial im-
age represents a class and the objective of face recognition
is to decide in which class a query facial image belongs
to. The general methodology in face recognition adopts
the multi-class classification paradigm, with a range of
different classification methods having been attempted,
for example, the nearest neighbor (NN) classifier and
multilayer perceptron (MLP). A particular difficulty in
the multi-class classification paradigm is the unbalanced
number of samples per class (subject) versus the total
number of classes. In most situations, only a few of the
sample face images are available for a given subject,
which is known as small sample size (SSS) problem in
pattern recognition.

To tackle above problems in face classification,
memory-based models have been proven efficient [7, 13].
In such a model, a query face image will invoke a recall of
a number of reconstructed images from different models
created beforehand and the model with the recall best
matched query image defines the class label. Design of a
memory-based system for face images can generally be
established based on neural schemes for pattern storage
and retrieval, such as the well-known correlation memory
[22] or dynamic associative memories [21].

Auto-associative memories (AM) offer a principled
way for storing, recognizing and categorizing faces rep-
resentated as pixel-intensity images [22, 23-25]. An auto-
associative memory is a special type of model that can
recall one of the original patterns it has learnt by recon-
structing a query pattern, which, on some occasions, is a
distorted or incomplete version of the patterns the model
had seen. In face recognition, linear AM models share
the same limitations of the Eigenface method due to their
similar eigen-decomposition. For example, they all give
high similarities indiscriminately for two images from the
same person or from two different persons.

To overcome the weakness of linear associative mem-
ory models, we have introduced kernel methods by
nonlinearly mapping the data into a high dimensional
feature space through operating a kernel function with

input space. An appropriately defined Kernel Associa-
tive Memory (KAM) inherits the Radial Basis Function
(RBF) network structure with input being duplicated at
output as target. For face recognition, a modular structure,
with each subject being assigned a KAM model, has
proven advantageous [7]. Each personalized kernel KAM
model codes the information of the corresponding subject
without counter-examples, which can then be used like
discriminant functions: the recognition error is in general
much lower for examples of the person being modelled
than for others.

To further improve the face recognition performance
from the Kernel Associative Memory, an efficient facial
image representation should be considered. As described
above, Gabor filters can provide multi-resolution and
multi-orientation local facial features. However, the lack
of a direct reconstruction method makes the general Gabor
filters difficult to work with face memory modelling. In
this paper, we present a new face recognition scheme
by creating a hierarchy of KAM models which are
based on an optimized, spatial-domain implementation
of multiscale Gabor representation of face images [8].
Specifically, face images of each person are first de-
composed into their spatial/frequency domains by Gabor
transforms and then the multiscale Gabor representations
are modelled by a hierarchy of kernel associative memory
models. While Gabor properties of spatial localization,
orientation selectivity and spatial frequency selectivity
provide local and discriminating features, KAM offers the
means to capture all intra-class variations. These features
come up with a number of invariance properties that are
important in face recognition, particularly the invariance
to poses, occulusion and expression.

We use several benchmark face recognition datasets
to demonstrate the robustness of the proposed system,
including the multi-pose UMIST data, AR face database,
whcih contains various occlusions, the Japaness Female
Expression Database (JAFFE), and the Yale A face set,
which include illumination changes.

The paper is organized as follows. The next section
first briefly introduces spatial-domain Gabor transforms,
followed by a short examination of previous work on
kernel associative memories and their applications in
face recognition. The extension of KAM to hierarchical
structure is introduced in Section III and experimental
results for different face datasets are detailed in Section
IV.

II. MULTISCALE FACE IMAGE REPRESENTATION

BASED ON HIERARCHICAL SPATIAL-DOMAIN GABOR

TRANSFORMS

Two-dimensional Gabor functions were proposed by
Daugman [1] to model the receptive field profiles in
cortical simple cells, which are characterized as local-
ized, orientation selective, and frequency selective. They
are widely used in image processing, computer vision,
neuroscience and psychophysics. In face recognition, the
Dynamic Link Architecture proposed in [9] and the elastic
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bunch graph matching method in [6] are the most fre-
quently cited models based on Gabor functions. Gabor
wavelet representation has also been proved useful for
classifying facial actions in expression recognition [11].

The general form for a complex-valued 2D Gabor
function is the product of a Gaussian envelope and a plane
wave, defined as:

���� �� �
�

������
���� �

�

�
�
��

���
�
��

���
� � �

���� �	���
��� ���� � (1)

where ��� �� is the spatial centroid of the elliptical
Gaussian window. The Gabor function can be understood
as a Gaussian function shifted in frequency to position
�
�� ���, i.e, at a distance of

�

�� � ��� from the origin

and at an orientation of tan�����
��

�. In the above equation,
�
�� ��� are referred to as the Gabor filter spatial central
frequency. The parameters ��, �� are the space constants
of the Gaussian envelop along the � and � axes, respec-
tively and determine the filter bandwidth. Gabor functions
form a complete but nonorthogonal basis set. Expanding
a signal using this basis provides a localized frequency
description [1].

As Gabor functions described above are not orthogonal,
the classic Gabor expansion is computationally expensive,
having unusual dual basis functions [8]. Further, there
is no straightforward way to obtain reconstruction from
traditional Gabor transforms. To solve these problems,
a multiresolution pyramid image representation was pre-
sented in [8], using different Gabor functions as basis
functions. A set of Gabor filters is first applied to the
image and then the same set of filters is applied to the
reduced versions of the image through low-pass filtering
and down-sampling in a factor of 2, just as the operations
in other orthogonal wavelet transforms.

In image processing and computer vision, multiscale
modeling has attracted increasing interest, often from a
human vision research perspective. For example, wavelets
and multiscale filter banks have been shown more efficient
for coding texture features than single scale models [27],
which is consistent with the fact human vision system
organizes visual information in a multiscale way. Phys-
iological and psychophysical evidences indicate that the
photoreceptor response image is filtered by visual mech-
anisms sensitive to patterns of different scale, and the
response characteristics of these mechanisms are bandpass
in the spatial frequency domain [28]. In [8], a multiscale
Gabor transform was proposed as a gerenal tool for vision
tasks, which performs a log-polar sampling of the image
spectrum, trying to imitate the early vision process [27].
The spectral sampling is done by applying a bank of
bandpass Gabor filters with bandwidths proportional to
their central frequencies, which are located in a discrete
set of radial and angular frequency values [8,27].

In the particular case of the Gaussian envelope having
circular symmetry, and assigning a zero phase to the
complex exponential, the expression for a Gabor function
tuned to the frequency ��, orientation �, and centered at

the origin ��� � 	� �� � 	� can be written as:

������������� �� � ����������� � ���� �

����������� 
�� � � � �� ���

(2)

where � determines the spatial frequency bandwidth [8].
The four subscripts account for localization in both the
spatial and the frequency domains, �	� 	� and ��� �
respectively. From the basic Gabor function (2) the com-
plete set of functions used for sampling the joint space-
frequency domain is obtained by rotations, with a ���

step, to get four orientation channels in the frequency
domain; by stretching, by a factor of two, to halve the
frequency of the sinusoid; and by translations in � and �
to sample the spatial domain.

The pyramidal multiscale Gabor wavelet transform con-
sists of subtracting from the original image its low-pass
filtered version (obtained in the first level of the pyramid,
before down sampling), together with the highest fre-
quency Gabor channels. At a given scale, the coefficients
of the Gabor transform are simply obtained through
convolution of the image with each one of the filters. The
optimized spatial domain implementation proposed in [8]
has a number of advantages. For example, it is quasi-
complete and permits a very efficient implementation and
allows a very fast reconstruction of the image, by simply
adding the set of weighted channels. The weights are fixed
and have been designed to minimize the reconstruction
error.

As an example, Figure 1 shows a three-level Gabor
decomposition of an image, with each level consisting of
4 even channels. Here the Gabor wavelets were applied
to the entire face image, which means the Gabor wavelet
representation of a face image is the convolution of
the image with a family of Gabor kernels at different
scales and different orientations. For convenience, the
real parts of the convolution result from applying the
Gabor transforms to an image is called Gaborfaces, as
was termed in [12]. One of the main features of the
multiscale Gabor transform is that the reconstruction is
straightforward and consists of simply adding together all
the even Gabor channels plus the residuals, as shown by
the bottom left reconstrcuted face.

III. KERNEL ASSOCIATIVE MEMORY AS

COMPUTATIONAL MODEL OF FACES

A. Brief Review of Associative Memory Models

Associative memory is an interdisciplinary research
topic attracting interests from areas such as cognitive
psychology, cognitive neuroscience, artificial neural net-
works, computer vision and pattern recognition. Neu-
ronal associative memories models aim at abstracting the
neural networks mechanisms of learning and association
which stems from the hypothesis in Hebb’s theory [2].
Many neural associative memories have been advocated
and some of the models emphasize the computational
attributes for local strongly connected cortical circuits
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Figure 1. A sample face image represented by a hierarchy of multiscale Gabor wavelet transforms (three levels, 4 channels).

[3]. The computational function often involved in asso-
ciative memories is the storage and error-tolerant recall
of distributed activity patterns. In [22], the memory recall
was called associative pattern completion as it implies the
completion of a noisy pattern according to the memory.

Mathematically, the associative memory model design
problem can be formulated as follows [3]: Given a finite
set of desired memory associations ������������ � �
�� �� � � � ��, the first task is to determine a function �
which satisfies

���� � �������� ��� ��� � � �� � � � �� (3)

In other words, � is a function that relates patterns ����

and ���� such that when a ���� is encountered afterwards,
the other pattern ���� will be reliably retrieved.

The second task of associative memory is to guarantee
that not only does � store the given associations, but it
also provides noise tolerance and error correction capa-
bilities. In this case, for each noisy version ���	� of ����,
the memory should be able to retrieve the uncorrupted
output, namely, ���� � ��������.

Associative memory models have been extensively an-
alyzed in the artificial neural network literature [21]. For
simple linear associative memory models, a given input
vector (termed as key) � � �� will bring forth a recalled
pattern �� � �
 based on the following simple linear
relation:

�� � ��� (4)

where � is a memory matrix built from samples, by
some simple algebric operations, for example, outer prod-
uct of two vectors.

The model represented by (4) has been experimented
in face recognition [23-25], which gives the capability
to combine multiple prototypes belonging to the same
person in an appropriate way to infer a new image of the
person. An improved model can be found in [22], which
guarantees perfect retrieval of stored memories as long
as the set ����� � � � �� � � ��� is linearly independent.
For perfect storage of �, the matrix � must satisfy the
matrix equation

� � �� (5)

where � � ����������� ���������. The above equation
always has at least one solution if all � vectors ����

(columns of X) are linearly independent, which necessi-
tates that � must be less than or equal to � . For face
recognition and many other pattern recognition probelms,

� � � is always true. With the assumption of indepen-
dent ����, it can be seen that an exact solution � is not
unique. In most situations, the minimum Euclidean norm
solution is

� � �	� (6)

where �	 is the pseudoinverse matrix of �, that is,
�	 � ��
�����
. Kohonen showed that such an
autoassociative memory can be used to store images of
human faces and reconstruct the original faces when
features have been omitted or degraded [22].

B. Previous Studies on Kernel Associative Memory

Developed from the general kernel method [20], the
Kernel Associative Memory (KAM) methodology [7, 13]
attempts to map the input features to a high dimensional
non-linear feature space, then reconstruct the input space
from the kernel space with much reduced feature dimen-
sion.

Denote a reproducing kernel Hillbert space by �	 and
a positive-definite function in �	 by ���� ��. The inner
product in �	 can be described by

� ��� �� �� ���� �� �

where ���� �� is a positive-definite function in �	, which
is also called the reproducing kernel . Let �� be a linear
mapping function from �	 to the input space �
 . The
principle of kernel associative memory methodology is to
perform auto-associative mapping via the kernel feature
space, i.e., reconstructing patterns from their counterparts
in �	 [13]:

�� � �
��
� ������� ��� � � 
���� �

where ���� � ���� �� represents the feature in functional
form in �	 and the subscript � denotes the function for
the reverse mapping.

When the patterns to be reproduced are multidimen-
sional, �� will be composed of a set of functions �����,
each corresponding to an element of the output space:
�� � ���� � � � � � ��� �� . Consider an element function ���
and omit the element label �, the function in linear form
is

�� � �������� �� ������� � �

Here �� represents an element of the output vector ��, and
�� is a vector in the feature space. Suppose the vector ��
can be spanned by the images of � training samples:

�� �

��

���

������� �
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then the linear function �� can be written as

�� � �

��

���

������������ � �

�

���

� �������� � �
�

(7)
where � � ���� � � � � ��
 is the vector of expansion coef-
ficients, and � � ��������� � � � � �������
 represents
the vector of kernel products. In the above equation ,
� determines how much a kernel can contribute to the
reconstruction.

Given a set of samples, for example, ������� � � � ���
for training, we can first compute the kernel product
vectors ������� � � � ���. The desired output or the du-
plication of input can be expressed as

� �  ! � (8)

where � is the matrix with each column a training
sample, � � ������� � � � ���, and ! represents the
matrix with each column a corresponding kernel product
vector, ! � ������� � � � ���.

In [7], a simple method of learning the projection ma-
trix  was proposed by finding a matrix that minimizing
the empirical square error

�
� ���� � �����

�, which gives
us a minimization result:

 � �!	 (9)

where!	 is the pseudo-inverse of the matrix!, namely,
!	 � �!�!���!� .

C. Kernel Associative Memory With Multiscale Gabor-
faces

Suppose that we have " subjects, with 	-th subject
having �� face images ����� � � � �� � � � � �  � �� � � � �!�.
For each face image, the multiscale Gabor transform will
yield # � � Gaborfaces as elaborated in Section 2, with
# being the number of decomposition levels and � the
number of Gabor channels.

Suppose ������ � � � �� are the training face images
for a subject. For simplication, we choose � � " and
# � # as an explanation for the multiscale transforms. For
each subject, �#����� KAM models will be constructed
corresponding to � channels at # decomposition levels
and low-pass residual. At a given level, a channel-specific
kernel product vector will be first calculated. Using � ���

�

to represent the matrix from the� -th level and �-th channel
and ����

� the corresponding multiscale Gabor representa-
tions, which we call multiscale Gaborfaces (converted to
vectors), the expected output from the kernel associative
memory is described by equation (7) and the least square
solution of ����

� is given by equation (9).
In the testing phase, a query face image � will be first

transformed into # � � levels of pyramidal Gabor repre-
sentations, with � channels of Gaborfaces at each level.
At each level, the channel-specific testing Gaborfaces will
be compared with the corresponding training Gaborfaces
produced by different subjects to yield the kernel product
vectors ���������� � � �� � � � � ��� � �� � � � � "� � � �� � � � � �.

The reconstructed Gaborfaces ��
���
�� ��� are given by (8) and

the overall recalled face �� for the query is the addition of
these reconstructed Gaborfaces. The discrepancy between
them can be defined by their Euclidean distance

$��� ��� � ���� ������ (10)

The closeness between the query face image � and the
reconstruction �� from the hierarchy of KAM models can
also be measured by the cosine of the angle between the
vectors �� and �, i.e.,

cos������ �
�� ��

������ � �����
� (11)

with cosine of 1 indicating a perfect reconstruction of the
query image.

The face recognition system consists of subject specific
hierarchy of multiscale KAM models, each offering a
categorization of the Gaborfaces of the respective subject.
The model building stage is demonstrated by Figure 2,
which assigns the hierarchical, multiscale KAM models
to each subject. When a query image � is presented to
the recognition system, an #-level Gaborfaces are first
obtained by applying the multiscale Gabor transforms.
The Gabor representation from a specific channel then
presents the input to all the corresponding KAM models
at that level to yield individual estimations, and the final
reconstruction is the simple addition of the estimations
from different levels and channels. Figure 3 further il-
lustrates this query-reconstruction process. A similarity
measurement (11) between the query image and a recalled
image is then performed to determine which of the
recalled images best matches the query.

IV. EXPERIMENTAL RESULTS

The proposed algorithm has been experimentally ver-
ified using several publically available human face
images datasets, including (1). UMIST Datasets, (2)
JAFFE expressional faces, (3) AR faces rom Purdue
University and (4) Yale A faces. All these databases
can be found from the Face Recognition Homepage
http://www.face-rec.org/databases/.

Experiments were mainly conducted towards some
comparisons of the recognition accuracy from the pro-
posed model and some other methods, particularly the
Eigenfaces [14] and the KAM [7] models.

A. Experiment with the UMIST multi-poses face dataset

The UMIST Face Database consists of 564 images of
20 people. Subjects cover a range of race/sex/appearance.
The images of each subject cover a range of poses from
right profile (�$	�) to frontal (	�)[17]. Examples of the
UMIST database are shown in the top of Figure 4.

UMIST faces is one of the benchmark datasets for
multi-view face recognition, which is a great challenge
in computer vision because the variations between the
images of the same face due to viewing direction are
almost always larger than image variations due to change
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Figure 2. Illustration of the multiscale Gabor kernel associative memory models

Figure 3. Illustration of the query reconstruction procedure.

in face identity. A face recognition system robust to pose
variances, should be able to recognize the person even
though the test image and the database images have quite
different poses.

All these images of UMIST database are cropped to
the size of ��� � $�. In this experiment, we randomly
select roughly half number of the face images of each
person as the training set, and the remaining images as
the test set. In both training and testing, each image
undergoes three levels of Gabor transforms. There are
eight channels decompositions in each level, plus low-
pass residual (LPR) .

To evaluate the recognition performance, we use the
performance measurement cumulative match scores, by
which an identification is regarded as correct if the true
object is in the top � matchs. The bottom plot in Figure
5 illustrates the cumulative match scores of the proposed
multiscale KAM method, the previously proposed KAM
with the LL subband coefficient from orthogonal wavelet
transform as facial features [7], and Eigenface operating
on downsized images with resolution (�%��%). The run is
plotted along the horizontal axis, and the vertical axis is
the percentage of correct matches. The experiment results

demonstrated the robustness of the proposed method to
the pose variances.

Most of the research on pose invariant recognition is
based on either using different views of the person for
training, or by generating a 3D model by which more
views can be generated. The method proposed in [29] is
a typical example which build a view-specific eigenspace
and train a corresponding neural network for classifi-
cation. Generally, the issue of recognizing faces from
different poses is largely unresolved. Experimental results
on the UMIST multi-poses faces show that our proposed
method can achieve very high recognition accuracy even
if the poses undergo large changes.

B. Experiments with AR Database

The AR faces contain 3,315 color images correspond-
ing to 126 peoples faces (70 men and 56 women). There
are 26 different images for each subject. For each subject,
these images were recorded in two different sessions
separated by two weeks, each session consisting of 13
images. For illustration, some images different subjects
are shown in Figure 6. Images feature frontal view faces
with different facial expressions, illumination conditions,
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Figure 4. Samples from the UMIST dataset.
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Figure 5. The cumulative match scores for the comparison of Eigenface, Kernel Associative Memory (KAM), and the proposed multiscale KAM
from Gabor transforms (Gabor-KAM).

Figure 6. Sample face images from the AR face database.
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Figure 7. Average recognition accuracies from the eight AR face databases.

and occlusions (sun glasses and scarf).

Experiments were carried out to evaluate the perfor-
mance of our proposed method. All the images were
cropped to the size of �	� � "�. For each subject, the
images were randomly divided into two parts of equal
size for training and testing. All the images are then
decomposed by three level spatial Gabor wavelet trans-
form, each level yielding eight channels representations
of size �	� � "�, �� � �#, and �% � ��. For each of
the eight databases, 10 experiments were conducted for
comparing (1). the KAM with the LL subband coefficient
from orthogonal wavelet transform as facial features [7],
(2). the multiscale KAM method with hierarchical Gabor
transforms presented in this paper, and (3). the Eigenface

method with downsized images (����#). The comparison
of the averaged recognition performances is illustrated
in Figure 7, which shows that the proposed hierarchical
KAM is always best among the three schemes.

In real-world applications of face recognition, observed
faces are often partly occluded by sunglasses, hands, and
so on. To make face recognition systems widely applica-
ble, robustness to occlusions is an important requirement.
The problem of partially occluded faces has been recently
addressed [18-19] by combining detection methods. The
difference between our method and other schemes is that
we do not make any assumptions about the face variations
and thus do not intoduce occlusion detections. The satis-
factory effectiveness of the multiscale kernel associative
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memory model for the recognition of occluded images
has been verified by the above experimental results.

C. Experiment with the JAFFE expressional faces

The JAFFE database, which has been used in facial
expression recognition, consists of 213 images of 10
Japanese females. The head is almost in frontal pose. The
number of each image represent one of the 7 categories of
expressions (neutral, happiness, sadness, surprise, anger,
disgust and fear). All these images of JAFFE database
have the size of ��% � ��% pixels. Some sample images
are illustrated in Figure 8.

As facial expression variations are present in most of
the real face recognition systems, we apply the porposed
multiscale KAM model to the JAFFE face database to
test the robustness of the recognition performance. The
database is partitioned into two sets: a variant number
of images of each of subject are randomly extracted for
training while other remaining ones are used for testing
the recognition performance. Table 1 shows the results
of recognition accuracies from the present model, the
previous KAM [7], and eigenface method, versus the
different number of samples used in the training.

Table 1. Recognition accuracy versus the number
of training images.

# Samples 3 4 5 6
Gabor KAM 97% 98% 99% 100%

KAM 97% 97% 98% 99%
Eigenface 85% 94% 95% 96%

The results show that the multiscale KAM based on the
pyramidal spatial-domain Gabor transform is quite robust
to variations in facial expression.

D. Experiment with the Yale A faces

The last face data we tested is the Yale A faces which
contains 155 frontal face images of fifteen individuals
(males and females), taken under different lighting condi-
tions. Five images were taken under different point light
sources, one with or without glasses, and about four with
different facial expressions. Five sample images of the
first subject are illustrated in Figure 9. In the experiments,
face images are cropped out from original images, with
size of �		 � ��	, without any pre-processing.

We tested the recognition accuracy of multiscale KAM
model from three levels Gabor transform with eight chan-
nel decompositions in each level, with comparison with
the KAM model in [3] using orthogonal wavelet transfrom
coefficients as features. Five images of each subject were
randomly selected for training and the remaining six
images of each subject for testing. The cumulative match
scores are plotted in Figure 10, which indicates again the
performance preference for the multiscale KAM model.

V. CONCLUSION

Many face recognition systems can perform quite well
under good circumstances, but tend to suffer when varia-
tions in expression, illumination, occlusion (i.e., glasses,
facial hair), or pose are in existence. Although much of the
current research is focused upon improving performance
in the presence of confounding factors, most algorithms
address the confounding factors individually and there
seems no principled way to study robust face recognition
when the variations from illumination, expression, occlu-
sion, and pose might present simultaneously. Viewing face
recognition as an associative memory problem, this paper
explores the advantages of incorporating the multiscale
Gabor wavelet transforms with kernel associative memory
models. To obtain good robustness to some common face
variations, a hierarchical KAM modeling scheme has been
designed based on a spatial-domain multiresolution Gabor
transform. The combination of multiscale Gabor filters
and kernel associative memory models results in highly
discriminative features for classification. The feasibility
of the proposed method has been successfully tested
on face recognition using data set from the multi-pose
UMIST database, the AR face data which include various
occlusions, the JAFFE expressional faces, and the Yale A
faces which have illunimation changes. The effectiveness
of the method is shown favorably in terms of both the
robustness and the comparative performance against two
other face recognition schemes, i.e., KAM and Eigenface
methods.
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