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Abstract: The incidence of infectious complications, compared with the general population and
the pre-transplant status of the recipient, increases substantially following kidney transplantation,
causing significant morbidity and mortality. The potent immunosuppressive therapy given to prevent
graft rejection in kidney transplant recipients results in an increased susceptibility to a wide range of
opportunistic infections including bacterial, viral and fungal infections. Over the last five years, several
advances have occurred that may have changed the burden of infectious complications in kidney
transplant recipients. Due to the availability of direct-acting antivirals to manage donor-derived
hepatitis C infection, this has opened the way for donors with hepatitis C infection to be considered
in the donation process. In addition, there have been the development of medications targeting the
growing burden of resistant cytomegalovirus, as well as the discovery of the potentially important role
of the gastrointestinal microbiota in the pathogenesis of post-transplant infection. In this narrative
review, we will discuss these three advances and their potential implications for clinical practice.

Keywords: cytomegalovirus; direct acting antivirals; donor-derived infections; gastrointestinal
microbiome; hepatitis C; knowledge acquisition; letermovir; kidney transplantation

1. Introduction

Kidney transplant recipients have a greatly increased risk of infection-related morbidity and
mortality compared with the general population and the pre-transplant status of the recipient [1].
Worldwide, the incidence of infectious complications following kidney transplantation has been
reported to range between 49 to 80% [1]. This increased risk is likely due to various immunosuppressive
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medications required to prevent allograft rejection [1,2]. Donor-transmitted infections, such as Hepatitis
C virus (HCV), may also contribute to a heightened risk of infectious complications post-transplantation
and have generally resulted in organs from high risk donors (e.g., HCV-positive) being excluded
from transplant consideration. In addition to the virus itself, there is emerging data that HCV is
associated with increased incidence of bacteremia, ventilator associated pneumonia and catheter-related
bloodstream infection [3]. New treatments for donor-transmitted infections, such as direct acting
antiviral drugs for HCV, substantially mitigate this risk [4]. Furthermore, cytomegalovirus (CMV)
resistance appears to be emerging, which has necessitated the development of newer generation
treatments to counteract this problem [5]. Finally, there is emerging evidence that kidney transplant
recipients may have significantly altered gastrointestinal microbiota, which in turn may be associated
with increased risks of infection as a result of transmural migration of bowel micro-organisms, altered
immunosuppressive medication pharmacokinetics and progressive kidney disease [6–8]. This review
will discuss these three recent, key, promising, innovative approaches to potentially mitigating
infectious burden in kidney transplant recipients through direct acting antiviral drugs targeting HCV,
new treatments for CMV resistance, and therapeutic manipulation of the gut microbiota.

2. Changes in the Management to Donor-Derived Infections

Donor-derived infections in kidney transplant recipients causes significant morbidity and
mortality [9,10]. The incidence of donor-derived infections has been reported to be approximately 0.2%
in solid organ transplantation [11]. Donor-derived infections may be classified into either expected or
unexpected infections [12]. Expected donor-derived infections, namely CMV and Epstein-Barr Virus,
may be identified by donor-recipient screening. Unexpected donor-derived infections are always a
potential concern and cannot be completely excluded, and may include viral and bacterial infections
such as urinary tract infections [10,11]. Of all the donor-derived infections reported, viral infections
are most frequent [9,10].

Hepatitis C virus (HCV) is a well-recognized donor-derived infection. HCV positive donors were
previously not offered to HCV uninfected recipients because of the increased mortality associated
with liver and cardiovascular diseases [13,14]. Since 1995, 3502 HCV seropositive kidneys have been
discarded in the United States of America, which is equivalent to a rate of 53.6% compared with
22.4% of HCV negative kidneys [15,16]. HCV seropositive but nucleic acid testing (NAT) negative
donors are increasing in number and have been increasingly accepted as donors, with the caveat
that a window-period is considered if the donor has had persistent risk behavior [17]. These donors
also represent patients who have been successfully treated for HCV [17]. Recipients of these IgG
positive NAT negative kidneys have been shown to become HCV IgG-positive post-transplant but not
NAT-positive [18,19]. The likely explanation for this observation appears to be the transfer of HCV
peptide with the organ or the transfer of passenger anti-HCV antibodies producing lymphocytes in the
graft [20]. Nonetheless, the management of donor-derived HCV infection has been revolutionized
through the development of direct-acting anti-HCV (DAA) drugs. HCV positive donors are a large pool,
are usually younger compared with donors without HCV infection, and have fewer co-morbidities
that are more likely to increase recipient and organ survival [13,14,21,22]. Recipients of HCV RNA
positive donors or high risk donors (e.g., history of intravenous drug use, incarceration, less safe sexual
practices, etc.,), particularly within the NAT window period, should have ongoing post-transplant
surveillance for the appearance of HCV infection [23]. However, the exact timing of the surveillance is
still being refined [23].

There are three main classes of DAAs which are classified based on the specific proteins that are
targeted on the HCV [4–24] (Table 1). The protease inhibitors which act on the NS3 part of the HCV
RNA include boceprevir, telaprevir, simeprevir, sunaprevir, grazoprevir and paritaprevir. The NS5A
inhibitors, acting on the NS5A part of the HCV RNA, include daclatasvir, ledipasvir, ombitasvir,
elbasvir and valpatasvir. The polymerase inhibitors, acting on the NS5B part of HCV RNA, include
sofosbuvir and dasbuvir. These agents are orally administered, and the treatment duration varies
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between eight and twenty-four weeks [25,26]. Genotype I has the broadest DAA treatment options;
however, all other genotypes have at least one DAA option. Suitable direct-acting antiviral agent
combination regimens for each HCV genotype are depicted in Table 2.

Compared with traditional HCV treatments such as interferon alpha and ribavirin, DAAs have
emerged as a highly effective therapeutic option for managing kidney transplant recipients who receive
HCV RNA positive donor kidneys [4–24]. Interferon alpha is contraindicated in kidney transplant
recipients because of the significant risk of provoking acute rejection [27]. In a study of 7344 adult
patients with chronic HCV infection enrolled from 32 hepatology centers in France who were followed
up for approximately 33 months, it was found that DAAs were associated with lower mortality
(adjusted hazards ratio (HR) 0.48, 95% CI 0.33–0.70) and hepatocellular carcinoma (adjusted HR 0.66,
95% CI 0.46–0.93) rates and were not associated with decompensated cirrhosis (adjusted HR 1.14,
95% CI 0.57–2.27) [28]. A Cochrane systematic review which included 138 randomized clinical trials
and 25,232 participants, concluded that DAAs were relatively expensive and there was insufficient
evidence to suggest that DAAs reduced mortality or other liver-related complications from chronic
HCV [29]. However, this review has been heavily criticized for its interpretation and conclusions given
its methodological flaws and the overall lack of clinical insight and knowledge of the natural history of
HCV [29].

Table 1. Pharmacology of direct-acting antivirals agents.

Agent Class Example Genotype Adverse Events Drug-Drug Interactions Contraindications
Probability

of Drug
Resistance

NS3/4A
protease

inhibitors

Boceprevir
Telaprevir
Simeprevir

Asunaprevir
Paritaprevir
Grazoprevir

Narrow

Fatigue
Anemia
Nausea

Dysgeusia
Headache

Multiple via CYP3A and
p-glycoprotein (e.g.,

ritonavir, erythromycin,
rifampicin, efavirenz)

Low creatinine
clearance; use of alpha-1

adrenoreceptor
antagonists,

anticonvulsants, oral
contraceptive pills

High

NS5A
inhibitors

Daclatasvir
Ledipasvir
Ombitasvir

Elbasvir
Velpatasvir

Medium

Headache
Fatigue
Nausea

Diarrhea
Insomnia

Minimal; case reports of
thyroid hormone,

dihydropyridines, alpha
and beta blockers, proton
pump inhibitors, statins

Low creatinine
clearance; previous
Hepatitis B, use of

systemic steroids and
anticonvulsant therapy

Low

NS5B
polymerase
inhibitors

Sofosbuvir
(nucleoside)
Dasabuvir

(non-nucleoside)

Broad
(nucleoside)

Narrow
(non-nucleoside)

Fatigue
Symptomatic

bradyarrhythmias
Minimal

Low creatinine
clearance; use of

anticonvulsant and
antimicrobial therapy,
HIV protease inhibitor

therapy and herbal
supplements (e.g.,

St John’s Wort)

Low

Three studies have examined the efficacy and tolerability of utilizing HCV-positive donors
(HCV RNA positive and NAT positive) into appropriately consented HCV-negative kidney transplant
recipients (Table 3). The first study [30] was the Transplanting Hepatitis C Kidneys into Negative
Kidney Recipients (THINKER) trial. In this open-label, singe-group pilot trial, 10 HCV negative
patients received kidneys from HCV positive donors (9 had genotype 1a infection), were administered
elbasvir-grazoprevir from day 3 following transplantation, and were cured of HCV which was defined
as a sustained virologic response 12 weeks after transplantation. The mean 6-month estimated
glomerular filtration rate was 62.8 mL/min/1.73 m2. The 12-month follow-up data on these 10 recipients,
as well as 6-month follow-up data on additional 10 HCV-negative recipients of HCV-positive kidneys
demonstrated that all 20 recipients had undetectable HCV RNA from 4 weeks until the end of follow-up
of 6 months [31]. The THINKER participants had similar kidney graft function at 12 months compared
to recipients of HCV-negative kidneys who met THINKER criteria and were matched for donor Kidney
Donor Profile Index score (median 72.8 vs 67.2 mL/min/1.73 m2). Notably, one HCV-negative recipient
developed subnephrotic range proteinuria without kidney function impairment and 5 recipients
experienced transient serum aminotransferase elevations [31].
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The third study was the Exploring Renal Transplants Using Hepatitis C Infected Donors for
HCV Negative Recipients (EXPANDER) trial [32]. In this single center, single arm, open-label,
non-randomized study, kidneys from 10 HCV-positive donors (genotypes 1–3) were transplanted into
10 HCV-negative recipients aged over 50 years and then treated for 12 weeks with grazoprevir, elbasvir
and, for genotype 2 or 3 infections, sofosbuvir. At the end of the treatment period, no participants had
detectable HCV RNA or treatment-related adverse drug reactions. Table 3 also illustrates studies [33–36]
in which HCV RNA positive non-kidney solid organs were transplanted into HCV-negative recipients.

Table 2. Suitable direct-acting antiviral agent combination regimens for each Hepatitis C virus
(HCV) genotype.

Genotype Suitable Regimens

Genotype 1

Ledipasvir-sofosbuvir
Sofosbuvir-velpatasvir
Elbasvir-grazoprevir

Glecaprevir-pibrentasvir
Dasabuvir-omitasvir-paritaprevir-ritonavir

Ombitasvir-paritaprevir-ritonavir-daclatasvir

Genotype 2

Sofosbuvir-velpatasvir
Glecaprevir-pibrentsvir
Dalatasvir-sofosbuvir
Sofosbuvir-ribavirin

Genotype 3

Glecaprevir-pibrentasvir
Sofosbuvir-velpatasvir
Dalatasvir-sofosbuvir
Sofosbuvir-ribavrin

Genotype 4

Ledipasvir-sofosbuvir
Sofosbuvir-velpatasvir

Elbsvir-grazoprevir
Glecaprevir-pibretasvir

Genotype 5 and 6
Ledipasvir-sofosbuvir
Sofosbuvir-velpatasvir

Glecaprevir-pibrentasvir

Although these studies add to the evidence supporting the transplantation of HCV-positive
kidneys in HCV-negative kidney recipients with subsequent treatment with DAAs, it should be noted
that they were industry sponsored and limited by small sample sizes, single center study designs and
short follow-up durations, which reduce the certainty of the evidence. A number of studies evaluating
the efficacy, safety and tolerability of DAAs in seronegative patients of HCV positive donors are
currently underway [37–39]. Furthermore, treatment protocols are still being developed and refined
at the current time of writing this manuscript—the exact timing of introducing DAAs, the optimal
duration of treatment, the appropriate monitoring requirements—are important questions and will
require ongoing investigator-initiated multicenter studies to evaluate this.
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Table 3. Studies evaluating Hepatitis C positive donors into Hepatitis C negative recipients in transplantation.

Study Year Study Design N Mean Age of
Recipients (Years) Organ Transplant Intervention Results

Durand [31] 2018 Open-label,
non-randomised trial 10 71 (median) Kidney

Grazoprevir/elbasvir
(Genotype 1);

sofosbuvir added for
Genotype 3

HCV RNA not detectable
Graft function stable

No treatment adverse effects
(sponsor: Merck Pharmaceuticals)

Reese [30] 2018 Open-label,
non-randomised trial 20 56 Kidney Grazoprevir/elbasvir

(Genotype 1)

HCV RNA not detectable
Graft function stable

No treatment adverse effects
(sponsor: Merck Pharmaceuticals)

Woolley [32] 2019 Open-label,
non-randomised trial 44 61 (median) Heart and lung 4 week-regimen of

sofosbuvir/velpatasvir

35/44 enrolled and completed
6 months follow-up (non-detectable
HCV RNA, stable graft function no

treatment adverse effects)

Wadei [33] 2019 Case report 1 - Liver Glecaprevir/pibentasvir
(delayed)

Delay in direct-acting anti-HCV
drugs (DAA) resulted in severe

membranoproliferative
glomerulonephritis

requiring haemodialysis

Abdelbasit [34] 2018 Case series 5 47 Lung

Sofosbuvir/ledipasvir
(Genotype 1);

sofosbuvir/alpatasvir
(Genotype 2)

HCV RNA not detectable
Graft function stable

No treatment adverse effects

Schlendorf [35] 2018 Open-label,
non-randomised trial 13 53 Heart

Ledipasvir/sofosbuvir
(Genotype 1) and

Sofosbuvir/Velpatasivr
(Genotype 3)

12/13 undetectable HCV RNA
1 death (pulmonary emboli)

Graft function stable
No treatment adverse events

Cotter [40] 2019 Registry 2635 57 Liver Various DAAs
(registry study)

3-year graft survival following use of
DAAs increased to 88% from 79%

Axelrod [41,42] 2018 Registry 157,873 kidney and
58,509 liver transplants - Kidney and liver Various DAAs

(registry study)
Improvements in graft function and

death post DAA

Cholankeril [41,42] 2018 Registry 3855 58 Liver Various DAAs
(registry study)

1-year post transplant survival
pre-DAA 89.9% vs 91.9% post DAA
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A major consideration in using DAAs in kidney transplant recipients has been the optimal time to
treat HCV infection. Problems related to limited drug access have emerged when using DAAs [43].
Severe membranoproliferative glomerulonephritis requiring haemodialysis, for example, has been
reported in a 61-year old HCV-naïve diabetic male who received a liver transplant when glecaprevir/
pibrentasvir was unavailable until 24 days following transplantation [33].

Another important consideration in using DAAs is the high wholesale costs ranging from US $417
(glecaprevir/pibrentasvir) to US $1125 (ledipasvir-sofosbuvir) per day [43]. A study which used data
from the Canada Health System created a Markov model to examine the cost-effectiveness of utilizing
deceased HCV donors for kidney transplantation in HCV-negative recipients [44]. This study showed
a cost-effectiveness ratio of $56,018 per quality adjusted life years (QALY) from the payer perspective
and $4647 per QALY from the societal perspective, compared with recipients who would otherwise
have remained on dialysis for an additional year [44].

Another issue emerging may be the potential risks of inducing resistance associated with
transplanting different genotypes in kidney transplant recipients receiving DAAs. Resistance may
occur particularly when therapeutics levels are suboptimal, thus creating selective pressure for resistant
HCV to emerge as the dominant species [45]. A study undertaken in Brazil involving 76 patients,
of whom 39 were kidney transplant recipients and 37 were on chronic haemodialysis, examined the
prevalence of resistance-associated substitutions to DAAs and found that the overall prevalence of
resistance was 38.2% with substitution resistance detected in NS3A (17.8%), NS5A (21.9%) and NS5B
(8.4%) inhibitors [46]. Resistance substitutions were higher in Genotype 1a (42.9%) compared with
Genotype 1b (32.4%) (p = 0.35) [46]. However, this study was limited by the fact that patients were
restricted to Genotype 1 and the sample size was small. More studies will be required to further
elucidate the resistance patterns of DAAs.

In addition to being effective in the treatment of recipients of kidneys from HCV-positive donors,
DAAs appear also to be effective for the treatment of HCV-positive recipients. A retrospective
Italian study a sustained virologic response in 12 (92%) of 13 HCV RNA-positive kidney transplant
recipients [47]. There is ongoing debate regarding whether it is better to treat HCV-positive individuals
with end-stage kidney disease before or after a kidney transplant [48]. Early treatment prior to
kidney transplantation may reduce the risks of hepatic complications, dialysis transmission of HCV,
post-transplant glomerulonephritis and post-transplant diabetes mellitus, whilst treatment following
kidney transplantation affords the patient the opportunity to receive a kidney from a HCV-positive
donor thereby shortening transplant waiting time [48]. Our practice is to treat HCV-infected individuals
as soon as possible prior to kidney transplantation.

3. New Approaches to the Management of Infections in the Era of Antimicrobial Resistance

A paradigm of antimicrobial resistance developing in kidney transplant recipients involves
cytomegalovirus (CMV), which is an opportunistic viral pathogen causing infection and disease with
significant morbidity and mortality. Indeed, 60% of kidney transplant recipients will have an active
CMV viraemia, and more than 20% will develop symptomatic disease [49–52]. Infection with CMV
usually develops when prophylaxis is ceased and may cause end-organ damage such as hepatitis,
pancreatitis or pneumonitis [50,51]. Four antiviral therapies are currently marketed for either the
prophylaxis and/or treatment of CMV infection: ganciclovir, the ganciclovir prodrug (valganciclovir),
foscarnet and cidofovir.

According to current guidelines, options for CMV prophylaxis include oral valgancyclovir,
oral valaciclovir, and intravenous ganciclovir [53]. The addition of anti-CMV immunoglobulin to
these agents has not been shown to have any additional benefit. Although valganciclovir is used most
frequently in many kidney transplant units because of its oral formulation, it is limited by high costs
and occasional difficulties with access. Intravenous ganciclovir, on the other hand, is cheaper and
more readily available but limited due to the difficulties in giving it in the home environment [53].
The recommended dosage for CMV prophylaxis is 900 mg for oral valgancyclovir daily and 3200 mg for
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oral valaciclovir daily for 3 months in CMV seropositive recipients, adjusted for kidney function [53].
Some kidney transplant units have used a lower dose of valganciclovir for CMV prophylaxis which may
in turn lead to resistance; however, more studies will be required to assess the efficacy and potential
resistance patterns of valgancyclovir at a lower dose [53]. For kidney transplants involving CMV
seromismatch (i.e., donor seropositive, recipient seronegative), a duration of 6 months is recommended.
The alternative strategy to prophylaxis for prevention of CMV disease is routine viral load monitoring
and prescribing antiviral treatment when viral loads increase significantly regardless of whether or not
the individual is symptomatic (pre-emptive treatment). Whilst the Updated International Consensus
Guidelines on the Management of Cytomegalovirus in Solid-Organ Transplantation indicate that there
is moderate evidence supporting this approach [53], a previous Cochrane review of the efficacy of
pre-emptive therapy compared to prophylaxis concluded that the evidence was uncertain due to the
presence of appreciable study heterogeneity [53,54]. Monitoring of viral loads for up to 6 months
following CMV prophylaxis in patients with established risk factors for CMV should occur [53].

Mutations in UL-97 and UL-54 mediate CMV resistance to the above therapies [53,55–57].
The incidence of CMV resistance varies between 2% to 7% [51,52]. Risk factors include CMV
donor positive/recipient negative serostatus, potent immunosuppressive use, induction therapy with
anti-thymocyte globulin, high viral loads and prolonged duration of treatment with suboptimal drug
levels [51,52]. A few different antiviral therapies, such as letermovir and maribavir, are currently
being studied to mitigate CMV resistance [53,55–58]. The pharmacology of these two therapies are
summarized in Table 4. The adoptive transfer of autologous or third-party CMV-reactive T-cells is also
being examined as a potential therapy.

Table 4. Pharmacology of letermovir and maribavir.

Medication Mechanism of Action Adverse Events Resistance Patterns Drug-Drug
Interactions

Letermovir Inhibits viral terminase
complex (UL51/JL56/UL89)

Nausea, diarrhea, vomiting,
peripheral edema, cough,

headache, fatigue and
abdominal pain

None noted
None known,
possibly with

ciclosporin

Maribavir

Inhibits CM UL97
serine/threonine kinase by

competitively inhibiting the
binding of ATP to the kinase

ATP-binding site

Gastrointestinal disorders
(diarrhea, dysgeusia,

nausea, vomiting)

Emerging (T409M and
H411Y)

CYP3A4
P-glycoprotein

Letermovir is a new non-nucleoside CMV inhibitor which targets the viral terminase
complex [59,60], and has been demonstrated to inhibit CMV in both in vitro and in vivo preclinical
studies [60,61]. In a phase 3, double-blind, randomized controlled trial of letermovir versus placebo in
565 CMV-seropositive adult hematopoietic-cell transplant recipients, 495 participants had undetectable
levels of CMV DNA at baseline. Amongst these individuals, the occurrence of clinically significant
CMV infection by 24 weeks was significantly lower in those receiving letermovir compared with
placebo (38% vs. 61%, respectively, p <0.001). Myelotoxic and nephrotoxic adverse effects were
comparable in both groups [62]. Similar findings have been reported in kidney transplant recipients.
In a multi-center, open-label, randomized controlled trial of letermovir (40 mg twice a day or 80 mg
once a day) or usual care in 27 kidney transplant recipients with active CMV replication, viral clearance
was more often achieved in the combined letermovir groups (6 out of 12, 50%) than the usual care
group (2 out of 7, 29%) [62]. There were no reported relapses in CMV during this trial [62].

A case report by Kau et al. reported the first successful treatment of multidrug-resistant CMV with
letermovir in a 39-year-old male lung transplant recipient who developed severe CMV pneumonitis,
retinitis and colitis that was refractory to ganciclovir, foscarnet, CMV hyperimmune globulin, cidofovir,
artemether/lumefantrine and leflunomide [63]. CMV genotype analysis demonstrated A594T and
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C603W UL97 mutations. Following introduction of letermovir in combination with immunosuppression
reduction, the patient made a rapid recovery.

On the contrary, there has been some recent literature regarding potential resistance in letermovir.
A case series reported 2 heart and 2 lung transplant adult patients who received letermovir for
treatment of ganciclovir-resistant CMV disease after failing therapy with ganciclovir and valganciclovir,
and developing nephrotoxicity from foscarnet [64]. Two of the 4 patients from this study had CMV
retinitis proven by CMV PCR obtained via anterior chamber paracentesis and the other 2 patients had
funduscopic examination consistent with retinitis. Induction letermovir doses occurred at 720 mg
and in one patient titrated to 960 mg and all 4 patients had clinical improvement in retinitis [64].
However, 3 of the 4 patients failed to achieve sustained virologic suppression, raising potential
concerns for letermovir resistance. Genotypic assessment demonstrated UL56 mutations. Virologic
suppression occurred in the 3 patients when transitioned back to original therapy. However, none of
the patients reported adverse effects secondary to letermovir [64]. Overall, there is some evidence that
letermovir may show promise as a treatment for CMV resistance. However, the role of letermovir in
patients with CMV disease who cannot tolerate currently available therapies remains to be determined.
Moreover, the dosing, efficacy and potential resistance patterns of letermovir in the management of
CMV resistance requires further evaluation.

In addition to letermovir, maribavir, an inhibitor of UL-97 viral kinase, is also currently under
clinical trials for managing CMV resistance, although results are still in the preliminary phase [65].
Papanicoloaou et al. [65] conducted a randomized, double-blinded, dose-ranging phase 2 study
of 3 different doses of maribavir (400 mg, 800 mg or 1200 mg twice daily) for up to 24 weeks
in 47 hematopoietic-cell and 73 solid-organ transplant recipients (including 30 kidney transplant
recipients) with active CMV infection that was refractory or resistant to ganciclovir, valganciclovir,
foscarnet and cidofovir (defined as failure to achieve at least a 1 log10 decrease in CMV DNA viral load
after at least 2 weeks of treatment). Overall, 67% (95% CI 57–57%) of patients achieved undetectable
CMV DNA within 6 weeks of maribavir treatment, with similar results observed in the 3 dosage groups
(400 mg 70%, 800 mg 63%, 1200 mg 68%). Balanced against these benefits, 68% developed adverse
events, including dysgeusia (65%) and neutropenia (11%), which led to maribavir discontinuation in
34% of patients. Recurrent CMV infections occurred in 25% and 4 patients (3.3%) died due to CMV.

Another important investigation conducted by a French group included 12 patients (3 bone marrow
recipients and 9 solid organ transplant recipients) with CMV resistance, showed that half the patients
responded to maribavir when trialed at 800 mg daily doses [66]. Although maribavir shows promise in
the treatment of resistant CMV infections, concerns regarding maribavir resistance have emerged [65]
with T409M and H411Y being reported as potential gene mutation markers [67]. Other studies have
raised concerns regarding the efficacy of maribavir, with one randomized, double-blinded, multicenter
controlled trial of 303 liver transplant recipients showing that maribavir 100 mg twice daily was
ineffective at preventing CMV infections [68]. Collectively, these findings highlight that further studies
are required to determine the efficacy, tolerability and potential for resistance in using maribavir for
the management of resistant CMV infections in kidney transplant recipients.

An alternative approach to the management of CMV resistance has been the use of adoptive T-cell
therapy with CMV-reactive T-cells [69–71]. CMV control is critically dependent on effective T cell
immunity. In a prospective, multicenter, single-arm, open-label, non-randomized phase 1 study [71]
of in vitro–expanded autologous CMV-specific T cell therapy in 13 solid organ transplant recipients
with recurrent or ganciclovir-resistant CMV infection, 11 (84%) displayed either complete resolution
or reduction in DNAemia. It has also been demonstrated that multiple infusions may be required,
particularly if the initial response was suboptimal or if rebound CMV viraemia occurred [69,70].
Other groups have developed multivirus reactive T cell protocols typically including viruses such as
CMV, Epstein-Barr virus, BK virus and adenovirus [72–74]. Difficulties inherent with such treatments
include high cost, the appreciable time taken to adequately generate the T-cells for transfusion, and the
requirement for significant patient commitment to adhere to hospital appointments for treatment
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success [69,70]. The potential benefits of adoptive T-cell therapy also need to be balanced against the
potential associated risks of treatment. For example, graft failure (n = 1, 2%) and graft-associated
thrombotic microangiopathy (n = 1, 2%) have been reported in a group of 50 allogenic stem cell
transplant patients who were given a single dose of CMV-specific T-cells [75]. Given the limited sample
size in the above studies, more research is required to assess the robustness of using autologous T-cell
therapy in CMV resistance.

4. Emergence of Gastrointestinal Microbiota and Transplant Associated Infections

In recent times, it has been recognized that a major, potential source of infection in
immunocompromised individuals is the gut microbiota, which is comprised of bacteria, archaea, fungi,
protozoa, and their respective viruses [76–78]. A large number of observational and cross-sectional
studies have shown that the gut microbiota is a functional and dynamic interface linked with
immune regulation, metabolic modulation, food digestion, angiogenesis promotion, gut epithelial
health, energy homeostasis, neurobehavioural development and drug absorption, metabolism and
disposition [79–81]. Additionally, antibiotic use, psychosocial and physical stress, radiation, dietary
changes and various disease states are all known to be associated with alterations in the taxonomic
and functional properties of the gut microbiota [82]. These changes are generically referred to as
“dysbiosis”. In the setting of gut dysbiosis, transmural migration of gut micro-organisms and/or their
toxic products (endotoxins and uraemic toxins such as indoxyl sulphate and p-cresyl sulphate) may
lead to infection, inflammation, endotoxaemia, and the progression of kidney disease [83–86]. Products
of the gut microbiota (e.g., peptidoglycans, polysaccharide A) also interact with the enteric immune
system to stimulate both innate and adaptive immune mechanisms, and antigen cross-reactivity may
promote alloimmunity and rejection through molecular mimicry [87].

Several studies have demonstrated that the gut microbiota may be significantly altered in the setting
of kidney transplantation and play an important role in post-transplant outcomes. Gut microbiota
in kidney transplant recipients can be potentially modified by immunosuppression, antibiotic
administration, dietary changes, altered bowel mobility and even transplantation of microbiota
via kidney and kidney-pancreas allografts [82,88,89]. In a pilot study in which microbiota profiles
were examined in serial fecal specimens from 26 kidney transplant recipients during the first
3 months post-transplant using polymerase chain reaction (PCR) amplification of the 16S rRNA
V4-V5 variable region, Lee et al. demonstrated significant changes in gut microbiota profiles
compared to pre-transplantation [6]. Importantly, higher fecal abundance of Enterococcus was
associated with Enterococcus urinary tract infection and pre-dated the occurrence of this infection
by up to 39 days. Median fecal abundance of Enterococcus in transplant recipients who did and
did not develop Enterococcus urinary tract infection was 24% and 0%, respectively (p = 0.005).
The group also demonstrated that acute rejection was associated with higher fecal abundance of
Enterococcus, Clostridium tertium, Anaerofilum and Lactobacillales, and lower fecal abundance of
Bacteroides, Ruminococcus, Lachnospiraceae, Clostridiales, Blautia, and Eubacterium dolichum. Another
group also reported associations between fecal abundance of micro-organisms and the occurrence of
infection and acute rejection in kidney transplant recipients [90]. Lee et al. subsequently reported that
post-transplant diarrhea was associated with reductions in fecal diversity measures and specifically,
decreases in the relative abundance of commensal bacteria such as Ruminococcus, Dorea, Coprococcus
and Bacteroides spp., rather than with common infectious diarrheal pathogens [7]. Finally, another
study of serial fecal specimens in 19 kidney transplant recipients during the first post-transplant
month has demonstrated that alterations in gut microbiota profiles might be associated with altered
immunosuppressant medication pharmacokinetics [8]. Specifically, the relative abundance of one
bacterium, Faecalibacterium prausnitzii, was significantly greater in kidney transplant recipients who
ultimately also required at least a 50% increase in tacrolimus dosing over the first month to achieve a
target serum level of 8–10 ng/mL, when compared to recipients who did not require such a dosage
escalation (11.8% versus 0.8%, respectively, p = 0.002) [8]. Taken together, these preliminary findings
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involving relatively small patient numbers suggest that kidney transplantation results in significant
changes in the gut microbiota composition which in turn are associated with important surrogate and
clinical post-transplant outcomes including infection, altered serum immunosuppressant medication
levels, acute rejection and post-transplant diarrhea.

Manipulation of the gut microbiota through nutritional interventions, such as prebiotics, probiotics,
and synbiotics, may therefore represent a novel approach to mitigating infection and other transplant
complications such as rejection and post-transplant diarrhea [91,92]. Although there have been no
studies that have specifically addressed nutritional interventions targeting the gut microbiota in kidney
transplant recipients, a meta-analysis of four studies (3 randomized controlled trials and 1 historically
controlled trial) involving 246 liver transplant recipients has shown that administration of prebiotics
and probiotics resulted in appreciably reduced rates of overall infection (relative risk (RR) 0.21, 95% CI
0.11–0.41, I2 1%), urinary tract infection (RR 0.14, 95% CI 0.04–0.47, I2 0%) and intra-abdominal infection
(RR 0.27, 95% CI 0.09–0.78, I2 0%) [93]. The interpretative strength of this review is limited by the
small number of available studies, the heterogeneity of the prebiotic and probiotic interventions, small
patient numbers, short follow-up durations, inclusion of a non-randomized controlled trial and low
certainty of the evidence. Currently, the safety of probiotics in the kidney transplant population is
uncertain, and their use is therefore not routinely recommended at the present time [94].

Recently, there has been evidence emerging that fecal microbiota transplantation (FMT) may
be an effective option for manipulating the gut microbiota, particularly in the setting of recurrent
Clostridium difficile infection. In a retrospective singe-center chart review of 35 patients with recurrent
Clostridium difficile who underwent FMT in the United States of America, 85.7% (n = 30) reported
resolution of symptoms approximately 6 to 8 weeks post-transplant [95]. Adverse effects were
monitored by the research team, but none were reported in the final study [95]. Eight of the 35
recipients were reportedly receiving immunosuppressive therapy, although the type and dosage
of such therapy was not specified [95]. A subsequent systematic review and meta-analysis of 54
non-randomized studies of FMT in 303 immunocompromised patients with recurrent Clostridium
difficile infection reported success rates of 87% on first treatment [96]. FMT has also been evaluated
as a potential therapy for steroid-resistant acute graft-versus-host disease in the setting of stem cell
transplantation [97] FMT was safely tolerated and effective in 4 patients, with 3 experiencing a complete
response and one having a partial response. Although these results appear to be promising, the role of
FMT in manipulation of the gut microbiota in kidney transplant recipients has yet to be determined.

Indeed, examining the role(s) of the gut microbiota in the pathogenesis of infections in transplant
recipients present considerable challenges. There will always be significant heterogeneity amongst
transplant recipients, attributable to their previous medical history including hospital admissions,
prior exposure to various antibiotics prior to transplantation, as well as immunosuppressive therapy
and antimicrobial prophylaxis. However, the findings from the small number of studies to date do
suggest that adequately powered, well-designed, and multi-center randomized controlled trials are
justified to determine whether and how variations in the gut microbiota can be translated into low
cost, prognostic and/or therapeutic approaches that reduce post-transplant infections, as well as to
maximize the use of immunosuppressive therapy post-transplantation (e.g., tacrolimus).

5. Conclusions

Over the last five years, ongoing research has led to significant advancements in the field of kidney
transplant infectious disease medicine. The development of new approaches to manage donor-derived
infections, such as Hepatitis C, have allowed expansion of the deceased kidney donor pool to include
donors that were previously considered unsuitable. At the same time, new antiviral agents, such as
letermovir and maribavir, are currently being trialed to combat growing CMV resistance. Recent
evidence has also suggested that the gut microbiota, which changes appreciably following kidney
transplantation, might represent a significant source of post-transplant infections, and contribute to
altered immunosuppressive agent pharmacokinetics, acute rejection and post-transplant diarrhea.
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These outcomes may be mitigated by nutritional interventions (e.g., pre, pro- and synbiotics) and fecal
microbiota transplantation, although further studies are required to comprehensively evaluate their
safety and efficacy. These developments have generated considerable research interest and endeavor
in the transplant infectious disease field and offer new opportunities to alleviate infectious morbidity
and mortality in kidney transplant patients.
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