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ABSTRACT The development and deployment of an effective wind speed forecasting technology can
improve the safety and stability of power systems with significant wind penetration. Due to the wind’s
unpredictable and unstable qualities, accurate forecasting of wind speed and power is extremely challenging.
Several algorithms were proposed for this purpose to improve the level of forecasting reliability. The
Long Short-Term Memory (LSTM) network is a common method for making predictions based on time
series data. This paper proposed a machine learning algorithm, called Adaptive Dynamic Particle Swarm
Algorithm (AD-PSO) combined with Guided Whale Optimization Algorithm (Guided WOA), for wind
speed ensemble forecasting. The AD-PSO-Guided WOA algorithm selects the optimal hyperparameters
value of the LSTM deep learning model for forecasting of wind speed. In experiments, a wind power
forecasting dataset is employed to predict hourly power generation up to forty-eight hours ahead at seven
wind farms. This case study is taken from the Kaggle Global Energy Forecasting Competition 2012 in wind
forecasting. The results demonstrated that the AD-PSO-Guided WOA algorithm provides high accuracy
and outperforms several comparative optimization and deep learning algorithms. Different tests’ statistical
analysis, including Wilcoxon’s rank-sum and one-way analysis of variance (ANOVA), confirms the accuracy
of the presented algorithm.

INDEX TERMS Artificial intelligence, machine learning, optimization, forecasting, guided whale
optimization algorithm.

I. INTRODUCTION

Due to the intermittence and unpredictability of wind power,
the increasing penetration of wind power into power grids
might significantly impact the safe functioning of power sys-
tems and power quality because the amount of wind energy
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generated is proportional to the wind speed. As a result,
the development and deployment of an effective wind speed
forecasting technology can be able to improve the safety and
stability of power systems with significant wind penetration.
Wind energy is one of the essential low-carbon energy tech-
nologies. It can deliver a long-term energy supply and serves
as a core component for micro-grids as part of intelligent grid
architecture [1].

125787


https://orcid.org/0000-0002-8352-6731
https://orcid.org/0000-0002-1443-9458
https://orcid.org/0000-0002-2020-4559
https://orcid.org/0000-0002-9387-1950
https://orcid.org/0000-0002-0935-9998
https://orcid.org/0000-0002-9221-7658
https://orcid.org/0000-0003-4419-4516

IEEE Access

A. Ibrahim et al.: Wind Speed Ensemble Forecasting Based on Deep Learning

TABLE 1. Recent wind power prediction methods.

Ref. Algorithm Datasets Data Size Sampling rate
Marcos et al. 2017 [5] Kalman filter, Statistical regression Palmas and RNO5 wind farms in Brazil 7 and 12 months 10 min
Liu et al., 2017 [6] BPNN, RBFNN and LSSVM Sixteen MW wind farm in Sichuan, China 2 months 15 min
Bilal et al., 2018 [14] MLP Four sites in Senegal. 6-9 months 1 and 10 min
Wang et al., 2018 [15] ELM optimised by MODA Two sites of observation in Penglai, China 37 days 10 min
Hong et al. 2019 [16] CNN, RBFNN, DGF Historical power data of a wind farm in Taiwan 12 months 60 min
Zhang et al., 2019 [17] LSTM, Gaussian Mixture Model (GMM) A 123 units wind farm in north China 3 months 15 min
Khodayar et al., 2019 [7]  IPDL, IDBN, Boltzmann Machines, Rough Set A wind site in Colorado, US 3 years 10 min
Khodayar et al., 2019 [9] GCDLA, LSTM, Rough Set 145 wind sites in Northern States, US 6 years 5 min
Lin et al., 2020 [3] Isolation Forest (IF), Deep learning NN A wind turbine SCADA data in Scotland 12 months 1s

IF, feed-forward NN Seven MW wind turbine in Scotland 12 months ls
Jalali et al., 2021 [10] LSTM, Enhanced grasshopper optimization algorithm  Two wind stations in Las Vegas and Denver, US 12 months 30 min

However, wind power generation is stochastic and inter-
mittent, posing several hurdles to its widespread adoption.
With the aid of wind speed and power generation projections,
it is possible to reduce energy balancing and make power
generating scheduling and dispatch choices. In addition, fore-
casts can reduce costs involved by mini missing the demand
for wind curtailments and, as a result, enhancing income in
power market operations. Due to the wind’s unpredictable
and unstable qualities, however, accurate forecasting wind
speed and power is extremely difficult. A wind power forecast
predicts the projected output of one or more wind turbines,
often known as a wind farm. When one talks about produc-
tion, it usually refers to the amount of power that a wind
farm can generate (with unit’s kW or MW depending on the
nominal capacity of the wind farm). By combining power
production throughout each period, forecasts may also be
stated in energy [2].

Offer essential information about the projected wind speed
and power over the next several minutes, hours, or days is
the primary purpose of forecasting wind speed and power.
The prediction can be separated based on power system
operation requirements into four distinct time frames: long-
term (from one day to seven days), medium-term (from six
hours to twenty-four hours), short-term (from thirty minutes
to six hours), and extremely short-term (from few seconds to
thirty minutes. Turbine control and load tracking are based
on very short-term estimates. Preload sharing is based on the
short-term forecast. The medium-term projections are used
for power system management and energy trading. Mainte-
nance schedules for wind turbines are based on long-term
forecasts [3].

Wind speed is considered a non-linear and time-relevant
forecasting problem. This encourages researchers to make
use of the knowledge included in the wind’s historical data.
Based on time-series data, one of the common methods for
making predictions is the long short-term memory (LSTM)
network [4]. Marcos et al. in [5] addressed the problem of
wind power forecasting based on statistical and numerical
weather prediction model models. Two different areas in
Brazil were Brazilian developments on the regional atmo-
spheric modeling system is employed to simulate forecasts
of seventy-two hours ahead of the wind speed, at every ten
minutes.

Liu et al. in [6] employed backpropagation neural network
(BPNN), least squares support vector machine (LSSVM), and
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radial basis function NN (RBFNN) methods to forecast a
sixteen MW wind farm that is located in Sichuan, China,
based on two months data size at fifteen minutes sampling
rate. Recently, Lin et al. in [3] applied Isolation Forest (IF)
and deep learning NN for SCADA data of a wind turbine in
Scotland to address the problem of wind power forecasting
based on data size of twelve months and one-second sampling
rate. Another method based on IF and feed-forward NN
is applied to a seven MW wind turbine in Scotland (ORE
Catapult) using a data size of twelve months and a one-second
sampling rate.

To capture the wind speed data’s unsupervised temporal
features, an interval probability distribution learning (IPDL)
model based on rough set theory and restricted Boltzmann
machines was proposed in [7]. To capture the wind speed
time series data’s probability distribution, the IPDL model
had a set of interval latent variables which can be tuned.
For the future wind speed values’ supervised regression,
a real-valued interval deep belief network (IDBN) was also
designed based on a fuzzy type II inference system and
the IPDL model. Khodayar et al. [8] proposed a deep neural
network (DNN) architecture based on stacked auto-encoder
(SAE) and stacked denoising auto-encoder (SDAE) for wind
speed forecasting using short-term and ultra-short-term. The
auto-encoders (AEs) are used by the authors in [8] for the
unsupervised feature learning from the unlabeled data of
the wind. In addition, a supervised regression layer was
employed for wind speed forecasting at the top of the AEs.

Authors in [9] proposed a scalable graph convolutional
deep learning (GCDL) architecture to learn the powerful
Spatio-temporal features in the neighboring wind farms from
data of wind direction and speed. The GCDL architecture
leveraged the extracted temporal features to forecast the
whole graph nodes’ wind-speed time series. The rough set
theory was incorporated with the GCDL architecture in their
model. Authors in [10] proposed a framework based on an
enhanced grasshopper optimization algorithm for optimiz-
ing the hyperparameters and architecture of the LSTM deep
learning model for wind speed forecasting. Table 1 shows the
recent wind power prediction methods.

Hybrid machine intelligence techniques were proposed
recently in the literature for wind forecasting based on dif-
ferent models. Authors in [11] utilized various variants of
Support Vector Regression (SVR) and wavelet transform
to forecast short-term wind speed. They evaluated their

VOLUME 9, 2021



A. Ibrahim et al.: Wind Speed Ensemble Forecasting Based on Deep Learning

IEEE Access

proposed techniques using various performance indices to get
the best regressor for wind forecasting applications. A hybrid
technique was presented in [12] using learning algorithms
such as Twin SVR (TSVR), Convolutional neural networks
(CNN), and random forest, in addition to, discrete wavelet
transform (DWT) for wind forecasting. The extracted features
from wind speed in their work were enhanced based on the
wavelet transform. Another hybrid technique was proposed
for the anomaly detection problem for wind turbine gearbox
in [13] using adaptive threshold and twin SVM (TWSVM)
methods.
In this work, a dataset of wind power forecasting is
tested as a case study from Kaggle Global Energy Fore-
casting Competition 2012-Wind Forecasting for predicting
hourly power generation up to forty-eight hours ahead at
seven different wind farms. A proposed adaptive dynamic
particle swarm algorithm (AD-PSO) with a guided whale
optimization algorithm (Guided WOA) improves the fore-
casting performance by enhancing the parameters of the
LSTM classification method. The proposed AD-PSO-Guided
WOA algorithm selects the value of the optimal hyperpa-
rameter of the LSTM deep learning model for forecasting
purposes of wind speed. A binary-based AD-PSO-Guided
WOA algorithm is used for the feature selection problem
from the wind power forecasting dataset. The evaluation of
the binary AD-PSO-Guided WOA algorithm is presented
compared to Grey Wolf Optimizer (GWO) [18], Particle
Swarm Optimization (PSO) [19], Stochastic Fractal Search
(SES) [20], WOA [21], [22], Genetic Algorithm (GA) [23],
and Firefly Algorithm (FA) [24]. The optimized ensemble
method based on the proposed algorithm is tested on the
dataset. The results of this scenario are compared with Neu-
ral Networks (NN), Random Forest (RF), LSTM, Average
ensemble, and k-Nearest Neighbors (k-NN) ensemble-based
methods.
The AD-PSO-Guided WOA algorithm ensemble model
is compared with other optimization techniques includ-
ing PSO [19], WOA [22], GA [23], GWO [18], Harris
Hawks Optimization (HHO) [25], [26], Slime Mould Algo-
rithm (SMA) [27], Marine Predators Algorithm (MPA) [28],
and Chimp Optimization Algorithm (ChOA) [29]. The
AD-PSO-Guided WOA algorithm ensemble model is also
compared with other deep learning techniques including
Time delay neural network (TDNN) [30], Deep Neural
Networks (DNN) [31], Stacked Denoising Autoencoder
(SAE) [32], and Bidirectional Recurrent Neural Networks
(BRNN) [33]. The statistical analysis of different tests is
performed to confirm the accuracy of the algorithm, including
a one-way analysis of variance (ANOVA) and Wilcoxon’s
rank-sum. The contributions of this work are summarized as
follows.
« An adaptive dynamic PSO with guided WOA algorithm
(AD-PSO-Guided WOA) is suggested.

o A binary AD-PSO-Guided WOA algorithm is tested
for the feature selection problem using the wind power
forecasting dataset.
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o Tests of one-sample t-test and ANOVA are used to
evaluate the binary AD-PSO-Guided WOA algorithm’s
statistical difference.

o To improve the wind power forecasting accuracy,
an optimized ensemble method using the AD-PSO-
Guided WOA algorithm is proposed.

o Wilcoxon’s rank-sum and ANOVA tests are used for
evaluating the proposed optimizing ensemble method’s
statistical difference.

e The current work’s importance is applying a new
optimization algorithm to enhance LSTM classifier
parameters.

o The proposed algorithms can be generalized and tested
for other datasets.

Il. PRELIMINARIES
A. MACHINE LEARNING
1) NEURAL NETWORKS (NNs)
Artificial neural networks (ANNs) are a type of prediction
model and classification approach. ANN is used to simulate
complicated relationships of finding data patterns or cause-
and-effect variable sets. Transient detection, approximation,
time-series prediction, and pattern recognition are just a
few of the disciplines they may use. ANN is considered an
information processing pattern that functions similarly to the
human brain. This information processing system comprises
highly linked processing pieces called neurons that work
together to solve issues in tandem. When formulating an
algorithmic solution, a neural network comes in handy and
where it is necessary to extract the structure from existing
data [34].

A Multilayer perceptron (MLP) has input, output and one
hidden layer. The weighted sum for the node output value is
computed as follows [35].

n
Sj =D wili + B Q)
i=1

where [; represents an input variable i, the weight of connec-
tion between neuron j and input /; is represented as w;;. The
B; parameter is a bias value. Based on using of the sigmoid
activation function, the node j output is calculated as

fi(§) = 11 @

where the value of f;(S;) is then used to get the network output
as follows.

m
Yo=Y wihi(S) + B 3)
j=1
where the weights between output node k and neuron j in the
hidden layer is defined as wj; and B indicates the output layer
bias value.

2) RANDOM FOREST (RF)
As a method based on statistical learning theory, ran-
dom forests provide several advantages, including fewer
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configurable parameters, higher prediction precision, and
improved generalization ability. It extracts numerous sam-
ples from the original sample using the bootstrap sampling
approach, builds decision tree modeling based on each boot-
strap sample, combines the predictions of multiple decision
trees, and uses a voting mechanism to determine the outcome.

For the RF training algorithm, the regression/classification
tree fj is trained based on X and Y, training examples for
X =x1,...,xpand Y = y1,...,y,. For B times, let b =
1,..., B. After the process of training, the unseen samples
predictions x’ is calculated by averaging all the predictions
of individual regression trees on x’ as in equation 4.

N A
f:El;fb(X) 4)

3) K-NEAREST NEIGHBORS (K-NN)

The model’s interpretability. The findings of the prediction
algorithm using the k-nearest neighbor’s technique are based
on the previous events that are the most like the current state
based on a given distance metric. A simple average of the
output values of the k nearest neighbors, or any weighted
averaging, is used to make predictions. Thus, experts can
analyze the findings of the k-nearest neighbor’s method. The
object’s predictable variable in the k-NN numerical predic-
tion this number is the average of its k closest neighbors’
values. The k-NN method is one of the basic and the most
powerful machine learning algorithms.

The k-NN model employs a similarity measure, Euclidean
distance, to compare the data. Between x;,,;, as training data
and x,, as testing data, calculations of the Euclidean distance
are based on the following equation.

k
D (Xtrain.iy Xtest.i) = Ktrain.i — Xrest.i)? 5)
train,i» Xtest,i train,i test,i
i=1

To predict the output variables, k-NN determines k training
data close to testing data. For unknown testing data to be
predicted, the k training data output value is determined to
be the nearest neighbours. The following formula is applied
for predicting the testing data.

k
= wy 6)
j=1

where the jth neighbor weight is indicated as w; and it is
adjusted by the observed data, for w; = j/n, for n indicates
number of training data. This model can be used as a k-NN
time series model.

B. DEEP LEARNING

1) LONG SHORT TERM MEMORY (LSTM)

The LSTM model is an improvement ANN model and it
can be applied for different kinds of problems as discussed
in [36]. The LSTM’s main advantage is that it can remember
the information for a long time. The LSTM architecture is
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shown in Figure 1. The first step of the LSTM model is
to decide what kind of data from the cell state should be
discarded. A forget gate layer or sigmoid layer is used for
that as presented in equation 7.

Jo =0 (b + Wylhi—1, x:1) )

The following step is to decide about the new data to
be stored in the cell state. The sigmoid layer decides about
the values that need an update, and the new candidate is
added to the generated state by the tanh layer as presented
in equations 8 and 9.

ir = o(bj + Wilh—1, x;]) )
C/ = tanh(b; + Wi[h;—1, x:1) )

The C;_; parameter, old cell state, is then updated into
the C; parameter, new cell state, by equation 10 using
equations 7, 8, and 9.

Ct - it X Ct/ +ﬁ X C[_l (10)

The final step is about the output decision. The sigmoid
layer helps in deciding which cell state parts should be moved
to output. The cell state will then use tanh and force values
between [-1,1] and then multiply it with the sigmoid gate
output as presented in equation 11.

hy = oy x tanh(Cy), o = o (bo + Wolhi—1,x:])  (11)
C. ENSEMBLE TECHNIQUES

The goal such approaches is to combine the capabilities
of a variety of single base models to create a predictive
model. This concept can be implemented in a variety of ways.
For instance, key strategies rely on resampling the training
set, while others rely on alternative prediction methods or
modifying some predictive technique parameters. Finally,
the result of each prediction is combined using an ensemble
of approaches.

Ill. PROPOSED ADAPTIVE DYNAMIC PSO-GUIDED

WOA ALGORITHM

This section discusses the presented AD-PSO-Guided WOA
algorithm using adaptive dynamic technique, particle swarm
algorithm, and modified whale optimization algorithm.
Algorithm (1) shows the AD-PSO-Guided WOA algorithm.

A. ADAPTIVE DYNAMIC TECHNIQUE

After the initialization of the optimization algorithm and for
each solution in the population, a fitness value is evaluated.
For the best fitness value, the optimization algorithm then
gets the relevant best agent (solution). To start the adaptive
dynamic process, the optimization algorithm starts to split
agents of the population into two different groups, as in Fig. 2.
The two groups are named exploitation group and exploration
group. The main target of the individuals in the exploitation
group is to move toward the optimal or best solution, and
the main target of the individuals in the exploration group is
to search the area around the leaders. The change (update)

VOLUME 9, 2021
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(a)

Cot C;

f

—>
R
=D

FIGURE 1. LSTM neural network architecture.

Exploration Group Exploitation Group

Search Around Solution Search Around Best Solution

Adaptive Dynamic Group

FIGURE 2. Balancing of exploration and exploitation groups in the
AD-PSO-Guided WOA algorithm.

between the agents of the population groups is working in a
dynamic manner. To achieve a balance between the exploita-
tion group and exploration group, the optimization algorithm
is initiated with a (50/50) population. Figure 3 explains the
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balancing and the dynamic change between the number of
agents (individuals) in the two groups over different iteration
until getting the best or optimal solution.

B. GUIDED WOA ALGORITHM
The WOA algorithm shows its advantages for different prob-
lems in the area of optimization. WOA is considered in the
literature as one of the most effective optimization algo-
rithms [20], [37]. However, it might suffer from a low capa-
bility of exploration [38]. For mathematical calculations, let’s
consider n to be the dimension or number of variables of the
search space that whales will swim in. If it is considered that
the agents (solutions) positions in the space search will be
updated over time, the best solution of food will be found.
The following equation can be used in the WOA algorithm
for the purpose of updating agents’ positions.

— — - = — — — —
Xt+1)=X*©)—A.D,D =|C.X*t)— X @)
(12)

where ?()(t) term represents a solution at an iteration ¢. The
X *(t) term represents the food or the optimal solution posi-
tion. The ““.” indicaE:)d in this equation a kind of pairwise
multiplication. The X (¢ + 1) represents the changed agent

position. The two \gctors of 4 and C w_i)ll be updated
during iterations as A = 27.1’1 —dand C = 2.rp. The
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Algorithm 1 The AD-PSO-Guided WOA Algorithm

1: Initialize population X (i = 1,2,...,n) with size n,

maximum iterations Maxmr, fitness function F},.
=

2: Inltlallze parameters a , A, C,l, 71), 72), 73), WE, WE,
W;, t=1

3: Evaluate fitness funcgon F, for each X

4: Find best individual X*

5: while t < Max;;,, do

6: if (t%2 == 0) then

7: for(i_l i<n4+1)do

8: if (73 =< 0.5) then

9: 1f(|A| < 1) then

10: Update current search agent position as
X(t+)=X*0)— A.D

11: else

12: S_e;lect three random search agents X rand1s
X rand?2» and X rand3

13: Update () by the exponential form of
—> t 2
7 =1- Maxioy

14: Update current search agent position as
X(t+1) :) W] * andl + Z >|<W2 *
(Xrand2_ rand3) + (1 — Z)*W3*(X_
X mndl)

15: end if

16: else

17: Update current search agent position as

/ bl *
X t+1)= D .cosQuly+ X *(1)
18: end if

19: end for N

20: Calculate fitness function F;, for each X ; from
Guided WOA

21:  else N

22: Calculate fitness function F, for each X ; from
PSO

23:  end if

2 Update @, 4, C, l,_)73)
25:  Find best individual X*
26 Sett=t+1

27: end while

%
28: return X*

@ term will be changed linearly from 2 (maximum value)
to O (minimum value). The values of r| and r, are changing
randomly between [0, 1].

The term Guided WOA, in this work, indicates a modi-
fied version of the original WOA algorithm [37]. In Guided
WOA, the drawback of the original WOA is alleviated by
updating the search strategy through one agent. The modified
algorithm moves the agents toward the prey or best solution
based on more than one agent. Equation 12 in the original
WOA algorithm forces agents to move randomly around
each other to get the global search. In the Guided WOA

125792

algorithm, however, the exploration process is enhanced by
forcing agents to follow three random agents instead of one.
For forcing agents not to be affected by one leader position
to get more exploration, equation 12 can be replaced by the
following one.

— — — —
X(t‘i‘l):m*Xrand1+_Z)*V7§*(Xrand2_Xrand3)

- =
+(A =) xwas* (X — X yana1)  (13)

where the three rand_c>)m solutlorg are represented in this
equation by X randl> X rand2, and X ;unq43. The w1 term value
is updated in [0, 0.5]. The terms of WE and WE are changing
in [0, 1]. Finally to smoothly the change between exploration
and exploitation, the term 7 is decreasing exponentially
instead of linearly and is calculated as follows.

— ! g
7 =1- (14)
(Maxiter>

where iteration number is represented as ¢, and Max;s., rep-
resents the maximum number of iterations.

C. PARTICLE SWARM OPTIMIZATION

Unlike the WOA algorithm, the PSO algorithm simulates the
social behaviour of a different kind of swarming pattern of
flocks in nature such as birds [18]. The agents in the PSO
algorithm search for the best solution or food according to
the updated velocity by changing their positions. The algo-
rithm uses particles (agents) and each agent follows these
parameters:

o The term (x' € R") indicates a point or position in R”"
search space. The agents’ positions are calculated by a
fitness function.

o the term (V') represents velocity or rate of change of
agents positions,

o The term (p') indicates the last best positions of the
particles.

The positions and velocities of agents are updating over

iterations. The positions of agents changed using the follow-
ing equation.

X1y =X+ Vas (15)

where the new agent posmon is indicated as xt 41+ Updated
velocity of each agentv; | evaluated as in the following form.

Vg = Crri(p(t) — x{y) + Cara(G — x{p)) + @V, (16)

where the term w represents the inertia weight. The terms Cy
and C; indicate cognition and social learning factors. The G
parameter represents the global best position and the values
of r1 and r, are within [0; 1].

D. PROPOSED ALGORITHM COMPLEXITY ANALYSIS

The AD-PSO-Guided WOA algorithm’ complexity analysis
is presented in this section based on Algorithm (1). Using
population number indicated as n iterations number as M;,
the complexity can be defined for each part of the algorithm as
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FIGURE 3. Dynamic updating of the exploration and exploitation groups in the AD-PSO-Guided WOA algorithm.

« Initializing of the population: O (1).
« Initializing of parameters 7, X Z’>, l, 71), 75, 73), Wﬁ
Wwa, wa, t = 1: 0 (1).
« Evaluating fitness functi_o)n F,: O (n).
o Getting best individual X*: O (n).
« Updating positions: O (M; x n).
« Evaluating agents’ fitness function using Guided WOA:
O (M; x n).
« Evaluating agents’ fitness function using PSO: O (M, x
n).
« Updating parameters 7, X, Z‘), 1, 73): O (M;).
« Updating best solution: O (M; x n).
« Increasing iteration counter: O (M;).
The complexity of the AD-PSO-Guided WOA algorithm can

be considered as O (M; x n). For m variables problems,
the algorithm complexity can be considered O (M; x n x m).

E. BINARY OPTIMIZER

For the feature selection problem, the output solution should
be changed to a binary solution using O or 1. The sigmoid
function is usually employed to change the continuous solu-
tion of the optimizer to a binary solution.

})(H»]) . 0 if Sigmoid(XBest) < 0.5
d 1 otherwise,

1
1 + e*lO(XBesl -0.5)

Sigmoid (Xpest) = 17)
where the best position is indicated as X, for ¢ iteration. The
Sigmoid function is used to help in changing the continuous
values to be 0 or 1. For Sigmoid(Xp,.s) > 0.5, the value will
change to 1, otherwise, the value will be changed to be 0.
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Algorithm 2 Binary AD-PSO-Guided WOA Algorithm
1: Initialize AD-PSO-Guided WOA algorithm configura-
tion, including population and parameters
2: Change current solutions to binary solution (0 or 1)
Evaluate fitness function and determine the best solution

(95]

Train k-NN based model and then calculate error

while ¢ < itersy,,, do
Apply AD-PSO-Guided WOA algorithm
Change updated solution to binary solution (0 or
1) based on equation 17
Evaluate fitness function for each agent

9:  Update parameters

10:  Update best solution

11: end while

12: Return optimal solution

Nk

®

Algorithm (2) shows the step by step explanation of the binary
AD-PRS-Guided WOA Algorithm.

F. FITNESS FUNCTION

The solutions’ quality of an optimizer is measured based
on the assigned fitness function. The function is mainly
depending on the error rate of classification/regression and
the features that have been selected from the input dataset.
The best solution is according to the set of features that can
give a minimum features with a minimum classification error
rate. The following equation is applied in this work for the
evaluation of solutions’ quality.

Is|

F, = aErr(0) + ﬁm (18)
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where the optimizer error rate is indicated as Err(O),
the selected set of features is denoted as s, f represents total
number of existing features. The ¢ € [0, 1], 8 = 1 — Iy
values are responsible of the classification error rate and the
number of selected features.

IV. EXPERIMENTAL RESULTS

The experimental settings and results for wind power fore-
casting problems using the presented AD-PSO-Guided WOA
algorithm are presented in this section. The dataset is first
discussed, and then the experiments are divided into feature
selection, ensemble, and comparison scenarios.

A. DATASET DESCRIPTION

A wind power forecasting dataset to predict hourly power
generation up to forty-eight hours ahead at seven wind farms
is tested in the experiments as a case study. The dataset is
published on Kaggle as Global Energy Forecasting Competi-
tion 2012 - Wind Forecasting [39]. The presented AD-PSO-
Guided WOA algorithm is applied in different scenarios to
test the best available accuracy compared to algorithms in
the literature. A statistical analysis of different tests is also
applied to the tested dataset to show the algorithm’s accuracy.
Prediction of regression is shown in Fig. 4. The figure shows
the actual values from the dataset and the predicted values
based on the proposed AD-PSO-Guided WOA algorithm.

FIGURE 4. The actual (green color) and predicted (red color) values based

TABLE 2. Feature selection performance metrics.

Metric Value

Average Error 1— ﬁ Z;Vil % >ieq Match(Cy, Ly)
size(g?)

Average Select Size 7 Z]]\il 2

Average Fitness ﬁ Z;ﬁl 9;

Best Fitness Mzn]]\/i 19;

Worst Fitness Mazx ;‘i 195

\/ﬁ Z(gj* — Mean)?

Standard Deviation

TABLE 3. Configuration of AD-PSO-guided WOA algorithm.

Parameter Value

# Whales 20

# Iterations 20

# Runs 20
Dimension # Features
Inertia Winaaz, Winin [0.9,0.6]

Acceleration constants C1, Co  [2,2]
aof Fj, 0.99
B of Fp, 0.01

TABLE 4. Configuration of compared algorithms.

Algorithm  Parameter (s) Value (s)

GWO a 2t00
# Wolves 20
# Iterations 20

PSO Inertia Winaz, Winin [0.9,0.6]
Acceleration constants C1, Co  [2,2]
# Particles 20
Generations 20

SFS Maximum diffusion level 1

WOA a 2t00
r [0,1]
# Whales 20
# Iterations 20

GA Mutation ratio 0.1
Crossover 0.9
Selection mechanism Roulette wheel
Population size 20
Generations 20

FA # Fireflies 10

on the AD-PSO-Guided WOA algorithm.

B. FEATURE SELECTION SCENARIO

The experiment in this scenario desired to show the feature
selection efficiency by the proposed binary AD-PSO-Guided
WOA algorithm. The binary AD-PSO-Guided WOA algo-
rithm performance is compared with the binary version of
GWO (bGWO) [18], binary PSO (bPSO) [19], binary SFS
(bSFS) [20], binary WOA (bWOA) [21], [22], binary FA
(bFA) [24], and binary GA (bGA) [23] using performance
metrics shown in Table 2. The variables in Table 2 are indi-
cated as follows. An optimizer number of runs is indicated as
M , the best solution at the run number j is represented by g%,
size of the gj’.k vector is indicated as size(gj’.*), and the number of
tested points is N. A classifier’s output label for a point i is C;,
a class’s label for a point i is L;, the total number of features is
D, and the Match function is used for calculating the matching
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between two inputs. The metrics include average error and

standard deviation fitness.

The AD-PSO-Guided WOA algorithm configuration set-

ting in experiments is shown in Table 3. The AD-PSO-Guided
WOA algorithm’s initial parameters are the number of pop-
ulation equal 20, the maximum number of iterations is set to
20, and the number of runs equals 20 for the dataset. The main
parameters for the PSO algorithm are W, and W,,;,,, which
their values are set to 0.9 and 0.6, respectively. In addition,
the o parameter is assigned to be (0.99) and 8 is assigned to be
(1—a). The GWO, PSO, SFS, WOA, FA, and GA algorithms’
configuration is shown in Table 4.

In this scenario, Table 5 shows the results provided by
GWO, PSO, SFS, WOA, FA, and GA algorithms. The AD-
PSO-Guided WOA algorithm shows a minimum average
error of (0.4790) for feature selection for the presented
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TABLE 5. Results of feature selection for the presented and compared binary algorithms.

AD-PSO-Guided WOA  bGWO  bPSO bSFS bWOA  DbFA bGA
Average error 0.4790 0.5047  0.5385 0.5481 0.5383 0.5369 0.5183
Average Select size 0.2320 0.4275 04275 05669 0.5909 0.4620 0.3699
Average Fitness 0.3510 0.3541  0.3525 03754 0.3603  0.4044  0.3655
Best Fitness 0.2521 0.2744  0.3328 0.2651 0.3244 03231 0.2688
Worst Fitness 0.3305 0.3413  0.4005 03667 0.4005 0.4207 0.3839
Standard deviation Fitness  0.1635 0.1679  0.1680 0.1742  0.1665 0.2011  0.1665
TABLE 6. Results of ANOVA test for feature selection of the presented and compared binary algorithms.
SS DF MS F (DFn, DFd) P value
Treatment (between columns)  0.07358 6 0.01226  F(6,133)=11.75 P <0.0001
Residual (within columns) 0.1387 133  0.001043 - -
Total 0.2123 139 - - -
TABLE 7. One sample t-test for feature selection of the presented and compared binary algorithms.
AD-PSO-Guided WOA  bGWO bPSO bSFS bWOA bFA bGA
Theoretical mean 0 0 0 0 0 0 0
Actual mean 0.479 0.5022 0.5393 0.5481 0.5388 0.5352 0.519
# values 20 120 20 20 20 20 20
One sample t-test
t, df t=54.41, df=19 t=72.46, df=19 t=188.9, df=19 t=210.3, df=19 t=40.08, df=19 t=92.86, df=19
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Pvalue summary seokkok skkoskok sfekskok skkoskok $eokskok skekoskok
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.5022 0.5393 0.5481 0.5388 0.5352 0.519
Discrepancy SD 0.04128 0.03328 0.01298 0.01146 0.05972 0.02499
Discrepancy SEM 0.00923 0.007442 0.002902 0.002562 0.01335 0.005589
95% confidence interval 0.482910 0.5215  0.5237t00.5548  0.5420 t0 0.5542  0.5334t0 0.5442  0.5073 t0 0.5632  0.5073 to 0.5307
R squared 0.9936 0.9964 0.9995 0.9996 0.9883 0.9978
F9
— Average Error
102 ——
102 C 0.8+
a o
g o E=
£ | —e— ADPSOGWOA o 0.6
g bPSO c - *
8 bWOA = P
bGWO IJ-
vl e pGA o 0.4
o] = DbSFS >
—— bFA -
J 20 40 60 80 100 ° 0'2 .
iterations _C_J‘
2
FIGURE 5. The AD-PSO-Guided WOA algorithm convergence curve O 0.0-—— L
compared to different algorithms. ¥ O 02 0 (v
P 8! $o $~§6‘oé¢\v & £
&b ° )
results. The AD-PSO-Guided WOA algorithm, based on the 0'00\
minimum error of the tested problem, is the best and the SFS 0‘26
v.

algorithm is the worst. In terms of standard deviation, the AD-
PSO-Guided WOA algorithm has the lowest value of (0.1635)
which indicates the algorithm’s stability and robustness.

The convergence curve of the AD-PSO-Guided WOA
algorithm compared to other algorithms is shown in Figure 5.
The figure shows the exploitation capability of the algorithm
and its ability to avoid possible local optima that can be
occurred during the optimization process. Figure 6 shows the
AD-PSO-Guided WOA average error based on the objective
function compared to different algorithms. The minimum,
maximum, and average values for different binary algorithms

VOLUME 9, 2021

Algorithms

FIGURE 6. The AD-PSO-Guided WOA algorithm average error based on
the objective function compared to different binary algorithms.

indicate the advantages of the presented algorithm. The
p-values of the AD-PSO-Guided WOA algorithm are tested
compared to GWO, PSO, SFS, WOA, FA, and GA algorithms
by ANOVA and t-test tests in Tables 6 and 7, respectively. The
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FIGURE 7. Residual, heteroscedasticity, QQ plots and heat map of the presented and compared algorithms for

feature selection problem.

statistical analysis results show the superiority and statistical
significance of the suggested algorithm.

The residual values and plots can be useful for some
datasets that are not suitable candidates for feature selec-
tion. To achieve the ideal case, the residual values should
be distributed uniformly around the horizontal axis. Con-
sidering that the sum and mean of the residuals are equal
to zero, the residual value is computed as the difference
between predicted and actual values. The residual plot is
shown in Figure 7. A nonlinear and linear model is decided
from the residual plot patterns and the appropriate one is
determined. The heteroscedasticity plot is shown in Figure 7.
Homoscedasticity describes if the error term is the same
across the values of independent variables. Figure 7 also
shows the quantile-quantile (QQ) plot, probability plot, and
heat map. Since the distributions of points in the QQ plot
are well fitted on the predetermined line, the actual and
predicted residuals are considered to be linearly related. This
confirms the presented AD-PSO-Guided WOA algorithm’s
performance.

C. ENSEMBLE FORECASTING SCENARIO

This scenario is formulated using ensemble-based models of
the average ensemble, k-NN ensemble, and the proposed opti-
mizing ensemble model based on the AD-PSO-Guided WOA
algorithm. Some ensemble models use the training instances
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of the three base models of NN, RF, and LSTM. This can be
used to forecast the unknown observations to predict wind
speed. The hyperparameters that are fed to the AD-PSO-
Guided WOA algorithm to train the LSTM model are the
number of epochs T,, size of champion attention weights
subset W,, encoding length for each attention weights L., and
size of attention weights set N,.

The evaluation metrics in this scenario include Root Mean
Squared Error (RMSE), Relative RMSE (RRMSE), Mean
Absolute Percentage Error (MAPE), Mean Absolute Error
(MAE), and the correlation coefficient (r) [40]. The RMSE
is calculated as follows.

n . H)?
RMSE = \/Zi=1(H i — ) (19)
n

where predicted value is represented as H), ; and the H; value
represents the actual measured. The total number of values is
indicated as n. The RRMSE metric is calculated as follows.

\/ﬁ Y= (Hp.i — H)?
> i1 (Hp,i)

The MAE calculates the average amount of errors in a set
of predictions and is calculated as follows.

RRMSE =

x 100 (20)

1 n
MAE = ~ > |Hpi — Hil 1)

i=1
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TABLE 8. Different ensemble-based and single models wind speed forecasting results.

NN RF LSTM  Average Ensemble  k-NN Ensemble  Optimizing Ensemble
MAPE (%) 12.8372 7.3846 6.9924 5.1134 3.6111 1.8755
MAE 0.4961 0.3163 0.2303 0.1013 0.0134 0.00476
RMSE 0.491329643  0.231488171  0.109544 0.091676794 0.01493511 0.003728832

TABLE 9. The presented optimizing ensemble model’ descriptive statistics versus other models.

NN RF LSTM  Average Ensemble ~ k-NN Ensemble  Optimizing Ensemble
# values 30 30 30 30 30 30
Minimum 0.4306 0.181 0.08629 0.07737 0.01011 0.003668
25% Percentile 0.4521 0.194 0.09462 0.08521 0.0111 0.003682
Median 0.4696 0.2405 0.1144 0.09076 0.01387 0.003715
75% Percentile 0.4934 0.2598 0.1295 0.1012 0.01712 0.003744
Maximum 0.5354 0.288 0.1403 0.1085 0.01862 0.003918
Range 0.1048 0.107 0.05401 0.0311 0.008508 0.0002499
Mean 0.4749 0.2304 0.1136 0.09341 0.01407 0.003722
Std. Deviation 0.03051 0.03408 0.01845 0.009185 0.002865 0.00004836
Std. Error of Mean 0.005571  0.006222  0.003369 0.001677 0.0005231 0.000008829
Lower 95% CI of mean 0.4635 0.2177 0.1067 0.08998 0.013 0.003704
Upper 95% CI of mean 0.4863 0.2432 0.1204 0.09684 0.01514 0.00374
Coefficient of variation 6.425% 14.79% 16.25% 9.833% 20.37% 1.299%
Geometric mean 0.474 0.2279 0.1121 0.09298 0.01378 0.003722
Geometric SD factor 1.065 1.163 1.18 1.104 1.228 1.013
Lower 95% CI of geo. mean 0.4629 0.2154 0.1053 0.08962 0.01277 0.003704
Upper 95% CI of geo. mean 0.4853 0.2412 0.1192 0.09646 0.01488 0.003739
Harmonic mean 0.4731 0.2254 0.1106 0.09254 0.01351 0.003721
Lower 95% CI of harm. mean 0.4623 0.2133 0.1041 0.08926 0.01255 0.003704
Upper 95% CI of harm. mean 0.4844 0.2391 0.118 0.09607 0.01462 0.003739
Quadratic mean 0.4758 0.2329 0.115 0.09385 0.01435 0.003722
Lower 95% CI of quad. mean 0.4641 0.22 0.108 0.09035 0.01323 0.003704
Upper 95% CI of quad. mean 0.4873 0.245 0.1216 0.09722 0.01538 0.00374
Skewness 0.5804 -0.1167 -0.0517 0.08423 0.1666 2.278
Kurtosis -0.6107 -1.471 -1.401 -1.346 -1.438 8.546
Sum 14.25 6.913 3.407 2.802 0.422 0.1117

The MAPE is one of the most commonly used metrics
to measure forecast accuracy, which is similar to MAE but
normalized by true observation. MAPE can be calculated as
follows.

100
MAPE = —

noi= Hpi

|Hp,i _Hi|

(22)

The next metric is the correlation coefficient » which can
be calculated as follows.

D ¥ G )
I — D20 — 57

where x; represents values of variable x in a sample and y;
represents values of variable y in a sample. x and y are the
mean of the x values and y values, respectively.

(23)
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Different ensemble-based and single models results are
shown in Table 8. The ensemble-based models in this
table show promising results than single models of NN,
RF, and LSTM. The proposed optimizing ensemble model,
based on the deep LSTM learning model, with RMSE of
(0.003728832), MAE of (0.00476), and MAPE of (1.8755),
gives noticeable results compared to the k-NN and average
ensemble models. Table 9 shows the detailed descriptive
statistics of the presented optimizing ensemble model ver-
sus other models. Figure 8 shows the curves of Receiver
Operating Characteristics (ROC) for the proposed optimizing
ensemble model and the compared models. These figures
indicated that the proposed ensemble model distinguishes
data with a high Area Under the Curve (AUC) value near to
1.0. The proposed optimizing ensemble algorithm stability
versus the compared models are confirmed by the RMSE
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FIGURE 8. The presented optimizing ensemble model’s ROC curves versus other models.
TABLE 10. ANOVA results of the base and ensemble models for the wind speed forecasting.
SS DF MS F (DFn, DFd) P value
Between columns, Treatment 4.688 5 09377 F(5,174)=2228 P <0.0001
Within columns, Residual 0.07323 174  0.000421 - -
Total 4762 179 - - -

TABLE 11. Wilcoxon signed rank test results of the base and ensemble models for the wind speed forecasting.

NN RF LSTM  Average Ensemble  k-NN Ensemble  Optimizing Ensemble
Theoretical median 0 0 0 0 0 0
Actual median 0.4696  0.2405 0.1144  0.09076 0.01387 0.003715
# values 30 r30 30 30 30 30
Wilcoxon Signed Rank Test
Sum of Signed ranks (W) 465 465 465 465 465 465
Positive ranks, Sum 465 465 465 465 465 465
Negative ranks, Sum 0 0 0 0 0 0
P value (two tailed) 0.0001  0.0001  0.0001  0.0001 0.0001 0.0001
Estimate or Exact? Exact Exact Exact Exact Exact Exact
Summary OfPValUC sk sk seskoksk seckksk sk kg
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.4696 0.2405 0.1144  0.09076 0.01387 0.003715

distribution, shown in Figure 9, the histogram of RMSE,
shown in Figure 10, the histogram of RRMSE, shown in
Figure 11, and the histogram of MAPE, shown in Figure 12.

Tests of ANOVA and Wilcoxon’s rank-sum are applied in
this scenario to evaluate the statistical differences between the
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presented and compared models. ANOVA output results are
shown in Table 10. Wilcoxon’s rank-sum statistical analysis
presented in Table 11 determines if the models’ results have
a significant difference. For p-value < 0.05, this indicates
significant superiority. The results show the AD-PSO-Guided
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FIGURE 9. RMSE based on objective function of the presented optimizing
ensemble model and other models.
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FIGURE 10. Histogram of RMSE of the presented optimizing ensemble
model and other models with Bin Center range of (0.00 - 0.59) based on
number of values.

WOA algorithm-based proposed ensemble model superiority
and also show the algorithm’s statistical significance.

The residual plot in this scenario is shown in Figure 13.
The heteroscedasticity plot, QQ plot, and heat map are also
shown in Figure 13. Since the distributions of points in the QQ
plot are well fitted on the line, the predicted and the actual
residuals are considered as linearly related which confirms
the proposed AD-PSO-Guided WOA ensemble-based algo-
rithm’s performance for the wind speed forecasting problem.

D. COMPARISONS SCENARIO

The third and last scenario is designed to show the perfor-
mance of the optimizing ensemble-based AD-PSO-Guided
WOA algorithm compared with PSO [19], WOA [22],
GA [23], GWO [18], HHO [25], [26], MPA [28], ChOA [29],
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FIGURE 11. Histogram of RRMSE of the presented optimizing ensemble
model and other models with Bin Center range of (1.0 - 51.5) based on
number of values.
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FIGURE 12. Histogram of MAPE of the presented optimizing ensemble
model and other models with Bin Center range of (1.8 - 14.8) based on
number of values.

and SMA [27]. The AD-PSO-Guided WOA algorithm
ensemble model is also compared with four deep learning
techniques including TDNN [30], DNN [31], SAE [32], and
BRNN [33].

Table 12 shows the comparison results of the wind speed
forecasting based on the proposed algorithm compared to
other optimization techniques. The results in the table show
that the presented optimizing ensemble model, based on the
LSTM deep learning model and the AD-PSO-Guided WOA
algorithm, gives competitive results with MAPE of (1.8755),
MAE of (0.00476), RMSE of (0.003728832), RRMSE of
(1.279369489), and r of (0.9998878) compared to other
algorithms for the wind speed forecasting tested problem.
Table 13 shows the proposed algorithm’s descriptive statistics
compared to other optimization techniques over 20 runs.

The ANOVA test results for wind speed forecasting based
on the proposed algorithm compared to other optimization
techniques is shown in Table 14. The test of the Wilcoxon
Signed-Rank rest of the wind speed forecasting results based
on the proposed algorithm compared to other optimization

125799



IEEEACC@SS A. Ibrahim et al.: Wind Speed Ensemble Forecasting Based on Deep Learning

TABLE 12. Comparison of wind speed forecasting results using the presented algorithm and other optimization techniques.

Metric ADPSO-Guided WOA ~ PSO WOA GA GWO HHO MPA ChOA SMA
MAPE (%) 1.8755 2.337 2.3559 2.6697 2.5574 4.1236 2.3157 2.44689 3.3312
MAE 0.00476 0.00715 0.007331 0.009123  0.008845  0.0099845 0.005089 0.007402  0.0068875
RMSE 0.003728832 0.00612567 0.006613066  0.008797  0.007802  0.009532 0.0049876  0.006675  0.0058746
RRMSE (%)  1.279369489 7.325162974  8.445619 9.985368  8.886955  10.131245 5.0124517  7.884593  6.991536
T 0.9998878 0.9977836 0.99764592 0.996771  0.997022  0.986612445  0.9945331  0.997536  0.9981303

TABLE 13. The presented algorithm’s description statistics compared to other optimization techniques over 20 runs.

ADPSO-Guided WOA  PSO WOA GA GWO HHO MPA ChOA SMA
Number of values 20 20 20 20 20 20 20 20 20
Minimum 0.003429 0.005126  0.004613  0.005797  0.00598 0.006532  0.003988  0.005675  0.005075
25% Percentile 0.003729 0.006126  0.006613  0.008797  0.007802  0.009532  0.004988  0.006675  0.005875
Median 0.003729 0.006126  0.006613  0.008797  0.007802  0.009532  0.004988  0.006675  0.005875
75% Percentile 0.003729 0.006126  0.006613  0.008797  0.007802  0.009532  0.004988  0.006675  0.005875
Maximum 0.003829 0.007126  0.008613  0.009997  0.009902  0.01235 0.005988  0.008675  0.007875
Range 0.0004 0.002 0.004 0.0042 0.003922  0.005821  0.002 0.003 0.0028
10% Percentile 0.003639 0.006126  0.005713  0.006897  0.007802  0.009532  0.004988  0.00657 0.005875
90% Percentile 0.003729 0.007026 ~ 0.007513  0.008797  0.007802  0.009532  0.005888  0.007665  0.006805
Mean 0.003714 0.006176  0.006613  0.008557  0.007816  0.009523  0.005038  0.006774  0.006
Std. Deviation 0.00007452 0.000394  0.000726  0.000867  0.000638  0.000945  0.000394  0.000563  0.000534
Std. Error of Mean 0.00001666 8.81E-05 0.000162  0.000194  0.000143  0.000211  8.81E-05  0.000126  0.000119
Coefficient of variation ~ 2.006% 6.380% 10.97% 10.13% 8.159% 9.920% 7.821% 8.314% 8.900%
Geometric mean 0.003713 0.006164  0.006574  0.008508  0.007791  0.009476  0.005023  0.006754  0.00598
Geometric SD factor 1.021 1.066 1.12 1.121 1.085 1.111 1.081 1.081 1.086
Harmonic mean 0.003712 0.006152  0.006532  0.008451  0.007766  0.009423  0.005009  0.006735  0.005962
Quadratic mean 0.003715 0.006188  0.006651  0.008599  0.007841  0.009567  0.005053  0.006796  0.006023
Skewness -3.136 0.5305 5.71E-15  -2.126 0.6519 -0.284 0.5305 2.133 2.475
Kurtosis 12.45 4.985 5.327 5.698 9.699 9.538 4.985 7.604 8.619
Sum 0.07428 0.1235 0.1323 0.1711 0.1563 0.1905 0.1008 0.1355 0.12

TABLE 14. ANOVA test results for wind speed forecasting using the presented algorithm and other optimization techniques over 20 runs.

SS DF MS F (DFn, DFd) P value
Between columns, Treatment  0.000502 8 6.28E-05 F(8,171)=161.7 P <0.0001
Within columns, Residual 6.64E-05 171 3.88E-07 - -
Total 0.000569 179 - - -

TABLE 15. Wilcoxon signed rank test of wind speed forecasting results using the presented algorithm and other optimization techniques over 20 runs.

ADPSO-Guided WOA  PSO WOA GA GWO HHO MPA ChOA SMA
Theoretical median 0 0 0 0 0 0 0 0 0
Actual median 0.003729 0.006126  0.006613  0.008797  0.007802  0.009532  0.004988  0.006675  0.005875
# Values 20 20 20 20 20 20 20 20 20
Wilcoxon Signed Rank Test
Signed ranks (W), Sum 210 210 210 210 210 210 210 210 210
Positive ranks, Sum 210 210 210 210 210 210 210 210 210
Negative ranks, Sum 0 0 0 0 0 0 0 0 0
P value (two tailed) 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
Estimate or Exact? Exact Exact Exact Exact Exact Exact Exact Exact Exact
Pva]ue Summary sekoskosk sekosksk sefoksk sekoskosk ks sekoksk seksksk sesoksk sekosksk
Significant (alpha=0.05)? Yes Yes Yes Yes Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.003729 0.006126  0.006613  0.008797  0.007802  0.009532  0.004988  0.006675  0.005875

techniques is also shown in Table 15. The results con- tested problem compared to the PSO, WOA, GA, and GWO
firm the superiority of the AD-PSO-Guided WOA based algorithms.

proposed ensemble model and indicate the statistical sig- Table 16 shows the comparison results of the wind speed
nificance of the algorithm for the wind speed forecasting forecasting based on the proposed algorithm compared to
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TABLE 16. Comparison of wind speed forecasting results using the presented algorithm and other deep learning techniques.

ADPSO-Guided WOA  TDNN DNN SAE BRNN
MAPE (%) 1.8755 14.7615 8.1996 12.6632 7.113
MAE 0.00476 0.5377 0.3316 0.4991 0.3226
RMSE 0.003728832 0.5126012  0.3371776  0.478634  0.244604
RRMSE (%)  1.279369489 52.659735  27.887544  48.75756  22.4404
T 0.9998878 0.8766512  0.8963578  0.887633  0.909132

TABLE 17. The presented algorithm’s description statistics compared to other deep learning techniques over 20 runs.

ADPSO-Guided WOA  TDNN DNN SAE BRNN
Number of values 20 20 20 20 20
Minimum 0.003429 0.4126 0.2372 0.3786 0.2014
25% Percentile 0.003729 0.5126 0.3372 0.4786 0.2446
Median 0.003729 0.5126 0.3372 0.4786 0.2446
75% Percentile 0.003729 0.5126 0.3372 0.4786 0.2446
Maximum 0.003829 0.6713 0.4937 0.5786 0.2946
Range 0.0004 0.2587 0.2565 0.2 0.09316
10% Percentile 0.003639 0.4934 0.3372 0.4156 0.2356
90% Percentile 0.003729 0.5126 0.3822 0.4786 0.2716
Mean 0.003714 0.5145 0.3425 0.4751 0.2459
Std. Deviation 0.00007452 0.04326 0.04379 0.03602 0.01674
Std. Error of Mean 0.00001666 0.009673  0.009792  0.008055  0.003744
Coefficient of variation  2.006% 8.409% 12.79% 7.582% 6.808%
Geometric mean 0.003713 0.5129 0.34 0.4738 0.2454
Geometric SD factor 1.021 1.083 1.131 1.08 1.07
Harmonic mean 0.003712 0.5113 0.3376 0.4724 0.2449
Quadratic mean 0.003715 0.5162 0.3452 0.4764 0.2465
Skewness -3.136 2.012 1.654 -0.1042 0.6119
Kurtosis 12.45 11.15 9.226 5.943 5.853
Sum 0.07428 10.29 6.85 9.503 4919

TABLE 18. ANOVA test results for wind speed forecasting using the presented algorithm and other deep learning techniques over 20 runs.

SS DF MS F (DFn, DFd) P value
Between columns, Treatment  3.357 4 0.8392 F(4,95)=781.8 P<0.0001
Within columns, Residual 0.102 95 0.001073 - -
Total 3.459 99 - - -

TABLE 19. Wilcoxon signed rank test of wind speed forecasting results using the presented algorithm and other deep learning techniques over 20 runs.

ADPSO-Guided WOA  TDNN DNN SAE BRNN
Theoretical median 0 0 0 0 0
Actual median 0.003729 0.5126  0.3372 0.4786 0.2446
# Values 20 20 20 20 20
Wilcoxon Signed Rank Test
Sum of Signed ranks (W) 210 210 210 210 210
Positive ranks, Sum 210 210 210 210 210
Negative ranks, Sum 0 0 0 0 0
P value (two tailed) 0.0001 0.0001  0.0001 0.0001 0.0001
Estimate or Exact? Exact Exact Exact Exact Exact
SUmmaIy OfP Vall.le shesfeokok sfeskoskosk sfeskeokosk skl sesfeockosk
Significant (alpha=0.05)? Yes Yes Yes Yes Yes
How big is the discrepancy?
Discrepancy 0.003729 0.5126 03372 0.4786  0.2446

other deep learning techniques. The results in the table show
that the proposed optimizing ensemble model with MAPE
of (1.8755), MAE of (0.00476), RMSE of (0.003728832),

RRMSE of (1.279369489), and r of (0.9998878) gives
competitive results compared to the TDNN, DNN, SAE,
and BRNN techniques for the wind speed forecasting

VOLUME 9, 2021 125801



IEEE Access

A. Ibrahim et al.: Wind Speed Ensemble Forecasting Based on Deep Learning

Residual plot

0.10-

0.05- : !
¥ | i
.'09, 0.00p§------ ' ........... L PPN [ B
41 ] !
) |

-0.05- o

-0.10 T T T T 1

0.0 0.1 0.2 0.3 0.4 0.5
Predicted Y
QQ plot

Predicted residual

-0.05 0.00 0.05
Actual residual

Homoscedasticity plot

0.08-
7_§~ 0.06- . :
=] s ®
2 0.04- i H
c ] 0
2 ° $
< 0.02 | § s
H |
| =

0.00 9 —— —
00 01 02 03 04 05

Predicted Y

0.05
0
-0.05

NN Average Ensemble

FIGURE 13. Residual, QQ, heteroscedasticity plots, and the heat map of the presented ensemble-based and compared

models for wind speed forecasting problem.

tested problem. Table 17 shows the proposed algorithm’s
descriptive statistics compared to other deep learning tech-
niques over 20 runs.

The ANOVA test results for wind speed forecasting based
on the proposed algorithm compared to other deep learning
techniques is shown in Table 18. The test of the Wilcoxon
Signed-Rank rest of the wind speed forecasting results based
on the proposed algorithm compared to other deep learning
techniques is also shown in Table 19. The results confirm
the superiority of the AD-PSO-Guided WOA based proposed
ensemble model and indicate the statistical significance of
the algorithm for the wind speed forecasting tested problem
compared to the TDNN, DNN, SAE, and BRNN techniques.

V. CONCLUSION

This paper uses a dataset of wind power forecasting as a case
study from Kaggle to predict hourly power generation up
to forty-eight hours ahead at seven wind farms. A proposed
adaptive dynamic particle swarm algorithm with a guided
whale optimization algorithm improves the forecasting per-
formance of the tested dataset by enhancing the parameters of
the LSTM classification method. The AD-PSO-Guided WOA
algorithm selects the optimal hyper-parameters value of the
LSTM deep learning model for forecasting purposes of wind
speed. A binary AD-PSO-Guided WOA algorithm is applied
for feature selection and it is evaluated in comparison with
the GWO, PSO, SFS, WOA, FA, and GA algorithms using

125802

the tested dataset. An optimized ensemble method based on
the proposed algorithm is tested on the experiments’ dataset.
The results of this scenario are compared with NN, RF,
LSTM, Average ensemble, and k-NN methods. The statis-
tical analysis of different tests is performed to confirm the
accuracy of the algorithm, including ANOVA and Wilcoxon’s
rank-sum tests. The current work’s importance is applying
a new optimization algorithm to enhance LSTM classifier
parameters. The presented algorithms will be tested for other
datasets in future work. The algorithm will also be tested
for other binary problems for the constrained engineering,
classification, and feature selection problems. The sparsity
of the proposed model will be evaluated and compared with
other methods including the sparse autoencoding methods.
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