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Abstract - Particle Swarm Optimization (PSO) is one of the 
most widely used heuristic algorithms. The simplicity and 
inexpensive computational cost make this algorithm very 
popular and powerful in solving wide ranges of problems. 
However, PSO suffers two problems of trapping in local 
minima and slow convergence speed. Binary version of this 
algorithm has been introduced for solving binary problems. 
Because BPSO uses the same concepts of PSO, it also 
undergoes the same problems. The main part of the binary 
version is the transfer function. There is not enough study in 
the literature focusing on the transfer function. In this study, 
eight new transfer functions dividing into two families (s-
shape and v-shape) for binary particle swarm optimization are 
introduced and evaluated. Four benchmark optimization 
problems are employed in order to evaluate these transfer 
functions in terms of avoiding local minima, convergence 
speed, and accuracy of results. The results prove that the new 
introduced v-shape family of transfer functions could improve 
the performance of original binary PSO based on the above-
mentioned drawbacks. 

Keywords: Optimization Algorithm (MOA), Magnetic field 
theory; Function optimization; Transfer function

1 Introduction
  Particle Swarm Optimization (PSO) is one of the most 

widely used evolutionary algorithms inspired from social 
behavior of animals [1,2]. The simplicity and inexpensive 
computational cost make this algorithm very popular. Due to 
above-mentioned advantages, PSO has been applied to many 
domains such as medical detecting [3], grid scheduling [4],
robot path planning [5], and video abstraction [6]. In spite of 
these advantages, like all other population-based algorithm, 
trapping in local minima and slow convergence rate are two 
unavoidable problems for PSO. With the increase of 
problems’ dimension, these two problems become more 
complex.  PSO is capable of solving problems which have 
continuous search space. However, some problems have 
different search spaces.

There are many optimization problems, which have 
discrete binary search spaces. They need binary algorithms to 
be solved. Binary version of PSO was proposed by Kennedy 
and Eberhart in 1997 [7]. Like PSO, binary version of PSO 

has the problems of trapping in local minima and slow 
convergence speed because of using the same concepts for 
solving problems [8]. The only different element between 
these two algorithms is transfer function that is used to map 
continuous search space to the binary one. Transfer function 
is the most important part of binary PSO [9]. In the literature, 
there is not enough study about the transfer function. In This 
study, eight different transfer functions for binary version of 
PSO are introduced and evaluated. The effectiveness of 
employing these new transfer functions are investigated in 
terms of avoiding local minima, convergence speed, and 
accuracy of results.

The rest of the paper is organized as follow. Section II 
presents a brief introduction to PSO. Section III discusses the 
basic principles of binary version of PSO. The experimental 
results are demonstrated in section IV. Finally, section V 
concludes the work and suggests some researches for future 
works.

2 The Particle Swarm Optimization
PSO is an evolutionary computation technique which is 

proposed by Kennedy and Eberhart [10,11]. The PSO was 
inspired from social behavior of bird flocking. It uses a 
number of particles (candidate solutions) which fly around in 
the search space to find best solution. Meanwhile, they all 
look at the best particle (best solution) in their paths. In other 
words, particles consider their own best solutions as well as 
the best solution has found so far. 

Each particle in PSO should consider the current position, 
the current velocity, the distance to pbest, and the distance to 
gbest to modify its position. PSO was mathematically 
modeled as follow:

����� = ���� + �� ×  	
�� × (����� � ���)              
        + �� ×  	
�� × (����� � ���)              (1)

       ����� = ��� + �����         (2)

where ��� is the velocity of particle i at iteration t, w is a 
weighting function, �� is a weighting factor, rand is a random 
number between 0 and 1, ���is the current position of particle i
at iteration t, ����� is the pbest of agent i at iteration t, and 
gbest is the best solution so far.
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The first part of (1), ���� , provides exploration ability for 
PSO. The second and third parts, �� × 	
�� × (����� � ���)
and �� × 	
�� × (����� � ���), represent private thinking 
and collaboration of particles respectively. The PSO starts 
with randomly placing the particles in a problem space. In 
each iteration, the velocities of particles are calculated using 
(1). After defining the velocities, the position of masses can 
be calculated as (2). The process of changing particles’ 
position will continue until meeting an end criterion. 

3 Binary Version of Particle Swarm 
Optimization

Generally, there are many problems which have intrinsic 
discrete binary search space like feature selection and 
dimensionality reduction [12,13]. In addition, the problems 
with continuous real search space can be converted into 
binary problems. However, a binary search space has its own
structure with some limitations.

A binary search space can be considered as a hypercube. 
The agents of a binary optimization algorithm can only shift 
to nearer and farther corners of the hypercube by flipping 
various numbers of bits [7]. Hence, for designing binary 
version of PSO, some basic concepts such as velocity and 
position updating process had been modified.

In the original PSO, particles can move around the search 
space because of having position vectors with continuous real 
domain. Consequently, the concept of position updating can 
be easily implemented for particles adding velocities to 
positions using (2). However, the meaning of position 
updating is different in a discrete binary space. In binary 
space, due to dealing with only two numbers (“0” and “1”), 
the position updating process cannot be done using (2). 
Therefore, we have to find a way to use velocities to change 
agents’ positions from “0” to “1” or vice versa. In other 
words, we have to find a link between velocity and position, 
as well as revise (2).

Basically, in discrete binary space, the position updating 
means a swithcing between “0” and “1” values. This 
switching should be done based on velocities of agents. The 
question here is that how the concept of velocity in real space 
should be employed in order to update positions in binary 
space. According to [7,14,15], the idea is to change position 
of an agent with the probability of its velocity. In order to do 
this, a transfer function is needed to map the velocities values 
to probability values for updating the positions.

As mentioned above, transfer functions define the
probability of changing position vector’s elements from “0” 
to “1” and vice versa. Transfer functions force agents to move 
in a binary space. According to [14], some concepts should be 
taken into account for selecting a transfer function in order to 
map velocity values to probability values.

The transfer function should be able to provide a high 
probability of changing the position for a large absolute value 
of the velocity. It should also present a small probability of 
changing the position for a small absolute value of the 
velocity. Moreover, the range of a transfer function should be 
bounded in the interval [0,1] and increased with the 

increasing of velocity. The function that have been used in [7] 
are presented as (3). This function is also depicted in Fig.1.

          � ���,�� (�)� = �
������,�! (")        (3)

The above-mentioned transfer function and the new 
introduced transfer functions in this work are listed in Table I.  
These transfer functions are also visualized in Fig.1 and 
Fig.2. We call the first and second groups s-shape and v-
shape family transfer functions respectively. According to [7],
for the transfer function in Fig.1, we use (4) in order to update 
position vectors. According to [14], for the transfer function 
in Fig.2, we use (5) to update position vectors based on 
velocities. It should be noticed that these transfer functions 
satisfy all aforementioned concepts.

     ��,�� (� + 1) = #0           If 	
�� < � ���,�� (� + 1)�
1           If 	
�� $ � ���,�� (� + 1)�%   (4)

  ��,�� (� + 1) = #�&'*�'��� ���,�� (�)�  If 	
�� < � ���,�� (� + 1)�
��,�� (�)                                If 	
�� $ � ���,�� (� + 1)�%  (5)

   

TABLE I. TRANSFER FUNCTIONS

No Transfer Functions
1 �(�) = 11 + �-�. 

2 [7] �(�) = 11 + �-.
3 �(�) = 1

1 + �-.�
4 �(�) = 1

1 + �-./
5 �(�) = 2erf 3452 �72 = 8425 9 �-�:4;� .

> ��8
6 [14] �(�) =  | tanh(x) |

7 �(�) = ? �41 + ��?
8 �(�) =  ?25 arctan (52 �)?

Figure 1. S-shape family transfer functions
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Figure 2. V-shape family transfer functions

The general steps of Binary PSO are as follows. 
a) All particles are initialized with random values
b) Repeat steps c-e until the meeting of the end 

condition
c) For all particles, velocities are defined using (1)
d) Calculate probabilities for changing elements of 

position vectors based on transfer function’s 
formula.

e) Update the elements of position vectors based on the 
rules in (4) or (5) based on the type of transfer 
function

4 Experimental results and discussion
In order to evaluate the performance of new binary 

versions of PSO called BPSO with different transfer 
functions, 4 standard benchmark functions are employed [16].
Table II lists down these benchmark functions and the range 
of their search spaces. Fig.3, Fig.4, Fig.5, and Fig.6 illustrate 
them, Spherical, Rastrigin, Rosenbrock, and Griewank 
functions, respectively. Furthermore, function’s dimension is 
set to 5 (m=5). To represent each continuous variable, 15 bits 
are used. It should be noticed that one bit is reserved for the 
sign of each functions’ dimension. Therefore, the dimension 
of agents are 75 (Dim=m×15). 

TABLE II. BENCHMARK FUNCTIONS

Function Range

@�(�) = A ���B
�C� [-100,100]m

@�(�) = A [100(���� � ���)� + (�� � 1)�]B-�
�C� [-30,30]m

@/(�) = A [��� � 10�&�(25��) + 10]B
�C� [-5.12,5.12]m

@D(�) = 14000 A ��� � F �&� G��4HJ + 1B
�C�

B
�C� [-600,600]m

Figure 3. Spherical function (F1)

Figure 4. Rastrigin function (F2)

Figure 5. Rosenbrock function (F3)

Figure 6. Griewank function (F4)
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In this paper, our objective is minimization. The global 
minimum values for all appeared functions in table I are 0. 
The number of particles is 30, C1 and C2 are set to 2, W is 
linearly decreased from 0.9 to 0.4, maximum velocity is set to 
6, maximum iteration is set to 500, and the stopping criteria is 
the meeting of maximum number of iteration. According to 
[14], to achieve a good convergence rate, the velocity should 
be limited. So, the maximum velocities for all versions of 
BPSO in this work are set to 6.

The experimental results are presented in Table III. The 
results are averaged over 30 independent runs, and the best 
results are indicated in bold type. 

TABLE III. MINIMIZATION RESULTS OF 4 BENCHMARK FUNCTIONS OVER
30 INDEPENDENT RUNS

F Algorithm ABSF a STDV b MBSF c Best d

F1

BPSO1
BPSO2
BPSO3
BPSO4
BPSO5
BPSO6
BPSO7
BPSO8

0.4921
5.2965

33.3306
71.0918
0.7844
0.3514
0.2663
0.0977

0.4165
2.7657

17.0770
37.9921
2.9905
0.8997
0.7691
0.2725

0.3822
4.6684
30.58
59.313
0.0044
0.0179
0.0063
0.0064

0.0492
1.7044
2.5258

18.2828
0 
0 
0 
0 

F2

BPSO1
BPSO2
BPSO3
BPSO4
BPSO5
BPSO6
BPSO7
BPSO8

20.2467
65.3304

437.3886
744.8748
26.7199
21.1831
14.8538
7.3941

26.1441
79.3444
347.783

623.8992
45.3441
34.2671
33.188

19.4263

8.366
39.838

310.043
612.7769

8.5981
6.7977
3.2592
2.9353

2.0515
5.8852

68.5187
57.498
1.5156
07392
0.8658
0.1093

F3

BPSO1
BPSO2
BPSO3
BPSO4
BPSO5
BPSO6
BPSO7
BPSO8

2.2054
4.1528
8.2714

12.4642
1.9923
2.0495
1.8899
1.6945

1.0149
1.6081
3.3343
3.2046
0.8618
0.8105
1.2806
0.7212

2.2792
3.6184
8.6903

12.6385
1.9932
1.995
1.7407
1.9903

0.2207
2.23

1.7784
6.1475
0.995
0.995
0.0242
0.9952

F4

BPSO1
BPSO2
BPSO3
BPSO4
BPSO5
BPSO6
BPSO7
BPSO8

0.2598
0.3985
0.6403
0.7989
0.1684
0.1762
0.1351
0.1032

0.0868
0.1088
0.1612
0.1465
0.1068
0.1016
0.0904
0.0655

0.2776
0.3753
0.6409
0.8471

0.161432
0.1623
0.1154
0.0958

0.0558
0.1961
0.2682
0.4665
0.0272
0.0144
0.0330
0.0154

a. Indicates average best so far solution over 30 runs in the last iteration
b. Indicates standard deviation of the best so far solution over 30 runs in the last iteration

c. Indicates median best so far solution over 30 runs in the last iteration
c. Indicates the best solution over 30 runs in all iteration

For functions F1 and F2, BPSO8 reaches better results 
than other algorithms for ABSF and STDV variables in Table 
II. The functions F1 and F2 belong to family of unimodal 
functions which are monotonous functions without any local 
solution. As shown in the Fig.3 and Fig.4, there is only one 
global solution for these kinds of functions. Hence, the results 
of the aforementioned statistical variables show BPSO8 
improve the ability of exploiting the global minima in original 
BPSO with its new transfer function. 

The results for Best variable in Table III prove that 
BPSO8 also owns best result accuracy among the other 

algorithm. Moreover, Fig.7 and Fig.8 prove that BPSO8 
possesses good convergence rate in the last iterations.

According to Table III, for functions F3 and F4, BPSO8 
outperform other algorithms in all statistical variables. 
Functions F3 and F4 are multimodal functions that have many 
local solutions in comparison with unimodal functions. 
Hence, it can be said that BPSO8 with its new transfer 
function could enhance the ability of original BPSO to avoid 
local minima. 

The results of Best variable in Table III for BPSO8 also 
insist on having more accurate results than the other 
algorithms. Fig.9 and Fig.10 prove that BPSO8 has better 
convergence speed in multimodal functions for the last 
iterations as well.

To summarize, results prove that family of s-shape 
transfer functions with their method of updating position are 
not suitable for binary version of PSO. In contrary, the new 
introduced v-shape family of transfer functions with their 
special method of updating positions is useful for binary 
version of PSO in terms of avoiding local minima, 
convergence speed, and accuracy of results. It can be 
concluded that the new introduced family of transfer function 
has merit to use in binary algorithms.

Figure 7. Comparison between BPSOs with diffetent transfer functions on 
fuction F1

Figure 8. Comparison between BPSOs with diffetent transfer functions on 
fuction F2
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Figure 9. Comparison between BPSOs with diffetent transfer functions on 
fuction F3

Figure 10. Comparison between BPSOs with diffetent transfer functions on 
fuction F4 

5 Conclution
In this paper, some new versions of binary PSO are 

introduced utilizing different new transfer functions. Eight
new transfer functions dividing into two families (s-shape and 
v-shape) are introduced and evaluated. In order to justify the 
performance of all versions, four benchmark functions are 
employed, and the results are compared together. The results 
prove that the new introduced v-shape family of transfer 
functions with their own method of updating positions vector 
can improve the performance of original binary version of 
PSO in terms of avoiding local minima, convergence rate, and 
results’ accuracy. The results also show that new introduced 
v-shape family of transfer function has merit for binary 
algorithms.

For future studies, it is recommended to use the new 
introduced family transfer function for the other binary 
algorithms like Binary Gravitational Search Algorithm.
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