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Abstract

Plant wax biomarkers are an innovative proxy for reconstructing vegetation composi-

tion and structure, rainfall intensity, temperature, and other climatic and environmen-

tal dynamics. Traditionally used in earth sciences and climate studies from“off-site ”

ocean and lake records, biomarker research is now incorporated in archeology and

paleoanthropology to answer questions relating to past human-environment interac-

tions and human evolution. Biomarker research is generating new and exciting infor-

mation on the ecological context in which Homo and its closest relatives evolved,

adapted, and invented stone tool technologies. In this review, we examine plant wax

biomarkers and their use in reconstructing past plant landscapes and hydroclimates.

We summarize the applications of plant wax molecular proxies in archeological

research, assess challenges relating to taphonomy, consider the role of modern plant

ecosystems in interpreting ancient habitats, and examine case studies conducted at

key paleoanthropological locations in eastern and southern Africa and Europe.

1 | INTRODUCTION

While climatic and environmental variability have been prominently

discussed in influencing the broad patterns of human evolution,1–5

linking ecosystem changes to technological and behavioral responses

remains challenging. To address such research challenges, the analysis

of plant wax lipids from ocean and lake cores,6–8 paleo-lake drilling

projects,9–13 archeological and geological outcrops,14–18 cave

deposits,19–21 and hominin-bearing sediments22 have the potential to

provide well-integrated, high-resolution data on past plant ecology

and environmental stresses in regions where hominins evolved.

The external surface of leaves and other plant parts with epider-

mal cells are coated with protective waxes (Figure 1) that help pre-

serve the water balance of the plant and minimize damage to leaf cells

from fungal and insect attack, wind abrasion, and excessive ultraviolet

radiation.23 As biologically-specific marker molecules, orbiomarkers,

plant wax lipids record environmental conditions in their compound

distributions, abundances, and carbon (� 13C) and hydrogen (� D) iso-

tope ratios (Box 1).

Plant wax lipids are readily dispersed through the environment

and, due to their hydrophobic behavior, are well-preserved in a variety

of soil, lake, and ocean sediments.24 Despite their potential for
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reconstructing human-environment interactions, the interpretation

and evaluation of plant wax geochemistry has not been widely utilized

by archeologists and paleoanthropologists. Here, we review the appli-

cation of plant wax biomarkers used in human evolutionary studies.

First, we discuss lipid biomarkers and the way in which they comple-

ment and diverge from other paleoenvironmental and climatic proxies.

Although powerful on their own as a proxy for past vegetation change

and paleohydrology, plant wax biomarkers are exceptional tools for

reconstructing plant landscape variability at high taxonomic resolu-

tion, especially when combined with pollen or phytolith analyses.25

Second, we assess biomarker taphonomy and preservation, and the

ensuing challenges associated with this line of research. Plant waxes

are ubiquitous and abundant in many soils, yet they are not preserved

in all depositional settings and are susceptible to biodegradation.

Marine and lacustrine sediments that act as high-resolution plant wax

archives can even suffer from poor organic matter preservation if

oxidized, for example. Third, we examine how present-day vegetation

formations may double as interpretive baselines for our use of plant

waxes as an environmental proxy. Understanding the transport, accu-

mulation, preservation, and isotopic variability of biomarkers in living

plants and soils informs our reconstructions when using those recov-

ered in paleosols or marine and lake cores. Fourth, we discuss how

plant waxes can shed light on multiple aspects of human evolution

through studies that have been conducted in eastern and southern

Africa and Europe, the primary regions where biomarker research has

thus far been deployed in paleoanthropology. We highlight work con-

ducted at famous paleoanthropological locales, such as at Oldupai

Gorge and the Turkana Basin in eastern Africa, and at cave and rock

shelter sites occupied by Neanderthals in Europe andH. sapiensin

South Africa. Finally, we consider the future of plant wax studies

in paleoanthropology and the gaps that still need to be addressed

when using biomarkers as archeological proxies.

2 | COMPLEMENTARY ADDITION TO
MULTI-PROXY STUDIES

The interest in molecular fingerprinting plant biomarkers in archeolo-

gical49–55 and paleoanthropological6–20,22,56 studies (Figure 3), lies in

key advantages this technique holds over other proxies. Plant wax

� 13C (Box 2) is not biased toward herbivore feeding behavior like that

of tooth enamel, and lipid biomarkers are more widespread than

paleosol carbonates which only form in soils where annual rainfall is

less than 1000 mm per year.57 Furthermore, pedogenic carbonates

cannot capture short-term climatic and environmental variability like

that recorded in plant wax � 13C because of slow formation processes.

While phytoliths track the boundary between woodlands and grass-

lands, they cannot reliably identify photosynthetic pathways like plant

wax � 13C (Figure 4).63 The production and dispersal of pollen varies

widely between different plant families and genera, and preservation

is contingent on anoxic conditions and other paramaters.64 Because

of this, well-preserved pollen-bearing sediments are scarce within

F I G U R E 1 A schematic diagram of
leaf anatomy highlighting the location of
the plant wax lipids. (a) A dumb cane
(D. seguine) leaf with a reflective waxy
surface. (b) A scanning electron
micrograph of the cross section of a
leaf: (1) Upper epidermis covered by a
cuticular membrane with epicuticular
wax deposits on its outer surface visible
(white arrow). (2) The lower epidermis
covered with a cuticular membrane but
with fewer epicuticular wax deposits
(black arrow). A stoma is shown near
center. (3) Mesophyll

F I G U RE 2 Typical GC–MS trace of n-alkanoic acid even-over-odd
(top) andn-alkane odd-over-even (bottom) carbon chains, with
hydrocarbon compounds labeled. The long-chain compounds (>C25)
are produced by terrestrial plants and are ideal for� 13C and � D
analyses
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nonmaritime, specifically arid or semi-arid, regions.65 In contrast,

water insoluble plant waxes are chemically inert and resistant to bio-

degradation in sediments over deep time following deposition and ini-

tial diagenesis.24,66,67 Because covalently bonded carbon, hydrogen,

and oxygen atoms are difficult to degrade without subjecting them to

high temperatures (� 150� C)68 or catalytic enzyme and chemical

activity,26 the original isotopic content incorporated during biomarker

biosynthesis generally remains intact.

Plant waxes do have their own interpretive challenges, however.

Wax production varies by taxonomic group and sedimentary archives

Box 1 Plant wax biomarker analysis

While the environmental significance of plant waxes has been reviewed elsewhere within the context of paleoenvironmental and paleo-

climatic research,26–29 their potential for use within archeology remains understated. Biomarkers are complex organic compounds com-

posed of carbon, hydrogen, and other elements that originate from formerly living organisms.23 They provide information on the type

and amount of organic content preserved within source rock or sediment, the organisms and environmental conditions during deposi-

tion and burial, and the degree of degradation of the original biological components.30,31 The most common plant wax biomarkers

assessed are long, straight-chain normal (n-) alkanes,n-alkanoic acids, and to a lesser extent,n-alkanols with between 24 and 36 carbon

atoms (Figure 2). Plants and other autotrophs producen-alkanes with a strong odd-over-even predominance, while then-alkanols and

n-alkanoic acids exhibit strong even-over-odd carbon chains.23 Generally, long-chains (C27–C35 n-alkanes, C26–C34 n-alkanols/acids) are

most abundant in terrestrial plants,23,32 while submerged and floating aquatic macrophytes contain more mid-chain compounds (C21–

C25 n-alkanes, C20-C24 n-alkanols/acids),33,34 and short-chains (C17-C21 n-alkanes, C14-C18 n-alkanols/acids) are dominant in algae.35,36

Several metrics have been developed to analyze plant wax compound distribution, abundance, and degree of degradation. Carbon-

number range (i.e. C25–C35) and abundance are often used to characterize particular plant groups, even though it is difficult to make

chemotaxonomic distinctions between grasses and woody plants.37 The carbon preference index (CPI) examines the odd-over-even car-

bon number predominance inn-alkanes or even-over-odd predominance inn-alkanoic acids andn-alkanols. It acts as a qualitative indica-

tor of wax degradation, where a CPI <1 often indicates sample maturity or degradation.37,38 Average chain length (ACL), or the weight-

averaged number of carbon chains, is used (cautiously) as both a vegetation and climate proxy because it has been shown to be higher

in C4 grasses,39 but can also correlate with higher growing season temperature and aridity.40 The Submerged/Terrestrial Ratio (STR) dif-

ferentiates the fatty acids of submerged and terrestrial plants in lake sediments,35 while the Paq Ratio,33 the relative proportion of mid-

chain to long-chain length n-alkanes, compares the input of submerged/floating aquatic macrophytes into lake sediments against that of

emergent and terrestrial plants. The uncertainty associated with some of these qualitative indicators necessitates the application of sta-

ble isotope measurements on plant wax biomarkers.

Traditionally, geochemists have sought to recover plant waxes from terrestrial, ocean, and lake deposits to reconstruct past ecosys-

tems and climates. This entails solvent extraction of biomarkers from ancient sediments or rocks followed by qualitative and quantitative

profiling through a combination of chromatographic separation and mass spectrometry techniques. Gas Chromatography Mass Spec-

trometry (GC–MS) and GC Flame Ionization Detection (GC-FID) are the preferred methods for identifying and quantifyingn-alkanes

and n-alkanoic acids. Isotope ratio analysis (GC-IRMS) measures with high precision, small variations in the relative abundance of carbon,

hydrogen, and other isotopes.41 For carbon, the stable isotopic ratio between carbon-13 and carbon-12 is expressed as� 13C relative to

the Vienna PeeDee Belemnite (VPDB) international standard (Equation 1). For hydrogen, the stable isotopic ratio between deuterium

(2H) and protium (H) is expressed as� D relative to the Vienna Standard Mean Ocean Water (VSMOW) international standard

(Equation 2). Isotope values are expressed using the delta (� ) notation in units of per mil (‰ ), which reports changes as deviations com-

pared to designated standards.41

� 13C¼
� 13C=12C
� �

Sample � 13C=12C
� �

Standard

�
� 1

h i
� 1000 ð1Þ

� D ¼
� 2H=1H
� �

Sample � 2H=1H
� �

Standard

�
� 1

h i
� 1000 ð2Þ

“Enrichment” is the term used to describe the process by which the relative abundance of the heavier isotope increases, making‰

more positive. “Depletion” on the other hand, is the process by which the relative abundance of the heavier isotope decreases, making

‰ more negative. Please refer to the following publications for expressing and reporting stable isotope ratios,42,43 and in-depth proto-

cols and discussions on extracting and analyzing plant wax biomarkers and measuring� 13C and � D from n-alkanes and n-alkanoic

acids.44–48
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are often dominated by specific plant types due to differences among

plant lifeforms and physiography.69 Lipid biomarkers ablated from leaf

surfaces can also be transported long distances before deposition,70

and the size of a catchment area determines the amount of soil-

derived waxes that settle in marine or lacustrine sediments.71 Yet, this

allows for both “on-site” and “off-site ” plant wax records to be com-

pared and contrasted as regional7 and local10 vegetation proxies. Ide-

ally, plant waxes should be studied along with pollen and phytoliths to

calibrate interpretive biases stemming from differential wax produc-

tion and transport histories.

When reported alongside grass pollen and phytoliths,� 13C effi-

ciently detects C3/C4 vegetation shifts. Moreover, plant wax � 13C

allows for higher taxonomic discrimination among the grasses, as pol-

len cannot establish Poaceae photosynthetic subtypes.72 Compound-

specific isotope analyses on individual n-alkanes (e.g., C31) or n-

alkanoic acids (e.g., C30) also erases the ambiguity in isotope measure-

ments inherent in bulk sediment isotope analysis. Lastly, from a sam-

ple processing perspective, biomarker analysis is less time consuming

than pollen or phytolith extractions, which require extensive prepara-

tion and count time; though isotope measurements can become

expensive due to the need to analyze� 13C at least in duplicate and

� D in triplicate.44

3 | TAPHONOMIC NORMALIZATION

Like any organic material, the preservation of plant waxes is

dependent on burial dynamics and resistance to biological decay.30

Diagenesis is the biological, physical, or chemical alteration of

organic matter in sediments prior to significant changes caused by

heat or pressure.31 It is often assumed that diagenesis does not

generate significant fractionation at the molecular level when using

biomarker isotopes for paleo-reconstructions. Nevertheless, it is

important to connect diagenesis to isotope change in any proxy

record that relies on the stability of isotopes over geologic time.

Studies96–99 that have isotopically characterized diagenetic pro-

cesses have had mixed results in identifying carbon and hydrogen

alteration through chemical and microbial activity. As research

compares leaf, leaf-litter, and soil isotopes, interesting patterns are

appearing in post-depositional plant wax � 13C. There is often a

+ 4.0 ‰ to + 6.0 ‰ increase in soil n-alkane and n-alkanoic acid

� 13C, attributed to a combination of the Suess Effect (� + 2.0 ‰ )

and microbial 13C contribution to soil isotope archives (+ 2.0–

4.0 ‰ ).71,96

Several factors can impact plant wax preservation in soils and

sediments. There are complex interactions in depositional environ-

ments between lipid marker molecules, microbial (fungal and bacte-

rial) communities, pH, alkalinity, temperature, and oxygen and

moisture content.98,100,101 Although the relative importance of these

factors differs depending on depositional setting, the quantity and

quality of organic matter preserved during burial is influenced greatly

by sedimentation rate, grain size, and oxygen available to microbial

metabolic processes.31 Organic matter is preferentially deposited in

fine-grained sediments as they exclude oxygen-rich waters and

inhibit aerobic microbial biodegradation and detritovore bioturba-

tion.31 Under well-oxygenated conditions such as in soils however,

aerobic microbes can readily degrade organic matter, with some bac-

teria and filamentous fungi containing n-alkane degrading enzymes

that break down long-chain hydrocarbons.102,103 In archeological

research, plant wax preservation/degradation can have major impli-

cations on data collection and interpretation. For example, the vari-

able sedimentological profiles exposed throughout Oldupai Gorge

have differential plant wax preservation,17 while paleo-lake drill

cores from West Turkana, which targeted ancient lacustrine sedi-

ments specifically, identified poor organic matter preservation in

well-oxidized deltaic deposits.11

F I G U RE 3 Location of plant wax isotope studies used at Holocene (black) and Pleistocene (red) archeological sites. Label at each location
refers to reference citation number
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4 | ESTABLISHING THE PLANT WAX
ECOLOGY OF MODERN AFRICAN SOILS

To interpret plant wax proxies for archeology and paleoanthropol-

ogy, we need to understand wax preservation and distribution in

modern ecosystems. Over the past 30 years, multiple studies have

used different environmental proxies to identify extant ecosystems

as ecological baselines for ancient hominin habitats in eastern

Africa.1,104–106 Additionally, plants grown in greenhouses and those

from specific biomes58–60 have aided in isotopically characterizing

biomarker � 13C and � D synthesized under specific environmental

stimuli. In Africa, field studies37,39,61,62 have shown that the C31

Box 2 Interpreting � 13C and � D of plant wax biomarkers

The � 13C of all higher plants is a function of (1) the specific photosynthetic pathway (C3, C4, or Crassulacean Acid Metabolism); (2) the

carbon isotopic composition of atmospheric CO2, and; (3) the ratio of CO2 partial pressure inside leaves relative to atmospheric partial

pressure CO2.73,74 Photosynthetic pathway plays a substantial role in the fractionation of carbon because the observed differences in

� 13C between C3 and C4 plants is a function of 13C discrimination, with C3 vegetation being more depleted by about � 15 ‰ on average

compared to C4 plants.73 The source of this discrimination is the RuBisCo enzyme in C3 photosynthesis, which discriminates strongly

against 13C, whereas the phosphoenolpyruvate (PEP) molecule used in C4 photosynthesis does not discriminate against13C to such a

large degree.75 As a result, C4 plants have a selective advantage over C3 types in certain contexts given that they have a beneficial adap-

tation to hot, high-light, water-stressed conditions or during periods of low global atmospheric CO2 concentrations.73 This results in

bulk leaf � 13C between � 20 to � 35 ‰ and � 10 to � 14 ‰ for C3 and C4 plants, respectively. Biosynthesis of plant wax lipids results in

further fractionation, with C 3 and C4 plants being � 5.0 to � 7.0 ‰ and � 8.0 to � 10 ‰ lighter than bulk � 13C, respectively. Therefore,

at many key African hominin fossil localities,� 13C is primarily used to interpret changes in C3 and C4 vegetation abundance and distribu-

tion in response to differences in aridity, water availability, atmospheric CO2, and other climatic factors.9,14,17,18,22

At higher latitudes and altitudes, or in well-watered environments where C3 plants typically outcompete C4, the intensity and dura-

tion of sunlight,76 canopy structure and wax production,77 plant taxonomy,58 and mean annual precipitation78 all contribute to changes

in sedimentary � 13C. This can make interpreting the environmental effects onn-alkane � 13C difficult. Chain length (Box 1) can help to

constrain some of the variability resulting from taxonomy,58 but both graminoids and woody angiosperms synthesize abundant C29 and

C31 relative to other n-alkanes.37 Additionally, gymnosperms are enriched in13C by + 2.0–5.0 ‰ compared to angiosperms,58,72 though

the majority of soil and sediment n-alkanes will be dominated by angiosperms possibly due to differences in growth strategies and plant

physiology.69 Plants growing in arid environments have greater water-use efficiency (WUE) and are proportionally enriched in13C rela-

tive to their well-watered counterparts. 73 WUE can be further explored using� D to investigate whether 13C enrichment/depletion cor-

relates with the enrichment/depletion of plant wax 2H.

Meteoric water 79,80 is the primary source of hydrogen recorded in the � D of terrestrial plant waxes. As water evaporates from the

ocean (� D = 0 ‰ ) and travels inland to higher altitudes81 or latitudes82 with cooler temperatures,83 deuterium is removed in each suc-

cessive rainfall. This results in water vapor depleted in2H and lower � D rainfall values.84 In tropical and subtropical regions with clear

dry and wet seasons, the“amount effect”84–86 dictates the isotopic composition of precipitation with depleted 2H (i.e., more negative

� D) corresponding to higher precipitation rates. Wet season precipitation is therefore depleted in2H compared to dry season rain. Lati-

tudinal transects from western Africa79 and Europe87 show that long-chain n-alkane (C29 and C31) � D is an overall excellent proxy for

source water � D. Changes between moisture source (i.e., Indian vs. Atlantic Ocean80,88) and in ocean circulation and sea surface temper-

ature patterns also modulate atmospheric moisture transport across tropical Africa.89 In arid or semi-arid areas, an enrichment in sedi-

mentary 2H (i.e., higher� D) can indicate increases in evapotranspiration. Evapotranspiration is amplified by high temperatures, rainfall

seasonality, or low mean annual precipitation,90 which concentrate deuterium in plant leaf water.91

Isotopic discrimination during plant growth and leaf formation leads to additional changes in lipid� D. Plant lifeform (i.e., tree, shrub,

or grass) has been linked to� D fractionation as leaf size and shape and water-use efficiency result in different degrees of evapotranspi-

ration.92,93 A global analysis of available plant wax data has shown that grasses possess lower� D values (Avg.� D = � 156 ‰ ) relative

to trees and shrubs growing in the same environment (Avg.� D = � 120 ‰ ) because of differences in water absorption systems.93,94

This is due to the hydrogen isotopic composition of plant leaf tissue being affected by two major fractionation processes; evapotranspi-

ration in both soil- and leaf-water, which enriches leaf water 2H, and enzymatic reactions during wax biosynthesis which depletes

organic products through hydrogen exchange.29 The sum of these chemical and physical fractionation processes can result in large

declines in � D of up to � 150 ‰ or more, depending on leaf size and shape and water source. Combining plant wax� 13C and � D can

help identify possible biases in interpreting� D in samples from archeological paleosols, specifically if� D variations derive from changes

relating to vegetation type.95
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homolog is often the most abundant compound in African wooded

grassland vegetation, with C3 trees and shrubs and C4 grasses having

C29 and C33 as their second most prevailing compounds, respec-

tively. The � 13C of the C31 n-alkane is a reliable proxy for C3/C 4 ter-

restrial vegetation composition as other autotrophs only produce it

in relatively minor quantities.107

In some environments like the arid and semi-arid regions of

southern Africa (i.e., Succulent Karoo and Fynbos), modern biomes

may be distinguished through the yields and distributions of plant wax

and soil n-alkane chain lengths.108 On the other hand, woody angio-

sperms worldwide are typically characterized by an abundance of C29,

so distinguishing between different habitat types can be challenging

with n-alkane homologs alone.37 The C33 and C35 alkanes seem to dif-

ferentiate graminoids from woody plants, but this too may reflect

differences in biomes rather than specific plant type.37 Therefore,

more local or biome-specific biomarker studies are needed to guide

context-specific interpretations of Pleistocene human ecology.

Paleo-reconstructions often employ percentage mixing

models1,14,18 to interpret ancient plant landscape changes. These

models assume that the relative proportion of plant waxes in sedi-

mentary archives correspond to the relative proportion of C3 or C4

plants on the landscape. However, some plants are over� /under-

represented in sedimentary � 13C records due to differences in the

total production of waxes between species (Box 1). It may also not be

possible to know which species have disappeared in a specific study

area due to recent climatic or human activity. There has also been a

wide range of end-member values used to demarcate pure C3 or C4

habitats, and the predicted percentage of each plant type can change

significantly depending on the value applied. Mixing model end-

members are frequently established usingn-alkane � 13C of living

plants from global datasets even though local or biome-specific C3

and C4 � 13C end-members18,62,71 would generate a better estimate of

vegetation composition. Yet, modern ecological studies are often fore-

gone due to the drive to produce archeologically-significant isotope

data. Submerged and emergent plants can also producen-alkanes with

� 13C values that overlap with those of terrestrial C4 plants.107 Caution

must therefore be taken when analyzing n-alkane � 13C from paleo-

lake sediments as the positive shift induced by some aquatic or wet-

land plants can confuse interpretations of relative C3/C4 abundance.

Because of the ambiguity in � 13C from different combinations of veg-

etation types and habitats, it is best to report � 13C values instead of

just percentage C4.

5 | PLANT WAXES SHED LIGHT ON
MULTIPLE ASPECTS OF HUMAN EVOLUTION

Environmental change and hominin evolution are inextricably linked

and there is an increasing focus on the degree to which the adaptabil-

ity of H. sapiensto diverse environments compares to that of our

ancestors and closest living relatives.109 Fine-scale spatial and tempo-

ral plant wax data obtained from Plio-Pleistocene aged paleontological

and archeological localities can help place human adaptive responses

in a long-term climatic and environmental context. This is particularly

useful when ecological variability is studied alongside stone tool

assemblages, the presence or absence of hominin-modified bone, or

instances of species turnover. In eastern Africa for example, relatively

precise geochronology of archeological sequences and good preserva-

tion of wax biomarkers in paleo-lake sediments have allowed for stud-

ies on short- and long-term climate variability,9 changes in response

to aridity or humidity, 14 and plant landscape dynamics.18

5.1 | Orbital forcing and hominin ecology

The effects of orbital forcing (eccentricity, obliquity, precession)

reorganized eastern and southern African plant landscapes, resulting

in cyclical patterns of increasing and decreasing plant wax� 13C and

F I G U RE 4 (a) The distribution of n-alkane
C31 � 13C for C3 and C4 plants show that
compound-specific isotope analyses can
distinguish between the two photosynthetic
pathways, a major advantage of plant wax
biomarkers. 71% of the dataset comes from
African plants.39,58–62 (b) Schematic depiction
of a reconstructed C3-to-C4 transitional
landscape. Soiln-alkane � 13C is largely
influenced by plant communities (e.g., C3
vs. C4, open grassland vs. closed woodland),
with C3 habitats having lower � 13C compared
to C4
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� D. Changes in northeastern African flora have been attributed to var-

iability in precession.7,10,110 This may have influenced human evolu-

tion and adaptability by controlling local water availability109,111 and

contributing to biome diversification and key speciation and dispersal

events in eastern Africa.112 Environmental variability may also

increase the adaptive versatility of organisms and their capacity to

adjust to new habitats or geographic regions.111 Plant wax � D and

� 13C have been used to investigate the timing and nature of changes

in hydrology and vegetation cover, and the relationship to hominin

species turnovers,10,11 the appearance of new stone tool

technologies,13 the ability to control fire, 19,20 and hominin dispersals

out of Africa.6,8

Carbon and hydrogen isotope data from East (3.45–3.40 Ma

Wargolo Formation10) and West (1.9–1.4 Ma Nachukui Formation11)

Turkana paleo-lake sediments suggest that precession-controlled

summer insolation was the dominant driver of Pliocene and Pleisto-

cene hydrology in the Turkana Basin. Fluctuations between very wet

(lower � D) and very dry (higher � D) conditions advocate for cyclical

changes in summer insolation in directing hydroclimate. Large vari-

ance in � 13C and � D around 1.78 Ma coincides with high orbital

eccentricity,13 as well as the earliest known Acheulean tools at

1.76 Ma113 and the last appearance dates forHomo habilis(Figure 5).

These biomarker records highlight how dynamic ecosystems of mixed

C3 and C4 species were an important aspect of northeastern African

vegetation change during the past 4 million years and how such envi-

ronmental complexity may have necessitated adaptive versatility in

hominins.111

In southeastern Africa, C31 n-alkane � D and � 13C were analyzed

alongside other proxies to investigate the hydrological context of the

environment of Paranthropus robustusand to identify long-term

regional climate.56 Low-latitude insolation forcing and changes in ice

volume at high latitudes likely drove southeastern African hydro-

climate over the past 2.0 Ma, with sea surface temperatures having a

secondary role on humidity-aridity cycles.56 More-humid conditions

observed between 2.0 and 1.75 Ma are characterized by the presence

of both Paranthropusand Australopithecus sedibain the Limpopo River

catchment, both of which lived in a wooded habitat within a mosaic,

but generally open, C4-dominated environment. Woodlands or wet-

lands in the catchment were replaced however as tropical rainfall con-

tracted toward the equator in response to ice sheet expansion. These

wooded habitats shrank during dry climatic periods, limiting both spe-

cies' range and available food-resources. Thus, the long-term trend

toward increased aridity driven by precession variability potentially

contributed to the local extinction of Paranthropusin the Limpopo

catchment due habitat marginalization.

Orbital-paced changes have also been implicated as a catalyst for

“out-of-Africa ” migrations throughout the Pleistocene, specifically

when humid climates created vegetated, resource-rich avenues for

dispersal out of the continent.114,115 H. sapiensrepeatedly dispersed

within and beyond Africa due to their ability to expand their ranges,

exploit new environments, and adapt to changing climatic conditions.

Although simple out-of-Africa models are outdated,116 and H. sapiens

inhabited numerous environments since the late Pleistocene if not

before,117 alternations between C3 and C4-dominated plant land-

scapes may have prompted human dispersals.6,8 Plant wax biomarker

data show that human migrations occurred alongside climate deterio-

ration during wet-to-dry transitions or even during periods of

sustained aridity, not along vegetated corridors that formed during

humid periods as expected.8 Though the application of biomarkers to

human migration research is relatively new, there is great potential

to use plant waxes to further investigate the climatic conditions of

out-of-Africa events, specifically when applied to the many Pleisto-

cene H. sapiens archeological sites being discovered outside of

Africa.118

5.2 | Plant landscape variability

It can be difficult to align orbital forcing and ecological change directly

to human evolutionary processes, especially when using“off-site ”

sedimentary records. Thus, it is necessary to see the response of local

environments to orbital scale changes and at timescales relevant to

hominin populations. Large-scale ecological changes, such as the

replacement of woodlands and forests with grasslands in eastern

Africa, have been implicated in propelling certain developments in

human evolution. One of the long-standing assumptions of

climatically-driven grassland expansion was the evolution of bipedal-

ism in hominins,119 which had historically been considered a prerequi-

site for toolmaking. Wax biomarkers have been used to investigate

this “Savannah Hypothesis,” or the role of wooded grasslands in

human evolution. Grass pollen, the molecular distribution (i.e., an

increase in the relative abundance of C33 and C35 alkanes), andn-

alkanes andn-alkanoic acids � 13C from marine cores in the Gulf of

Aden110 and the Somali Basin120 show that C3 grasslands had

expanded in eastern Africa by 10 Ma, or about 4 million years before

the earliest known evidence of bipedality65,121 and 7 million years

F I G U RE 5 Eastern African relative
hydroclimate record from plant wax � D.
Large variance in� 13C (not-shown) and� D
attest to orbital-scale climate oscillations
in the Turkana Basin during the
Pleistocene from 1.9 to 1.4 Ma. Modified
from Lupien et al.11
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before the earliest stone tools.122,123 Then from 10 Ma onwards, a

steady increase in n-alkane � 13C reflects an increase in C4

grasses10,120 or xeric shrublands110 in eastern Africa (Figure 6). How-

ever, this was not a gradual process as ecosystem instability in this

region included open landscapes being reorganized into closed wood-

lands and forests and then back to C4-dominated terrains.7,10,110

Although the “Savannah Hypothesis” has been criticized and is no

longer satisfying as a unifying theory (c.f.124), plant waxes showed that

grassland expansion was neither linear nor a causal mechanism for

bipedalism or stone tool use.

Plant wax data recovered in a lake core and lacustrine outcrops

from Oldupai Gorge show changes in regional ecosystems between

closed C3 woodlands and open C4 grasslands from 1.9 to 1.8 Ma,

coinciding with precession cycle summer insolation maxima and min-

ima.9,14,15 Precession-based fluctuations in rainfall influenced plant

ecosystem changes, with drier conditions (Max� DC31 = � 105 ‰ ;

Avg. � DC31 = � 129 ‰ 9) corresponding to C4 ecosystems (Avg.

� 13CC31 = � 21 ‰ 14). On the other hand, wetter conditions (Min

� DC31 = � 165 ‰ ; Avg. � DC31 = � 140 ‰ 9) were associated with

increased C3 woody coverage (Avg. � 13CC31 = � 36 ‰ 14). Thus, as

eastern Africa became drier and C4 plants were expanding around

2.0 Ma,110,120 increases in regional precipitation allowed resource-

rich, C3 microhabitats to form. Ecosystem reorganization from forests

to grasslands during drier conditions likely enacted selective pressures

on Oldupai hominins, such as the need to diversify diet to incorporate

edible fruits, leaves, seeds, tubers, insects, meat, or eggs across multi-

ple habitat types.125

The � 13C measured onn-alkanes andn-alkanoic acids from the

Nachukui Formation also demonstrate that changes in precipitation

were a major driver in C3 and C4 plant extent.18 The carbon isotope

record shows that throughout Nachukui deposition, mixed C3 and C4,

and C4-dominated (n-Acid Max � 13CC30 = � 19 ‰ ; n-Alkane Max

� 13CC31 = � 20 ‰ ) landscapes were common, specifically after

2.0 Ma. Higher � 13C likely followed a decrease in mean annual precipi-

tation for the Turkana Basin caused by changes in seasonality toward

longer and more intense dry seasons. Yet, the wax biomarker� 13C

data also indicate a dynamic plant landscape and available food-

resources for Paranthropusand Homo in this part of the Turkana

Basin. Tooth enamel and plant wax� 13C show that the increase in C4

plants coincided with Paranthropusbecoming a C4 specialist, while the

diet of Homoremained diverse, a defining feature of the genus.18,126

5.3 | Hominin targeted ecotones

In subtropical and tropical regions, perennial freshwater sources can

foster the development of forests or woodlands as microhabitats even

when dry regional climates do not support closed ecosystem types.104

Elements of ecotonal selection on the part of our ancestors can also

be identified using biomarker analyses. At Oldupai Gorge, hominin

landscape use patterns were inferred from plant wax distributions at a

spatial scale.16,17 Across the � 1.84 Ma FLK Zinj paleo-landscape,

a combination of n-alkanes, phenol derivatives of lignin which distin-

guishes woody from herbaceous plants, and fern and sedge bio-

markers which demarcate wetlands, revealed the geographic

distribution of different paleo-habitats. 16 Through these specific bio-

markers, abrupt changes from wetland vegetation, to dense C3 woody

coverage (Min � 13CC31 = � 36 ‰ 16), to open C4 grassland (Max

� 13CC31 = � 21 ‰ 16) were identified at meter-level scales, showing

that the FLK Zinj site was a forest microhabitat adjacent to a wetland

situated within a greater grassland catchment.16 Additionally, n-

alkanoic acids recovered from clays directly in contact below marker

Tuff IF (1.8 Ma) track plant landscape heterogeneity over a 2 km tran-

sect throughout Oldupai Gorge,17 including the Oldowan-bearing FLK

North site. Measured n-acid � 13C highlight a mosaic environment that

included dense woodlands (Min� 13CC30 = � 35 ‰ 17), open grasslands

(Max � 13CC30 = � 19 ‰ 17), and mixed-vegetation ecotones. Lowern-

alkanoic acid � 13C at FLK North suggests it was a dense woodland

dominated by C3 plants (Avg � 13CC30 = � 34 ‰ 17). The archeology

and paleontology of each site indicate that animals were butchered at

FLK Zinj127 while hard-shelled nuts and fruits were processed at

FLK N.128 Though subsistence strategies may have differed, plant wax

biomarkers from both locations show that dense woodlands acted as

focal points of hominin activity on the Oldupai landscape.

The emergence of the Acheulean and other stone tool industries

has been linked to certain evolutionary events like the appearance of

Homo erectus129 or to hominin ecological settings.130 At the 1.7 Ma

FLK West site, where the earliest Acheulean at Oldupai Gorge is

found,131 n-alkane � 13C and phytolith132 data show that hominin

activity took place in a riparian woodland (Avg � 13CC31 = � 30 ‰ 17),

and that when tree coverage started decreasing (Avg� 13CC31 = � 24

‰ 17), so too did stone tool use and the number of human-modified

bones (Figure 7).17 Woodlands at FLK West likely offered an

F I G U RE 6 C31 n-alkane � 13C indicate C3 dominance from 24 to
10 Ma. After 10 Ma, the increase in � 13C reflects the increasing
proportion of C 4 vegetation on the landscape. DSDP (Deep Sea
Drilling Project) sites suggest a clear expansion of C4 vegetation in
eastern Africa after 10 Ma. Modified from Figure 2, Uno et al.120
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advantage to Acheulean hominins in that they would have provided

plant foodstuffs and protection from large carnivores or scavengers

when butchering animal remains. Handaxes from the site were not

used for defleshing and disarticulation of carcasses (this was most

likely conducted using quartzite flakes133), but conceivably used for

bone breaking or digging underground storage organs/tubers.134

Therefore, the site-specific n-alkane � 13C data from FLK West implies

that closed vegetation attracted hominin activity, and that when the

site's ecology changed from a closed woodland to a more-open grass-

land or wooded grassland, activity shifted away from the site as it no

longer provided an ecological advantage.

5.4 | Activity areas in caves and rock shelters

In southern Africa and throughout Europe, many hominin fossil locali-

ties rich in material culture and organic records are found in caves and

rock shelters. Plant waxes preserved in dry cave sediments can pro-

vide novel insights into site usage by different members of the genus

Homo, specifically in response to broad environmental trends.19–21 At

the Middle Stone Age Diepkloof Rock Shelter in South Africa,20 n-

alkane concentrations and� 13C and � D values were analyzed along-

side indicators of burning, such as black carbon and polycyclic aro-

matic hydrocarbons (PAHs), to identify human activity within the rock

shelter. Burning activity indicators were found to be anti-phase to n-

alkane abundance; that is, lower concentrations ofn-alkanes were

found in stratigraphic units containing evidence for increased burning.

Thus, when occupants used fire,n-alkanes were preserved only in

small quantities in cave sediments. Throughout site occupation, C31 n-

alkane� 13C only varies slightly (� 30 ‰ to � 32 ‰ 20). Considering the

large range of soil n-alkane � 13C exhibited in the local Fynbos

biome,108 the limited vegetation change in the rock shelter sequence

is thought to indicate that specific plant types were being selected for

and brought to the site by its occupants. This implies that humans

targeted certain plant (e.g., C3) for use within the rock shelter regard-

less of hydroclimate, as recorded in� D.

At the Middle Paleolithic site of Lusakert Cave 1 in Armenia,19

local cave and regional wildfire frequency were distinguished using

high (e.g., Benzo[a]pyrene) and low molecular weight PAHs

(e.g., Anthracene), with particulate emissions from wood burned in

hearths at temperatures � 600� C corresponding to the high-weight

PAHs. This was combined with plant wax� 13C and � D for vegetation

and temperature changes, respectively. Correlations between PAHs,

plant waxes, and artifact density attests to an increase in site activity,

with highest concentrations of high-weight PAHs coinciding with the

densest archeological horizons. As the data show that artifact density

is correlated with high weight-PAHs rather than wildfire frequency,

Lusakert Cave hominins (possibly Neanderthals) were able to control

fire independently of natural wildfires. Long-chain n-alkanes have high

CPI (Box 1), demonstrating that they did not undergo significant ther-

mal alteration, and are enriched in13C (� 13C = � 28 ‰ ), representing

more open habitats, associated with the low-weight PAHs produced

by wildfires. As there was no correlation between � D and PAHs, wild-

fire frequency was not determined by changes in temperature, but

rather by changes in vegetation, with more-open environments

brought on by aridity being prone to burning. These results suggest

that pyrotechnology existed among Lusakert Cave occupants regard-

less of the regional occurrence of natural fires.

Carbon and hydrogen isotope ratios of n-alkanes were also uti-

lized in the reconstruction of hydroclimate and vegetation at the

Neanderthal Abric del Pastor rock shelter site in southeastern Spain.21

Because the rock shelter has evidence of multiple, short-term Nean-

derthal occupation events, plant wax biomarkers attest to Neander-

thal response to fluctuations in environmental conditions along the

Iberian Peninsula during periods of global climate instability. Co-

varying trends between � 13C and � D were linked to the combined

effects of changes in moisture source, precipitation amount, and

changes in temperature and evaporative stress. Althoughn-alkane

� 13C show that the shelter sediments were dominated by C3 vegeta-

tion through its occupation (� 13CC29 = � 38 ‰ to � 32 ‰ 21), there is

potential evidence for the burning and subsequent degradation of the

n-alkanes leading to lower CPI values due to an increase in both

short- and mid-chain homologs. Nevertheless,� D and � 13C co-vary

throughout the archeological sequence, suggesting that fluctuations in

temperature and evaporative stress act as dominant controls on plant

wax � 13C in the region.21 Dry and semi-arid conditions coupled with

cooler temperatures are thought to have generally dominated the

F I G U RE 7 n-alkane� 13C data from Oldupai Gorge FLK West
plotted against total number of recovered lithics and bones with
identifiable cut or percussion marks. The total number of lithics and
bones correlate with woody vegetation cover as indicated by � 13C. As
the landscape becomes more open, the number of lithics and bones
drops significantly. Tuff FLK-Wb dated to 1.664 ± 0.019 Ma; Tuff
FLK-Wa (not shown), underlines the waxy clay and is dated to 1.698
± 0.015 Ma. Lithic data and dating from Diez-Martín et al.131 Faunal
data from Yravedra et al.133 Modified from Patalano, 17
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Iberian Peninsula during the site's usage. Dry woodland formations

extended throughout the region, with Mediterranean mixed forest

and riverine taxa acting as a refugium near the rock shelter, providing

plant food-resources which could be acquired by Neanderthal groups.

6 | WHERE DO WE GO FROM HERE?

The archeological applications of plant waxes for environmental

reconstructions are promising given that they have already improved

our understanding of hominin adaptive flexibility and responsiveness

to environmental changes. The future of this research, however,

depends on improving the taphonomic understanding of lipid mole-

cule preservation within archeological sites and increasing the number

of biome-specific ecological calibration studies. Additionally, there are

several gaps that need to be addressed in plant wax research, such as

differences in lipid production, transport and depositional histories,

residence times in zones of bioturbation, and microbial diagenesis.

Modern calibrations from extant plants and soils in proximity to arche-

ological sites can help reconcile some of these challenges, but they

are often omitted from research design.

There are also very few studies that have had the opportunity to

correlate biomarker � 13C and � D directly with archeological assem-

blages. Environmental variability is a catalyst for human evolution, but

it can be difficult to assess hominin adaptions to changing physiogra-

phy at timescales relevant to hominin populations with only off-site

environmental records. Site-specific studies that compare plant wax

abundances, distributions, and isotope composition to lithic or faunal

remains are essential for reconstructing plant landscape variability at

high taxonomic resolution, especially when trying to understand the

implications of consistent or rapid ecological change on hominin die-

tary innovations, habitat diversification, or dispersals.

In this review, we focused on plant wax biomarkers in the study

of human origins, the role they play in reframing old evolutionary

questions, and how they have amended prominent environmental

hypotheses for hominin evolution. Given that plant waxes have

shown that broad, all-encompassing habitat-specific hypotheses are

no longer viable for explaining human evolutionary processes, they

are perhaps the best proxy for generating new evidence linking envi-

ronmental variability with human technology and behavior. As a

potential high-resolution proxy, � 13C and � D provide insight into veg-

etation composition and environmental and climatic stresses and

hominin adaptive responses. With the frequent, high-impact discover-

ies being made in paleoanthropology, specifically with advances in

proteomics, ancient DNA, and new dating methods, now is the oppor-

tune time to apply plant wax isotope analyses to archeological sites

around the world to expand our knowledge of human-environment

evolutionary relationships.
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