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Bell inequalities for ontinuous-variable orrelationsE. G. Cavalanti, C. J. Foster, M. D. Reid, and P. D. DrummondARC Centre of Exellene for Quantum-Atom Optis,The University of Queensland, Brisbane, AustraliaWe derive a new lass of orrelation Bell-type inequalities. The inequalities are valid for anynumber of outomes of two observables per eah of n parties, inluding ontinuous and unboundedobservables. We show that there are no �rst-moment orrelation Bell inequalities for that senario,but suh inequalities an be found if one onsiders at least seond moments. The derivation stemsfrom a simple variane inequality by setting loal ommutators to zero. We show that above aonstant detetor e�ieny threshold, the ontinuous variable Bell violation an survive even in themarosopi limit of large n.This method an be used to derive other well-known Bell inequalities,shedding new light on the importane of non-ommutativity for violations of loal realism.Einstein, Podolsky and Rosen (EPR), in their famous1935 paper [1℄, demonstrated the inompatibility be-tween the premises of loal realism and the ompletenessof quantum mehanis. The original EPR paper usedontinuous position and momentum variables, and reliedon their ommutation relations, via the orrespondingunertainty priniple. Bohm [2℄ introdued, in 1951, hisversion of the EPR paradox with spin observables. Thiswas the version that was used by Bell [3℄ to prove his fa-mous theorem showing that quantum mehanis preditsresults whih an rule out the whole lass of loal hid-den variable (LHV) theories. It is hard to overemphasizethe importane of this result, whih has even been alled�the most profound disovery of siene� [4℄. However,the original Bell inequality, and all of its generalizations,are diretly appliable only to the ase of disrete ob-servables. The main purpose of this letter is to lose theirle and derive a lass of Bell-type inequalities appli-able to ontinuous variables orrelations, together withmultipartite generalizations.We derive a lass of inequalities for loal realism thatdiretly use orrelations of measurements, with no re-strition to spin measurements or disrete binning. Thenew inequalities are remarkably simple. They plae norestrition on the number of possible outomes, and theontrast between the lassial and quantum bounds in-volves ommutation relations in a entral way. Theymust be satis�ed by any observations in an LHV theory,whether having disrete, ontinuous or unbounded out-omes. We an immediately rederive previously knownBell-type inequalities, obtaining at the same time theirquantum-mehanial bounds by onsidering the non-ommutativity of the observables involved. We also dis-play quantum states that diretly violate the new in-equalities for ontinuous, unbounded measurements, evenin the marosopi, large n limit [5, 6, 7, 8℄. We showthat the new Bell violations survive the e�ets of �nitegeneration and detetion e�ieny. This is very surpris-ing, in view of the many examples in whih deoherenerapidly destroys marosopi superpositions [9℄.Apart from this intrinsi interest, these inequalities arerelevant to an important sienti� problem. No experi-ment has yet produed a Bell inequality violation without

introduing either loality or detetion loopholes. Onepath towards this goal is to use ontinuous-variables (CV)and e�ient homodyne detetion, whih allows muhhigher detetion e�ieny than is feasible with disretespin or photo-detetion measurements. A number ofloop-hole free proposals exist in the literature, but theyall use Bell [10, 11, 12, 13, 14℄ or Hardy [15℄ inequalitieswith a dihotomi binning of the results (whih usuallylead to small violations), or else a parity or pseudo-spinapproah[16, 17, 18℄ whih annot be realized with ef-�ient homodyne detetion. Are there Bell inequalitieswhih an be derived without the assumption of �nitenumber of outomes and therefore are diretly applia-ble to CV - with no need to bin the results?For n parties, m measurements per party and o out-omes, it is well-known that the set of orrelations al-lowed by LHV theories an be represented as a on-vex polytope, a multi-dimensional geometrial strutureformed by all onvex ombinations (linear ombinationswhere the oe�ients are probabilities, i.e., they are non-negative and sum to one) of a �nite number of verties.The verties of this polytope are the lassial pure states� the states with well-de�ned values for all variables[7, 19, 20℄. The tight Bell inequalities are assoiatedwith the linear faets of the polytope. It is a omputa-tionally hard problem to list all Bell inequalities for given
(n, m, o), and full numerial haraterizations have beenaomplished only for small values of those parameters.However, no lass of Bell inequalities has previouslybeen derived without any referene to the number ofoutomes or to their bound. Any real experiment willalways yield a �nite number of outomes; but are thereonstraints imposed by LHV theories that are indepen-dent of any partiular disretization, and an be expli-itly written even in the limit o→∞? Our answer is yes;and the derivation is muh more straightforward thanin the ase of the usual Bell-type inequalities, whih arerestrited to a partiular set of outputs.We will fous on the orrelation funtions of observ-ables for n sites or observers, eah equipped with m pos-sible apparatus settings to make their ausally separatedmeasurements. We onsider any real, omplex or vetorfuntion F (X,Y,Z, . . .) of loal observations Xi, Yi, Zi



2at eah site i, whih in an LHV theory are all funtionsof hidden variables λ. In a real experiment the di�erentterms in F may not all be measurable at one, beausethey may involve di�erent hoies of inompatible observ-ables. The assumption of loality enters the reasoning byrequiring that the loal hoie of observable does not af-fet the orrelations between variables at di�erent sites,and therefore that the averages are taken over the samehidden variable ensemble P (λ) for all terms. We intro-due averages over the LHV ensemble (there's no loss ofgenerality in onsidering deterministi LHVs [21℄),
〈F 〉 =

∫

P (λ)F (X (λ) ,Y (λ) ,Z (λ) , . . .) dλ . (1)Our LHV inequality uses the simple result that anyfuntion of random variables has a non-negative variane,
|〈F 〉|2 ≤ 〈|F |2〉. (2)We an also give a bound 〈|F |2〉 ≤ 〈|F |2〉sup, where thesubsript denotes the supremum (least upper bound), inwhih produts of inompatible observables are replaedby their maximum ahievable values. This is neessarysine if we are not able to measure both Xi and Yi si-multaneously, a general LHV model ould predit anyahievable orrelation [22℄.The same variane inequality applies to the orre-sponding Hermitian operator F̂ in quantum mehanis.While the observables at di�erent sites ommute � theyan be simultaneously measured � those at the samesite do not, so operator ordering must be inluded. Thisenables us to see how quantum theory an violate thevariane bound for an LHV.As an example, we will apply this variane inequality toa well-known ase. Consider two dihotomi observables

Xi, Yi per site i, the outomes of whih are ±1. We de�ne
F1 ≡ X1, F ′

1 ≡ Y1 , and then indutively onstrut [23℄:
Fn ≡

1

2
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n−1)Xn +
1

2
(Fn−1 − F ′

n−1)Yn, (3)where F ′
n an be obtained from Fn by the exhange

Xi ←→ Yi. In alulating F 2
n we'll keep trak of the lo-al ommutators just to make the ontrast with quantummehanis learer. For real variables X, Y , the ommu-tator is de�ned in the same way as for the orrespondingoperators, i.e., [X, Y ] ≡ XY−Y X . The anti-ommutatoris de�ned by [X, Y ]+ ≡ XY + Y X . Then
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In a LHV theory, the term whih involves ommuta-tors will be zero sine [X(λ), Y (λ)] = X(λ)Y (λ) −
Y (λ)X(λ) = 0. Hene by indution F 2

n = F 2
1 = 1 andthe variane inequality (2) beomes: −1 ≤ 〈Fn〉 ≤ 1.This is the Mermin-Ardehali-Belinskii-Klyshko (MABK)[5, 24, 25℄ Bell inequality, whih redues to the well-known Bell-CHSH [26℄ inequality for n = 2.We an now alulate the quantum mehanial boundby writing the variane inequality (2) and substitutingthe funtions in (5) by their orresponding operators
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∥, (6)where the norm ‖A‖ denotes the modulus of the maxi-mum value of 〈Â〉Q over all quantum states. The normof the seond ommutator has the bound ‖[X̂n, Ŷn]‖ ≤
2. It's easy to show that [F̂n, F̂ ′

n] = F̂ 2
n−1[X̂n, Ŷn] +

[F̂n−1, F̂
′
n−1] and therefore ‖[F̂n, F̂ ′

n]‖ ≤ 2‖F̂ 2
n−1‖ +

‖[F̂n−1, F̂
′
n−1]‖ . Solving the reursion relation by not-ing that ‖F̂ 2

1 ‖ = 1
2‖[X̂1, Ŷ1]‖ = 1 we �nally arrive atthe bound 〈F̂n〉2Q ≤ 2n−1. This an be attained with thegeneralized GHZ states [23℄, whih therefore violate (2).Inspired by those results, we now demonstrate an LHVinequality that is diretly appliable to unbounded on-tinuous variables, in partiular �eld quadrature opera-tors. The hoie of the funtion Fn in (3) is not optimalthough, sine the variane in general involves inompat-ible operator produts that have no upper bound.To overome this problem, onsider a omplex funtion

Cn of the loal real observables {Xk, Yk} de�ned as:
Cn = X̃n + iỸn =

n
∏

k=1

(Xk + iYk) , (7)so that the modulus square only involves ompatible op-erator produts, i.e. |Cn|2 =
∏n

k=1(X
2
k + Y 2

k ) . Applyingthe variane inequality to both X̃n and Ỹn, we �nd that:
〈X̃n〉2 + 〈Ỹn〉2 ≤ 〈

n
∏

k=1

(X2
k + Y 2

k )〉 (8)This is our main result. Given the assumption of loalhidden variables, this inequality must be satis�ed for anyset of observables Xk, Yk, regardless of their spetrum.The fat that we have negleted the ommutators inderiving (8) hints that quantum mehanis might predita violation. We de�ne quadrature operators
X̂k = âke−iθk + â†

keiθk

Ŷk = âke−i(θk+skπ/2) + â†
kei(θk+skπ/2), (9)where âk, â†

k are the boson annihilation and reation op-erators at site k and sk ∈ {−1, 1}.



3We now de�ne the operator Ẑk ≡ X̂k + iŶk andnote that it follows that Ĉn =
∏n

k=1 Ẑk. The de�ni-tion of Ŷk allows for the hoie of the relative phasewith respet to X̂k to be ±π/2. Depending on sk,for eah k either Ẑk = 2âke−iθk or Ẑk = 2â†
keiθk .Denoting Âk(1) = âk and Âk(−1) = â†

k, the termin the LHS of (8) in quantum mehanis is then
|〈∏k Ẑk〉Q|2 = |2nei

P

k
skθk〈∏k Âk(sk)〉Q|2. The RHSbeomes 〈∏n
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kâk + 2)〉Q regardless of the phasehoies. To violate (8) we must therefore �nd a statethat satis�es
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Q
, (10)whih is surprisingly insensitive to relative phases be-tween the quadrature measurements at di�erent sites.This violation of a ontinuous variable Bell inequalityan be realized within quantum mehanis. Consider aneven number of sites, hoosing sk = 1 for the �rst half ofthem and sk = −1 for the remaining. To maximize theLHS we need a superposition of terms whih are oupledby that produt of annihilation/reation operators. Onehoie is a state of type

|ΨS〉 = c0 |0, . . . , 0, 1, . . . , 1〉+ c1 |1, . . . , 1, 0, . . . , 0〉 ,(11)where in the �rst term the �rst n/2 modes are ou-pied by zero photons and the remaining by 1; onverselyfor the seond term. With that hoie of state theLHS of (10) beomes |c0|2|c1|2, whih is maximized by
|c0|2 = |c1|2 = 1

2 . The RHS is (3
2 )

n

2 (1
2 )

n

2 independentlyof the amplitudes c0, c1. Dividing the LHS by the RHS,inequality (10) beomes 1
4

(

4
3

)
n

2 ≤ 1, whih is violatedfor n ≥ 10, and the violation grows exponentially withthe number of sites.While setting up the homodyne detetors neessary forthis observation is hallenging, the omplexity of this tasksales linearly with the number of modes. A more strin-gent onstraint is most likely in the state preparation, butwe an relate state (11) to a lass of states of great experi-mental interest. They an be ahieved from a generalizedGHZ state of n/2 photons, 1√
2
(|H〉⊗ n

2 + |V 〉⊗n

2 ) � where
|H〉 and |V 〉 respetively represent single-partile statesof horizontal and vertial polarization� by splitting eahmode with a polarizing beam splitter. Therefore viola-tion of (8) an be observed in the ideal ase with a 5-qubitphoton polarisation GHZ state and homodyne detetion.An interesting question is the e�et of deoherene,both from state preparation error [27℄ and detetor in-e�ieny. The usual Bell-CHSH violations have an ef-�ieny threshold [28℄ of 83%. This has not yet beenahieved for single-photon ounting. Homodyne dete-tion is remarkably e�ient by omparison, with up to
99% e�ienies being reported. However, the e�et of de-tetor e�ieny is easily inluded by assuming that eah
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Figure 1: Minimum state preparation �delity ǫmin for idealdetetors (solid line), and minimum detetion e�ieny ηminfor ideal state preparation (dashed line) required for violationof (8) as a funtion of the number of modes. The asymptotivalue of ηmin is indiated by the dash-dotted line.deteted photon mode is preeded by a beamsplitter withintensity transmission η < 1. This hanges both the LHSand RHS, so that the inequality beomes 4η2

2η+1 ≤ 42/n,giving a threshold e�ieny requirement of η > ηmin,where ηmin = (1 +
√

1 + 41−2/n)/41−2/n.This redues at large n to an asymptoti value of
η∞ = 0.80902. Unexpetedly, the Bell violation (whihsigni�es a quantum superposition) is less sensitive to de-tetor ine�ieny in the marosopi, large n limit. Theminimum detetor e�ieny ηn at �nite n is plotted inFig. 1, together with the minimum state preparation �-delity ǫmin in the ase of ideal detetors, where we modelthe density matrix as ρ̂ = ǫ|ΨS〉〈ΨS |+ (1− ǫ)Î.We will �nally prove that there are no LHV inequalitiespossible if one onsiders only the �rst-moment orrela-tions between ontinuous variables in di�erent sites. Wewill show this expliitly for the simplest ase and indiatehow to generalize to arbitrary numbers of parties and set-tings. Consider �rst n = 2 parties, Alie and Bob, eahof whih an hoose between m = 2 observables: Xa, Yafor Alie and Xb, Yb for Bob. Eah measurement yieldsan outome in the real numbers. The �rst-moment orre-lation funtions for eah of the 4 possible on�gurationsare just the averages 〈XaXb〉, 〈XaYb〉, 〈YaXb〉, 〈YaYb〉.Given those 4 experimental outomes, an we �nd a lo-al hidden variable model whih reprodues them?We onstrut an expliit example. Consider a hidden-variable state S where the hidden variables are the mea-sured values X, Y, in an equal mixture of four lassialpure states Sk = (Xa, Ya, Xb, Yb)k de�ned by

S1 = 2 (1, 0, 〈XaXb〉, 0)

S2 = 2 (1, 0, 0, 〈XaYb〉)
S3 = 2 (0, 1, 〈YaXb〉, 0)

S4 = 2 (0, 1, 0, 〈YaYb〉).

(12)



4Eah of the states Sk assigns a nonzero value to onlyone of the 4 orrelation funtions. Sine the probabilityof eah of the states in the equal mixture is 1/4, we havefor example 〈XaXb〉S = 1
4

∑

i〈XaXb〉Si
= 〈XaXb〉.Satisfying the two-site orrelations using the state Sde�ned by (12) leaves us with unontrolled values for thesingle-site orrelations, for instane 〈Xb〉S = 1

2 (〈XaXb〉+
〈YaXb〉). One might objet to the fat that this is notequal to 〈Xb〉 in general. However, we may orret theselower order orrelations by adding four more states (S5to S8) and hanging the prefators multiplying S1 to
S4 to ompensate for their redued weight in the equalmixture. Cruially, adding these extra states to S inthis manner does not modify the values of orrelationssuh as 〈XaXb〉. As an example, we exhibit the state
S5 = 8 (0, 0, 〈Xb〉−(〈XaXb〉+〈YaXb〉)/

√
8, 0), whih or-rets the single expetation value 〈Xb〉S to 〈Xb〉.The proof generalizes easily to arbitrary n and m. Inthat ase, there aremn possible ombinations of measure-ments whih yield n-site orrelations. Denoting the jthobservable at site i by Xj

i , eah ombination is spei�edby a sequene of indies (j1, j2, . . . , jn). For eah ombi-nation of measurements, we de�ne a hidden variable statewhih assigns nonzero values only to the variables whihappear in the assoiated orrelation funtion 〈∏n
i=1 Xji

i 〉.In analogy to the example above, we an always hoosethe values of the hidden variables assoiated to Xji

i suhthat their produt is equal to mn〈∏n
i=1 Xji

i 〉. Sine allother mn − 1 states de�ned in this way will give a valueof zero to this partiular orrelation funtion, and giventhat the probability assoiated with eah of those statesis 1/mn, we reprodue all orrelations as desired. As

indiated in the example, additional �rst moment orre-lations involving less than n sites an be inluded in theLHV model by adding additional states to S in a waywhih doesn't a�et the n-site orrelations. Thus, anypossible observation of �rst moment orrelations may beexplained using a LHV model, and hene these orrela-tions alone annot violate any Bell inequality. In otherwords, the minimum requirement for a orrelation Bellinequality with ontinuous, unbounded variables, is touse not just the �rst but also the seond moments ateah site.In onlusion, we have derived a new lass of Bell-typeinequalities valid for ontinuous and unbounded experi-mental outomes. We have shown that the same proe-dure allows one to derive the MABK lass of Bell inequal-ities and their orresponding quantum bounds. Thatderivation makes it expliit that non-zero ommutators� assoiated with the inompatibility of the loal observ-ables � are the essential ingredient responsible for thedisrepany between quantum mehanis and loal hid-den variable theories. The new Bell-type inequality de-rived here an be diretly applied to ontinuous variableswithout the need for a spei� binning of the measure-ment outomes. Surprisingly, quantum mehanis pre-dits exponentially inreasing violations of the inequalityfor marosopially large numbers of sites, even inludingrealisti deoherene e�ets like ine�ient state prepara-tion, and a detetor loss at every site.We thank Y.C. Liang and B. Lanyon for interestingand helpful disussions and aknowledge the ARC Centreof Exellene program for funding this researh.[1℄ A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47,777 (1935).[2℄ D. Bohm, Quantum Theory (Prentie Hall, EnglewoodCli�s, N.J., 1951), hap. 22.[3℄ J. S. Bell, Physis 1, 195 (1964).[4℄ H. P. Stapp, Nuovo Cimento 40B, 191 (1977).[5℄ N. D. Mermin, Phys. Rev. Lett. 65, 1838 (1990).[6℄ P. D. Drummond, Phys. Rev. Letts. 50, 1407 (1983).[7℄ A. Peres, Foundations of Physis 29, 589 (1999).[8℄ M. D. Reid, Zeitshrift fur Naturforshung A 56, 220(2001).[9℄ W. H. Zurek, Rev. Mod. Phys. 75, 715 (2003).[10℄ U. Leonhardt and J. A. Vaaro, J. Mod. Opt. 42, 939(1995).[11℄ A. Gilhrist, P. Deuar, and M. D. Reid, Phys. Rev. Lett.80, 3169 (1998).[12℄ G. Auberson, G. Mahoux, S. M. Roy, and V. Singh, Phys.Lett. A 300, 327 (2002).[13℄ J. Wenger, M. Hafezi, F. Grosshans, R. Tualle-Brouri,and P. Grangier, Phys. Rev. A 67, 012105 (2003).[14℄ R. Garia-Patron, J. Fiurasek, N. J. Cerf, J. Wenger,R. Tualle-Brouri, and P. Grangier, Phys. Rev. Lett. 93,130409 (2004).[15℄ B. Yurke, M. Hillery, and D. Stoler, Phys. Rev. A 60,3444 (1999).
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