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Bell inequalities for 
ontinuous-variable 
orrelationsE. G. Caval
anti, C. J. Foster, M. D. Reid, and P. D. DrummondARC Centre of Ex
ellen
e for Quantum-Atom Opti
s,The University of Queensland, Brisbane, AustraliaWe derive a new 
lass of 
orrelation Bell-type inequalities. The inequalities are valid for anynumber of out
omes of two observables per ea
h of n parties, in
luding 
ontinuous and unboundedobservables. We show that there are no �rst-moment 
orrelation Bell inequalities for that s
enario,but su
h inequalities 
an be found if one 
onsiders at least se
ond moments. The derivation stemsfrom a simple varian
e inequality by setting lo
al 
ommutators to zero. We show that above a
onstant dete
tor e�
ien
y threshold, the 
ontinuous variable Bell violation 
an survive even in thema
ros
opi
 limit of large n.This method 
an be used to derive other well-known Bell inequalities,shedding new light on the importan
e of non-
ommutativity for violations of lo
al realism.Einstein, Podolsky and Rosen (EPR), in their famous1935 paper [1℄, demonstrated the in
ompatibility be-tween the premises of lo
al realism and the 
ompletenessof quantum me
hani
s. The original EPR paper used
ontinuous position and momentum variables, and reliedon their 
ommutation relations, via the 
orrespondingun
ertainty prin
iple. Bohm [2℄ introdu
ed, in 1951, hisversion of the EPR paradox with spin observables. Thiswas the version that was used by Bell [3℄ to prove his fa-mous theorem showing that quantum me
hani
s predi
tsresults whi
h 
an rule out the whole 
lass of lo
al hid-den variable (LHV) theories. It is hard to overemphasizethe importan
e of this result, whi
h has even been 
alled�the most profound dis
overy of s
ien
e� [4℄. However,the original Bell inequality, and all of its generalizations,are dire
tly appli
able only to the 
ase of dis
rete ob-servables. The main purpose of this letter is to 
lose the
ir
le and derive a 
lass of Bell-type inequalities appli-
able to 
ontinuous variables 
orrelations, together withmultipartite generalizations.We derive a 
lass of inequalities for lo
al realism thatdire
tly use 
orrelations of measurements, with no re-stri
tion to spin measurements or dis
rete binning. Thenew inequalities are remarkably simple. They pla
e norestri
tion on the number of possible out
omes, and the
ontrast between the 
lassi
al and quantum bounds in-volves 
ommutation relations in a 
entral way. Theymust be satis�ed by any observations in an LHV theory,whether having dis
rete, 
ontinuous or unbounded out-
omes. We 
an immediately rederive previously knownBell-type inequalities, obtaining at the same time theirquantum-me
hani
al bounds by 
onsidering the non-
ommutativity of the observables involved. We also dis-play quantum states that dire
tly violate the new in-equalities for 
ontinuous, unbounded measurements, evenin the ma
ros
opi
, large n limit [5, 6, 7, 8℄. We showthat the new Bell violations survive the e�e
ts of �nitegeneration and dete
tion e�
ien
y. This is very surpris-ing, in view of the many examples in whi
h de
oheren
erapidly destroys ma
ros
opi
 superpositions [9℄.Apart from this intrinsi
 interest, these inequalities arerelevant to an important s
ienti�
 problem. No experi-ment has yet produ
ed a Bell inequality violation without

introdu
ing either lo
ality or dete
tion loopholes. Onepath towards this goal is to use 
ontinuous-variables (CV)and e�
ient homodyne dete
tion, whi
h allows mu
hhigher dete
tion e�
ien
y than is feasible with dis
retespin or photo-dete
tion measurements. A number ofloop-hole free proposals exist in the literature, but theyall use Bell [10, 11, 12, 13, 14℄ or Hardy [15℄ inequalitieswith a di
hotomi
 binning of the results (whi
h usuallylead to small violations), or else a parity or pseudo-spinapproa
h[16, 17, 18℄ whi
h 
annot be realized with ef-�
ient homodyne dete
tion. Are there Bell inequalitieswhi
h 
an be derived without the assumption of �nitenumber of out
omes and therefore are dire
tly appli
a-ble to CV - with no need to bin the results?For n parties, m measurements per party and o out-
omes, it is well-known that the set of 
orrelations al-lowed by LHV theories 
an be represented as a 
on-vex polytope, a multi-dimensional geometri
al stru
tureformed by all 
onvex 
ombinations (linear 
ombinationswhere the 
oe�
ients are probabilities, i.e., they are non-negative and sum to one) of a �nite number of verti
es.The verti
es of this polytope are the 
lassi
al pure states� the states with well-de�ned values for all variables[7, 19, 20℄. The tight Bell inequalities are asso
iatedwith the linear fa
ets of the polytope. It is a 
omputa-tionally hard problem to list all Bell inequalities for given
(n, m, o), and full numeri
al 
hara
terizations have beena

omplished only for small values of those parameters.However, no 
lass of Bell inequalities has previouslybeen derived without any referen
e to the number ofout
omes or to their bound. Any real experiment willalways yield a �nite number of out
omes; but are there
onstraints imposed by LHV theories that are indepen-dent of any parti
ular dis
retization, and 
an be expli
-itly written even in the limit o→∞? Our answer is yes;and the derivation is mu
h more straightforward thanin the 
ase of the usual Bell-type inequalities, whi
h arerestri
ted to a parti
ular set of outputs.We will fo
us on the 
orrelation fun
tions of observ-ables for n sites or observers, ea
h equipped with m pos-sible apparatus settings to make their 
ausally separatedmeasurements. We 
onsider any real, 
omplex or ve
torfun
tion F (X,Y,Z, . . .) of lo
al observations Xi, Yi, Zi



2at ea
h site i, whi
h in an LHV theory are all fun
tionsof hidden variables λ. In a real experiment the di�erentterms in F may not all be measurable at on
e, be
ausethey may involve di�erent 
hoi
es of in
ompatible observ-ables. The assumption of lo
ality enters the reasoning byrequiring that the lo
al 
hoi
e of observable does not af-fe
t the 
orrelations between variables at di�erent sites,and therefore that the averages are taken over the samehidden variable ensemble P (λ) for all terms. We intro-du
e averages over the LHV ensemble (there's no loss ofgenerality in 
onsidering deterministi
 LHVs [21℄),
〈F 〉 =

∫

P (λ)F (X (λ) ,Y (λ) ,Z (λ) , . . .) dλ . (1)Our LHV inequality uses the simple result that anyfun
tion of random variables has a non-negative varian
e,
|〈F 〉|2 ≤ 〈|F |2〉. (2)We 
an also give a bound 〈|F |2〉 ≤ 〈|F |2〉sup, where thesubs
ript denotes the supremum (least upper bound), inwhi
h produ
ts of in
ompatible observables are repla
edby their maximum a
hievable values. This is ne
essarysin
e if we are not able to measure both Xi and Yi si-multaneously, a general LHV model 
ould predi
t anya
hievable 
orrelation [22℄.The same varian
e inequality applies to the 
orre-sponding Hermitian operator F̂ in quantum me
hani
s.While the observables at di�erent sites 
ommute � they
an be simultaneously measured � those at the samesite do not, so operator ordering must be in
luded. Thisenables us to see how quantum theory 
an violate thevarian
e bound for an LHV.As an example, we will apply this varian
e inequality toa well-known 
ase. Consider two di
hotomi
 observables

Xi, Yi per site i, the out
omes of whi
h are ±1. We de�ne
F1 ≡ X1, F ′

1 ≡ Y1 , and then indu
tively 
onstru
t [23℄:
Fn ≡

1

2
(Fn−1 + F ′

n−1)Xn +
1

2
(Fn−1 − F ′

n−1)Yn, (3)where F ′
n 
an be obtained from Fn by the ex
hange

Xi ←→ Yi. In 
al
ulating F 2
n we'll keep tra
k of the lo-
al 
ommutators just to make the 
ontrast with quantumme
hani
s 
learer. For real variables X, Y , the 
ommu-tator is de�ned in the same way as for the 
orrespondingoperators, i.e., [X, Y ] ≡ XY−Y X . The anti-
ommutatoris de�ned by [X, Y ]+ ≡ XY + Y X . Then

F 2
n =

1

4

{

(F 2
n−1 + F ′2

n−1)(X
2
n + Y 2

n )

+ [Fn−1, F
′
n−1]+(X2

n − Y 2
n ) + (F 2

n−1 − F ′2
n−1)[Xn, Yn]+

−[Fn−1, F
′
n−1][Xn, Yn]

}

. (4)Sin
e X̂2
n = Ŷ 2

n = 1, we 
an show that F 2
n = F ′2

n and
F 2

n = F 2
n−1 −

1

4

[

Fn−1, F
′
n−1

]

[Xn, Yn] . (5)

In a LHV theory, the term whi
h involves 
ommuta-tors will be zero sin
e [X(λ), Y (λ)] = X(λ)Y (λ) −
Y (λ)X(λ) = 0. Hen
e by indu
tion F 2

n = F 2
1 = 1 andthe varian
e inequality (2) be
omes: −1 ≤ 〈Fn〉 ≤ 1.This is the Mermin-Ardehali-Belinskii-Klyshko (MABK)[5, 24, 25℄ Bell inequality, whi
h redu
es to the well-known Bell-CHSH [26℄ inequality for n = 2.We 
an now 
al
ulate the quantum me
hani
al boundby writing the varian
e inequality (2) and substitutingthe fun
tions in (5) by their 
orresponding operators

〈

F̂n

〉2

Q
≤

〈

F̂ 2
n

〉

Q
=

〈

F̂ 2
n−1 −

1

4
[F̂n−1, F̂

′
n−1][X̂n, Ŷn]

〉

Q

≤
∥

∥F̂ 2
n−1

∥

∥ +
1

4

∥

∥[F̂n−1, F̂
′
n−1]

∥

∥

∥

∥[X̂n, Ŷn]
∥

∥, (6)where the norm ‖A‖ denotes the modulus of the maxi-mum value of 〈Â〉Q over all quantum states. The normof the se
ond 
ommutator has the bound ‖[X̂n, Ŷn]‖ ≤
2. It's easy to show that [F̂n, F̂ ′

n] = F̂ 2
n−1[X̂n, Ŷn] +

[F̂n−1, F̂
′
n−1] and therefore ‖[F̂n, F̂ ′

n]‖ ≤ 2‖F̂ 2
n−1‖ +

‖[F̂n−1, F̂
′
n−1]‖ . Solving the re
ursion relation by not-ing that ‖F̂ 2

1 ‖ = 1
2‖[X̂1, Ŷ1]‖ = 1 we �nally arrive atthe bound 〈F̂n〉2Q ≤ 2n−1. This 
an be attained with thegeneralized GHZ states [23℄, whi
h therefore violate (2).Inspired by those results, we now demonstrate an LHVinequality that is dire
tly appli
able to unbounded 
on-tinuous variables, in parti
ular �eld quadrature opera-tors. The 
hoi
e of the fun
tion Fn in (3) is not optimalthough, sin
e the varian
e in general involves in
ompat-ible operator produ
ts that have no upper bound.To over
ome this problem, 
onsider a 
omplex fun
tion

Cn of the lo
al real observables {Xk, Yk} de�ned as:
Cn = X̃n + iỸn =

n
∏

k=1

(Xk + iYk) , (7)so that the modulus square only involves 
ompatible op-erator produ
ts, i.e. |Cn|2 =
∏n

k=1(X
2
k + Y 2

k ) . Applyingthe varian
e inequality to both X̃n and Ỹn, we �nd that:
〈X̃n〉2 + 〈Ỹn〉2 ≤ 〈

n
∏

k=1

(X2
k + Y 2

k )〉 (8)This is our main result. Given the assumption of lo
alhidden variables, this inequality must be satis�ed for anyset of observables Xk, Yk, regardless of their spe
trum.The fa
t that we have negle
ted the 
ommutators inderiving (8) hints that quantum me
hani
s might predi
ta violation. We de�ne quadrature operators
X̂k = âke−iθk + â†

keiθk

Ŷk = âke−i(θk+skπ/2) + â†
kei(θk+skπ/2), (9)where âk, â†

k are the boson annihilation and 
reation op-erators at site k and sk ∈ {−1, 1}.



3We now de�ne the operator Ẑk ≡ X̂k + iŶk andnote that it follows that Ĉn =
∏n

k=1 Ẑk. The de�ni-tion of Ŷk allows for the 
hoi
e of the relative phasewith respe
t to X̂k to be ±π/2. Depending on sk,for ea
h k either Ẑk = 2âke−iθk or Ẑk = 2â†
keiθk .Denoting Âk(1) = âk and Âk(−1) = â†

k, the termin the LHS of (8) in quantum me
hani
s is then
|〈∏k Ẑk〉Q|2 = |2nei

P

k
skθk〈∏k Âk(sk)〉Q|2. The RHSbe
omes 〈∏n

k=1(4â†
kâk + 2)〉Q regardless of the phase
hoi
es. To violate (8) we must therefore �nd a statethat satis�es

∣

∣

∣

〈

∏

k

Âk(sk)
〉

Q

∣

∣

∣

2

>
〈

∏

k

(

â†
kâk +

1

2

)

〉

Q
, (10)whi
h is surprisingly insensitive to relative phases be-tween the quadrature measurements at di�erent sites.This violation of a 
ontinuous variable Bell inequality
an be realized within quantum me
hani
s. Consider aneven number of sites, 
hoosing sk = 1 for the �rst half ofthem and sk = −1 for the remaining. To maximize theLHS we need a superposition of terms whi
h are 
oupledby that produ
t of annihilation/
reation operators. One
hoi
e is a state of type

|ΨS〉 = c0 |0, . . . , 0, 1, . . . , 1〉+ c1 |1, . . . , 1, 0, . . . , 0〉 ,(11)where in the �rst term the �rst n/2 modes are o

u-pied by zero photons and the remaining by 1; 
onverselyfor the se
ond term. With that 
hoi
e of state theLHS of (10) be
omes |c0|2|c1|2, whi
h is maximized by
|c0|2 = |c1|2 = 1

2 . The RHS is (3
2 )

n

2 (1
2 )

n

2 independentlyof the amplitudes c0, c1. Dividing the LHS by the RHS,inequality (10) be
omes 1
4

(

4
3

)
n

2 ≤ 1, whi
h is violatedfor n ≥ 10, and the violation grows exponentially withthe number of sites.While setting up the homodyne dete
tors ne
essary forthis observation is 
hallenging, the 
omplexity of this tasks
ales linearly with the number of modes. A more strin-gent 
onstraint is most likely in the state preparation, butwe 
an relate state (11) to a 
lass of states of great experi-mental interest. They 
an be a
hieved from a generalizedGHZ state of n/2 photons, 1√
2
(|H〉⊗ n

2 + |V 〉⊗n

2 ) � where
|H〉 and |V 〉 respe
tively represent single-parti
le statesof horizontal and verti
al polarization� by splitting ea
hmode with a polarizing beam splitter. Therefore viola-tion of (8) 
an be observed in the ideal 
ase with a 5-qubitphoton polarisation GHZ state and homodyne dete
tion.An interesting question is the e�e
t of de
oheren
e,both from state preparation error [27℄ and dete
tor in-e�
ien
y. The usual Bell-CHSH violations have an ef-�
ien
y threshold [28℄ of 83%. This has not yet beena
hieved for single-photon 
ounting. Homodyne dete
-tion is remarkably e�
ient by 
omparison, with up to
99% e�
ien
ies being reported. However, the e�e
t of de-te
tor e�
ien
y is easily in
luded by assuming that ea
h
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Figure 1: Minimum state preparation �delity ǫmin for idealdete
tors (solid line), and minimum dete
tion e�
ien
y ηminfor ideal state preparation (dashed line) required for violationof (8) as a fun
tion of the number of modes. The asymptoti
value of ηmin is indi
ated by the dash-dotted line.dete
ted photon mode is pre
eded by a beamsplitter withintensity transmission η < 1. This 
hanges both the LHSand RHS, so that the inequality be
omes 4η2

2η+1 ≤ 42/n,giving a threshold e�
ien
y requirement of η > ηmin,where ηmin = (1 +
√

1 + 41−2/n)/41−2/n.This redu
es at large n to an asymptoti
 value of
η∞ = 0.80902. Unexpe
tedly, the Bell violation (whi
hsigni�es a quantum superposition) is less sensitive to de-te
tor ine�
ien
y in the ma
ros
opi
, large n limit. Theminimum dete
tor e�
ien
y ηn at �nite n is plotted inFig. 1, together with the minimum state preparation �-delity ǫmin in the 
ase of ideal dete
tors, where we modelthe density matrix as ρ̂ = ǫ|ΨS〉〈ΨS |+ (1− ǫ)Î.We will �nally prove that there are no LHV inequalitiespossible if one 
onsiders only the �rst-moment 
orrela-tions between 
ontinuous variables in di�erent sites. Wewill show this expli
itly for the simplest 
ase and indi
atehow to generalize to arbitrary numbers of parties and set-tings. Consider �rst n = 2 parties, Ali
e and Bob, ea
hof whi
h 
an 
hoose between m = 2 observables: Xa, Yafor Ali
e and Xb, Yb for Bob. Ea
h measurement yieldsan out
ome in the real numbers. The �rst-moment 
orre-lation fun
tions for ea
h of the 4 possible 
on�gurationsare just the averages 〈XaXb〉, 〈XaYb〉, 〈YaXb〉, 〈YaYb〉.Given those 4 experimental out
omes, 
an we �nd a lo-
al hidden variable model whi
h reprodu
es them?We 
onstru
t an expli
it example. Consider a hidden-variable state S where the hidden variables are the mea-sured values X, Y, in an equal mixture of four 
lassi
alpure states Sk = (Xa, Ya, Xb, Yb)k de�ned by

S1 = 2 (1, 0, 〈XaXb〉, 0)

S2 = 2 (1, 0, 0, 〈XaYb〉)
S3 = 2 (0, 1, 〈YaXb〉, 0)

S4 = 2 (0, 1, 0, 〈YaYb〉).

(12)



4Ea
h of the states Sk assigns a nonzero value to onlyone of the 4 
orrelation fun
tions. Sin
e the probabilityof ea
h of the states in the equal mixture is 1/4, we havefor example 〈XaXb〉S = 1
4

∑

i〈XaXb〉Si
= 〈XaXb〉.Satisfying the two-site 
orrelations using the state Sde�ned by (12) leaves us with un
ontrolled values for thesingle-site 
orrelations, for instan
e 〈Xb〉S = 1

2 (〈XaXb〉+
〈YaXb〉). One might obje
t to the fa
t that this is notequal to 〈Xb〉 in general. However, we may 
orre
t theselower order 
orrelations by adding four more states (S5to S8) and 
hanging the prefa
tors multiplying S1 to
S4 to 
ompensate for their redu
ed weight in the equalmixture. Cru
ially, adding these extra states to S inthis manner does not modify the values of 
orrelationssu
h as 〈XaXb〉. As an example, we exhibit the state
S5 = 8 (0, 0, 〈Xb〉−(〈XaXb〉+〈YaXb〉)/

√
8, 0), whi
h 
or-re
ts the single expe
tation value 〈Xb〉S to 〈Xb〉.The proof generalizes easily to arbitrary n and m. Inthat 
ase, there aremn possible 
ombinations of measure-ments whi
h yield n-site 
orrelations. Denoting the jthobservable at site i by Xj

i , ea
h 
ombination is spe
i�edby a sequen
e of indi
es (j1, j2, . . . , jn). For ea
h 
ombi-nation of measurements, we de�ne a hidden variable statewhi
h assigns nonzero values only to the variables whi
happear in the asso
iated 
orrelation fun
tion 〈∏n
i=1 Xji

i 〉.In analogy to the example above, we 
an always 
hoosethe values of the hidden variables asso
iated to Xji

i su
hthat their produ
t is equal to mn〈∏n
i=1 Xji

i 〉. Sin
e allother mn − 1 states de�ned in this way will give a valueof zero to this parti
ular 
orrelation fun
tion, and giventhat the probability asso
iated with ea
h of those statesis 1/mn, we reprodu
e all 
orrelations as desired. As

indi
ated in the example, additional �rst moment 
orre-lations involving less than n sites 
an be in
luded in theLHV model by adding additional states to S in a waywhi
h doesn't a�e
t the n-site 
orrelations. Thus, anypossible observation of �rst moment 
orrelations may beexplained using a LHV model, and hen
e these 
orrela-tions alone 
annot violate any Bell inequality. In otherwords, the minimum requirement for a 
orrelation Bellinequality with 
ontinuous, unbounded variables, is touse not just the �rst but also the se
ond moments atea
h site.In 
on
lusion, we have derived a new 
lass of Bell-typeinequalities valid for 
ontinuous and unbounded experi-mental out
omes. We have shown that the same pro
e-dure allows one to derive the MABK 
lass of Bell inequal-ities and their 
orresponding quantum bounds. Thatderivation makes it expli
it that non-zero 
ommutators� asso
iated with the in
ompatibility of the lo
al observ-ables � are the essential ingredient responsible for thedis
repan
y between quantum me
hani
s and lo
al hid-den variable theories. The new Bell-type inequality de-rived here 
an be dire
tly applied to 
ontinuous variableswithout the need for a spe
i�
 binning of the measure-ment out
omes. Surprisingly, quantum me
hani
s pre-di
ts exponentially in
reasing violations of the inequalityfor ma
ros
opi
ally large numbers of sites, even in
ludingrealisti
 de
oheren
e e�e
ts like ine�
ient state prepara-tion, and a dete
tor loss at every site.We thank Y.C. Liang and B. Lanyon for interestingand helpful dis
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