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Abstract 6 

The presence or absence of water can result in floods or droughts, potentially impacting agricultural productivity to a great 7 

extent. With advancements in remote sensing technology, the reliability of identifying water bodies has significantly 8 

improved, particularly in terms of distinguishing between water and land. This study introduced remote sensing methods to 9 

improve the accuracy of differentiating water within the Dawenhe River basin. Various water body scenarios were examined, 10 

and the performance of these methods was evaluated to determine the proper approach for water-land separation. In applying 11 

water body indices to Sentinel-2 images, it was found that the normalized difference water index (NDWI) outperformed the 12 

modified normalized difference water index (MNDWI) in identifying water bodies. Consequently, histograms of frequency 13 

distribution for Sentinel-1 were generated, revealing that water and land were more distinguishable in VV polarization than 14 

in VH polarization. Using histogram thresholding on VV polarized images in Dongping Lake resulted in an overall 15 

classification accuracy of 97.58%, surpassing that of Otsu’s method at 97.36%. To address the persisting misclassifications, 16 

this study identified three leading causes and proposed corresponding solutions. These solutions included (1) employing the 17 

morphological dilation algorithm to expand the water area, mitigating pixel mixing issues at the water-land boundary that 18 

caused the water bodies to appear smaller; (2) utilizing incidence angles and digital elevation model (DEM) to locate and 19 

remove shadows; and (3) slightly lowering the thresholds and manually correcting misclassifications. As a result, the average 20 

accuracy of the four areas increased from 95.56% to 96.94%.  21 
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Introduction 31 

Inland water is a critical natural resource for maintaining the equilibrium of terrestrial ecosystems and ensuring human 32 

sustenance (Karpatne et al., 2016; Huang et al., 2018; Palmer and Ruhi, 2019). The burgeoning progression of agricultural 33 

activities and the persistent climate change have culminated in an uneven distribution of inland freshwater resources, 34 

specifically rivers and lakes, across different geographical regions (Knox et al., 2010). This dynamic has contributed to 35 

heightened frequencies and intensities of extreme weather events, including floods and droughts (IPCC, 2021). To cope with 36 

these extreme events and contribute to agricultural production, accurate monitoring and extracting of surface water have thus 37 

become essential for water management (Smith, 1997; Li et al., 2021). Water has unique electromagnetic wave absorption 38 

and scattering characteristics, making it possible to extract information about surface water bodies using remote sensing 39 

images (Frazier and Page, 2009). 40 

Multispectral satellites hold a prominent position in current large-scale surface water extraction, which is attributed to their 41 

capacity to furnish remote sensing imagery with notable spatial resolution, while also having the advantage of free access to 42 

long-term ground-truth records from various platforms (Boland, 1976; Chen and Zhang, 2004; Verpoorter et al., 2012). 43 

Water bodies can be easily distinguished from their surroundings using single-band or multi-band combinations in satellites 44 

that are sensitive to the spectral signatures of water (Rundquist et al., 1987; Frazier and Page, 2000). Several commonly used 45 

approaches for surface water body extraction, including spectral bands, water body indices (Wilson and Sader, 2002; Feyisa 46 

et al., 2014; Acharya et al., 2018), supervised and unsupervised classifications (Ozesmi and Bauer, 2002; Acharya et al., 47 

2016; Tulbure et al., 2016), have shown their benefits in different research fields. Jiang et al. (2014) introduced a novel 48 

automatic approach that combines the water index (WI) and digital image processing techniques to extract rivers and lands, 49 

and it was observed that this new method outperformed thresholding. Huang et al. (2015) suggested a modified histogram 50 

technique for the shortwave infrared (SWIR) band of Suomi NPP-VIIRS to track surface water variation within every single 51 

pixel and found that Suomi could serve as a superior substitute for MODIS. Sarp and Ozcelik (2017) used the Support Vector 52 

Machine (SVM) along with the normalized difference water index (NDWI) and the modified normalized difference water 53 

index (MNDWI) to evaluate changes of lake areas in Landsat images, the findings showed that SVM was the most effective 54 

method for extracting surface water of Lake Burdur. In addition, the optical satellite Sentinel-2 has gained substantial interest 55 

in research endeavors for water quantity extraction due to its high spatial resolution, diverse spectral bands, and frequent 56 

revisit intervals (Drusch et al., 2012; Liu et al., 2022). Yang and Chen (2017) found that the extraction accuracy of MNDWI 57 

from Sentinel-2 surpassed that of Landsat 8 when extracting water bodies in complex urban landscapes. Li et al. (2021) 58 

constructed an automatic water extraction model in a complex environment (AWECE) using Google Earth Engine and 59 

Sentinel-2 to accurately extract surface water in Sri Lanka, which improves the extraction accuracy of multiple types of 60 

water bodies in complex geographic environments. Teng et al. (2021) assessed the suitability of Chinese wetlands as winter 61 
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habitats for geese by analyzing NDWI, water level and geese occurrence, and found that incorporating NDWI from Sentinel-62 

2 images into the distribution model enhanced its accuracy. 63 

Although the Sentinel-2 satellite exhibits an accuracy superiority in water extraction through WI compared to Landsat 8, 64 

studies that rely on pixel-based methods for water extraction are subject to several limitations that can diminish the precision 65 

of water change monitoring (Wang et al., 2015; Kaplan and Avdan, 2017; Li et al., 2022). Water extraction models are 66 

mainly applied to large-scale and long-term observation environments. Affected by both image quality and extraction 67 

methodology, the thresholding method demonstrates favorable outcomes when extracting water bodies in lakes characterized 68 

by distinct land-water boundaries and in the main streams of expansive rivers, but it often neglecting the accurate extracting 69 

of water information within complex environments (Pekel et al., 2016; Wang et al., 2020). The water information extracted 70 

using the single-band method frequently combines with shadowing noise, giving rise to a tendency for thresholding to 71 

overestimate or underestimate the extent of open waters (Xu, 2006; Verpoorter et al., 2012; Du et al., 2016), and this 72 

deficiency becomes particularly pronounced in the context of finer-scale water body extraction. For example, the extraction 73 

accuracy of the single-band and the WI is related to the local land use type, and water features extracted with NDWI are 74 

always mixed up with building noise, making it difficult to distinguish build-up land from water bodies in the remote sensing 75 

images (McFeeters, 1996). Moreover, the applicability of the multispectral satellites is circumscribed by the tendency to 76 

inadequately capture ground conditions in areas characterized by frequent cloudy weather or during periods of flooding. 77 

Synthetic aperture radar (SAR) satellites offer an alternative to optical satellites, as they can work in all weather conditions 78 

and furnish valuable information within shallow aquatic domains and shaded areas. An exemplar is the Sentinel-1 satellite 79 

launched in 2014, which provides images with a spatial resolution of 20 m while taking continuous snapshots of the Earth's 80 

surface, enhancing the capability for hydrological observations during extreme weather events or in regions with complex 81 

terrain (Tsyganskaya et al., 2019; Liao and Wen 2020). As a result of emergency responses under severe weather conditions, 82 

many studies have engaged radar techniques to ensure the uninterrupted monitoring of inundated regions (Giustarini et al., 83 

2013; Martinis et al., 2015). These efforts have focused on advancing methods for the rapid extraction of surface water 84 

bodies, with a concentrated orientation towards the imperative realm of flood mitigation (Schumann and Moller, 2015; 85 

Zhang et al., 2020). Algorithms for extracting water bodies with SAR mainly include threshold-based segmentation (Brisco 86 

et al., 2009; Dong et al., 2021), terrain-based information (Henry et al., 2006; Gui et al., 2022), and texture feature-based 87 

method (Zhang et al., 2019; Bao et al., 2021).  88 

However, radar images are susceptible to coherent speckle noise and require complicated pre-processing procedures, thereby 89 

presenting challenges to the effectiveness of water body extraction using SAR. Because of the limited spatial resolution, 90 

pixels at the boundary between land and water contain information on both. Since the radar backscattering coefficients 91 
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contain information such as soil dielectric constant and surface roughness, the thresholding algorithms inevitably constrains 92 

the accuracy for differentiating water bodies from the land. If the area depicted in the SAR image contains mountainous 93 

terrain, the shadows generated by the rugged topography may be incorrectly identified as water bodies by the thresholding 94 

method. Martinis et al. (2015) mentioned that radar-based classifications might misidentify non-watershed areas with low 95 

backscattering properties, such as barren terrain, crop fields or radar-induced shadows, as water surfaces, resulting in an 96 

overestimation of watershed area.  97 

The prevalence of misclassification due to the pixel mixing at water-land boundaries, terrain shading and similar features 98 

remains a noteworthy concern. To address these challenges, the study aims to explore water-land separability analysis 99 

methods by comparing the classification results of different techniques implemented on Sentinel-1 and Sentinel-2 images in 100 

the Dawenhe River basin. In this study, the morphological dilation algorithm was applied to address the challenge of pixel 101 

mixing along the boundary, bolstered by incorporating the Advanced Spaceborne Thermal Emission and Reflection 102 

Radiometer (ASTER) DEM to locate and remove shadows over water bodies. To eliminate misclassification resulting from 103 

the similarity of the object features, accuracy improvements were achieved through visual interpretation and manual 104 

correction. Through the evaluation and correction of potential classification errors in these methods, this study was explored 105 

to improve the overall accuracy of water extraction. This study could provide timely and accurate information on surface 106 

water fluctuations in agricultural catchments with rugged terrains and intricate weather conditions, which is particularly 107 

crucial in instances of extreme weather events such as floods. 108 

Study area and dataset 109 

Study area 110 

The study was conducted in the Dawenhe River basin, which is an important agricultural area of wheat and maize in eastern 111 

China (Fig. 1). The mountainous area is in the east of the Dawenhe River catchment, and the west is low-lying, allowing the 112 

water to flow into Dongping Lake reservoir in the lower reaches of the river. Historically, the annual rainfall in this 113 

catchment ranges from 261.6 mm to 1847.9 mm, with the rainy season concentrated between June and October, and the rest 114 

of the year is in the dry season. But there are large temporal and spatial variations in precipitation from year to year, resulting 115 

in floods and droughts that can occur in all seasons. Droughts and floods not only lead to a clean water shortage for the 116 

residents, but also poor agricultural production. In response to climate change, the hydrological institute has adjusted the 117 

layout, reinforced the small and medium-sized reservoirs, as well as the small bodies of water such as the scattered lakes and 118 

rivers, so that they can play a good role in storing water. However, during years of heavy precipitation, there is also a 119 

potential for excess water to be stored in the basin, which could put adjacent communities in danger of floods. 120 
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The Dawenhe River basin covers an area of 8,633 km2, and the water system is a small percentage compared to the land. If 121 

the water-land separation analysis was carried out in the whole basin, it would consume CPU resources and slow down the 122 

computer speed. Thus, four distinct areas (Area 1-Dongping Lake, Area 2-Daicun Dam, Area 3-Qingyun Lake and Area 4-123 

Xueye Lake) were chosen as both the study and validation areas within the basin. The water bodies in these regions were 124 

roughly of the same size as the land areas, and the regions include a variety of land types such as built-up areas, farmland, 125 

mountains and wetlands, as well as various water types including reservoirs, ponds and rivers. This selection aimed to ensure 126 

that these areas contained an abundance of pixels and were convenient for image processing. The descriptions of the study 127 

and validation areas are shown in Fig. 1.  128 

 129 

Fig. 1. Study areas, location of Dawenhe River basin and the hydrographic net. 130 

Data collection 131 

Sentinel-1 and Sentinel-2 images available in the study area were selected for the period between July 10, 2021, and June 23, 132 

2022, with a preference for selecting images taken on the same day or with a one-day lag (Table 1). For areas where water 133 

and land spectral signatures were clear on the images, visible satellite images with 0.6 m resolution were used for verification, 134 

and on-site confirmations were conducted; for images with unclear water and land features, on-site inspection has also been 135 
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made, while for hard-to-reach areas, we not only confirmed on satellite images, but also entered the site several times with 136 

the help of drones, focusing on the location and spectral features of the objects. 27 acquisitions of Sentinel-1 and Sentinel-2 137 

were collected from the Copernicus platform of the European Space Agency (ESA). The orbit files and 60 m DEM used for 138 

pre-processing were also obtained from ESA. The DEM with a 30 m resolution was collected from the Geospatial Data 139 

Cloud Platform at the Chinese Academy of Sciences Visible light images with a resolution of 0.6 m were acquired from the 140 

Beijing-3 satellite and downloaded from the National Platform for Common Geospatial Information Services 141 

(https://www.tianditu.gov.cn/). 142 

Table 1. List of investigated Sentinel-1 and Sentinel-2 features.  143 

No. Satellite Ingestion Time (M/D/Y) Product Type Polarization or Band 
S1-01 Sentinel-1 7/10/2021 GRD VH, VV, InAng 
S1-02 Sentinel-1 7/22/2021 GRD VH, VV, InAng 
S1-03 Sentinel-1 8/03/2021 GRD VH, VV, InAng 
S1-04 Sentinel-1 8/15/2021 GRD VH, VV, InAng 
S1-05 Sentinel-1 8/27/2021 GRD VH, VV, InAng 
S1-06 Sentinel-1 9/08/2021 GRD VH, VV, InAng 
S1-07 Sentinel-1 9/20/2021 GRD VH, VV, InAng 
S1-08 Sentinel-1 10/02/2021 GRD VH, VV, InAng 
S1-09 Sentinel-1 10/14/2021 GRD VH, VV, InAng 
S1-10 Sentinel-1 10/26/2021 GRD VH, VV, InAng 
S1-11 Sentinel-1 1/06/2022 GRD VH, VV, InAng 
S1-12 Sentinel-1 1/18/2022 GRD VH, VV, InAng 
S1-13 Sentinel-1 1/30/2022 GRD VH, VV, InAng 
S1-14 Sentinel-1 2/11/2022 GRD VH, VV, InAng 
S1-15 Sentinel-1 2/23/2022 GRD VH, VV, InAng 
S2-01 Sentinel-2 2/23/2022 L2A, L1C B2, B3, B4, B8, B11 
S1-16 Sentinel-1 3/19/2022 GRD VH, VV, InAng 
S1-17 Sentinel-1 3/31/2022 GRD VH, VV, InAng 
S1-18 Sentinel-1 4/12/2022 GRD VH, VV, InAng 
S1-19 Sentinel-1 4/24/2022 GRD VH, VV, InAng 
S1-20 Sentinel-1 5/6/2022 GRD VH, VV, InAng 
S1-21 Sentinel-1 5/18/2022 GRD VH, VV, InAng 
S2-02 Sentinel-2 5/19/2022 L2A, L1C B2, B3, B4, B8, B11 
S2-03 Sentinel-2 5/29/2022 L2A, L1C B2, B3, B4, B8, B11 
S1-22 Sentinel-1 5/30/2022 GRD VH, VV, InAng 
S1-23 Sentinel-1 6/11/2022 GRD VH, VV, InAng 
S1-24 Sentinel-1 6/23/2022 GRD VH, VV, InAng 

 144 

Sentinel-1 SAR data 145 

Given the merits of active remote sensing techniques are continuous monitoring irrespective of weather conditions and 146 

diurnal variations, this study used Sentinel-1 C-band SAR images with VH and VV polarization modes and incidence angles 147 

to extract water bodies in the study areas, enabling the acquisition of land and water classification information. The SAR 148 

imagery type is Level-1 ground range detected (GRD) with interferometric wide (IW) swath mode (Table 1). The original 149 

spatial resolution of the images was 5 m × 20 m. The pre-processing procedures included orbit correction, radiation 150 

calibration, radiation correction, resampling, and so on, aimed to enhance the availability and accuracy of the radar images. 151 

https://www.tianditu.gov.cn/


7 

 

After resampling with the Sentinel Application Platform (SNAP), the resolution was downscaled to 10 m × 10 m. Equ.1 152 

shows the conversion from radar backscattering coefficient to dB.  153 

𝑑𝑑𝑑𝑑 = 10𝑙𝑙𝑙𝑙𝑙𝑙10 ( 𝑝𝑝
𝑝𝑝0

)       (Equ.1) 154 

Where dB is decibels, P is target quantity, P0 is reference quantity and P/P0 is backscattering coefficient (σ°). 155 

Sentinel-2 MSI data 156 

To obtain water distribution patterns from multispectral images through bands or band combinations, Sentinel-2 optical 157 

images with a spatial resolution of 10 m were collected for this study. The multi-spectral instrument (MSI) on both Sentinel-158 

2A and Sentinel-2B satellites was equipped to capture images in 13 spectral bands, out of which blue, green, red and near-159 

infrared (NIR) bands present a 10 m spatial resolution. These four bands, or band combinations, can be used to identify water 160 

distribution by NDWI, which is an effective approach for water extraction. Xu (2006) proposed that MNDWI is an 161 

improvement to the NDWI through shortwave infrared (SWIR), which removes noise interference and enhances water 162 

features. SWIR band from a resolution of 20 m was scaled down to a resolution of 10 m by pre-processing (Table 2). 163 

Table 2. Sentinel-2 multi-spectral instrument (MSI) bands were used. 164 

Sentinel-2 Band 
Sentinel-2A Sentinel-2B 

Spatial Resolution 
(m) Central 

Wavelength (nm) Bandwidth (nm) Central 
Wavelength (nm) 

Bandwidth 
(nm) 

Band 2-Blue 492.4 66 492.1 66 10 
Band 3-Green 559.8 36 559.0 36 10 
Band 4-Red 664.6 31 664.9 31 10 
Band 8-NIR 832.8 106 832.9 106 10 
Band 11-SWIR 1613.7 91 1610.4 94 20 (Downscale to 10) 

 165 

ASTER maps 166 

When the area shown by the SAR image contains mountains, the occlusion of steep landforms creates terrain shadows on the 167 

image, and these shadows might be extracted as water bodies even when using the thresholding method (Hong et al., 2015). 168 

Thus, in this study, the atlas of ASTER Global Digital Elevation Models (GDEM) at 30m resolution covering the study area 169 

was downloaded and the shaded areas were individually eliminated using topographic information. This free dataset, 170 

published by the Ministry of Economy, Trade, and Industry (METI) of Japan and the National Aeronautics (NASA) of the 171 

United States, is the only high-resolution elevation images currently available that cover the global land surface. As a single 172 

map cannot cover the entire study area, pre-processing for stitching and cropping was required. 173 

Methodology 174 

Technology roadmap 175 
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Fig. 2.  Flowchart of the methodology. 177 

According to the flowchart of the methodology in Fig. 2, this study includes the following steps: 178 

Step 1. The Sentinel-2 L2A images were resampled using the SNAP platform, and the spectral bands listed in Table 2 were 179 

merged and clipped based on the vector map of the study area. The NDWI and MNDWI were used to classify the land and 180 

water in the study area. After comparing the classification accuracy of these two indices, the optimal one was chosen for the 181 

following steps. Then the optimum classification result was confirmed using visible images with a 0.6 m resolution, field 182 

investigation and UAV data. Finally, after post-processing, the distributions of water bodies and land were obtained. 183 

Step 2. The SNAP platform was used to pre-process the Sentinel-1 images, and subsequently, the VV and VH polarization 184 

time series were extracted by overlaying the vector file of study area. According to the distributions of water and land 185 

provided by the optimal classification result in step 1, the pixels of these two objects were extracted respectively to examine 186 

their separability. The result of the greatest separability between the two polarization modes was involved in the next 187 

processing. Subsequently, two thresholding algorithms were computed using the Otsu’s method and the valley’s lowest point 188 

(LP) in the histogram thresholding, and the output with the greatest classification accuracy was then chosen. 189 

Step 3. The binarization for pixel values (dB count), which is used to classify water and land, produced classification errors 190 

that call for post-processing. a) A dilation algorithm was introduced to correct for missed water bodies detections due to the 191 

limitations of spatial resolution; b) The incidence angle and DEM information were employed, as well as the decision tree, to 192 

eliminate shadows caused by radar beams that were misclassified as water bodies; c) Manual removal for obvious 193 

misclassifications. 194 

Step 4. Finally, water bodies were extracted from four regions of interest (ROI) in the Dawenhe River basin and the results 195 

were subjected to validation. 196 

Index-based surface water extraction 197 

Three water indices 198 

At present, the commonly used water index (Table 3) is to highlight water bodies and weaken the spectral features of non-199 

water objects by calculating the band ratio. McFeeters (1996) proposed NDWI with a focus on water turbidity using a green-200 

NIR combination, which effectively detects subtle changes in water content. Based on NDWI, Xu (2006) put forward 201 

MNDWI, which further expanded the contrast between water and land and extracted the characteristics of open water areas 202 

more accurately. The computation and use of these two normalized water indices, however, differ significantly from those of 203 

the NDWI suggested by Gao (1996). As a complement to the normalized difference vegetation index (NDVI), another index 204 
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known as NDWI GAO uses a NIR-SWIR combination to enhance the water content of vegetation leaves. NDWI GAO is 205 

also referred to as NDMI because it has the same band combination as the NDMI introduced by Wilson and Sader (2002). 206 

The spatial resolution of both the green and near-infrared bands in Sentinel-2 is 10 m, while the spatial resolution of SWIR is 207 

20 m. By upscaling the spatial resolution of the green band from 10 m to 20 m, the NDWI and MNDWI can be generated 208 

with a resolution of 20 m. Also, the SWIR band can be downscaled from 20 m to 10 m to generate the NDWI and MNDWI 209 

with a 10 m resolution. However, the algorithm of the NDMI relies on the 0.86 μm and 1.24 μm channels to calculate the 210 

water content in the vegetation canopies. Notably, there is no band corresponding to 1.24 μm available for the Sentinel-2 211 

satellite, so the NDMI was excluded from consideration within this study. 212 

Table 3. Three normalized difference multiband indices used for surface water extraction. 213 

Multiband Index Equation Water Value Reference 
Normalized Difference 

Water Index NDWI =
Green − NIR
Green + NIR

 Positive McFeeters (1996) 

Normalized Difference 
Moisture Index NDMI =

NIR − SWIR
NIR + SWIR

 Negative 
Gao (1996) 

Wilson and Sader 
(2002) 

Modified Normalized 
Difference Water Index MNDWI =

Green − SWIR
Green + SWIR

 Positive Xu (2006) 

 214 

Post-processing of water indices 215 

Search the collected Sentinel-1 and Sentinel-2 datasets for images with an Ingestion Date of 48 hours or less, especially those 216 

on the same day. The NDWI and MNDWI of these Sentinel-2 images were calculated and the classification accuracy of these 217 

two indices was compared, from which the best classification index was selected. By merging the true-color composite, RGB 218 

(4, 3, 2), and the false-color composite, RGB (8, 4, 2), the classification outcomes can be visually confirmed on the image for 219 

the majority of the areas with distinct water spectral signatures. In addition, field surveys were carried out to identify the 220 

spectral features that cannot be distinguished using the band composites. While in some areas where access is not possible, 221 

the visible satellite images with a 0.6 m spatial resolution and hyper-spectral data from drones were collected for 222 

confirmation, with the aim of determining the object locations and spectral signatures. 223 

Polarizations for water extraction 224 

This study employed two methods to evaluate two polarization modes (VH and VV) and determine the most suitable one for 225 

separating water and land in the study area.  226 

Method 1 involved marking a line segment on the Sentinel-1 imagery to extract points with pixel values of VV and VH 227 

polarizations. These points were plotted on the X, Y coordinate system based on their pixel values and geographic locations, 228 

then connected by lines between adjacent points. The separability of water bodies from land was examined by analyzing the 229 
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pixel values of each point on the axes, focusing on the difference between the pixel values in the water body and those in the 230 

surrounding land. 231 

Method 2 involved extracting the pixel values of water and land parts based on the distribution of the water and land 232 

classification on Sentinel-2 images, then plotting them on the frequency histograms for each of the two polarization modes. 233 

The frequency histograms were used to analyze the separability of water and land in the study area, and to determine which 234 

polarization mode, VV or VH, was more appropriate for distinguishing between water and land. 235 

Threshold 236 

Two thresholding algorithms 237 

Thresholding has been used in the water-land separation analysis. By identifying the attributes of each pixel in the image, the 238 

thresholding approach of binarized segmentation separates the original image into (contiguous) regions or pixel sets (Otsu, 239 

1979; Sezgin and Sankur, 2004; Gwet et, al., 2018). If the original image is f (x, y), Equ.2 depicts the segmented images. 240 

𝑙𝑙(𝑥𝑥, 𝑦𝑦) = �
𝑏𝑏0 𝑓𝑓(𝑥𝑥, 𝑦𝑦) < 𝑡𝑡
𝑏𝑏1 𝑓𝑓(𝑥𝑥, 𝑦𝑦) ≥ 𝑡𝑡       (Equ.2) 241 

Where t is threshold value, b0 is the minimum value and b1 is the maximum value, 𝑓𝑓(𝑥𝑥, 𝑦𝑦) is the original image and the 242 

𝑙𝑙(𝑥𝑥, 𝑦𝑦) is the segmented image. 243 

This study focused on histogram thresholding and Otsu’s method. The histogram thresholding assumes that the image is 244 

divided into the foreground and background parts. When the gray values in the foreground and background areas are evenly 245 

distributed, then the gray histogram of this image displays clear bimodal distributions. In such cases, the gray value at the 246 

valley is chosen as the threshold for image segmentation. Like histogram thresholding, the threshold of Otsu’s method 247 

(Equ.3) separates pixels into foreground and background areas. As a method of land and water body separation, Otsu’s 248 

method takes the maximum between-class variance as a threshold and requires that the pixel histogram of SAR images has 249 

clear peaks and valleys. The larger the difference between peaks and valleys values, the better the extraction of water body. 250 

Specifically, the grayscale of the image is set to [0, m], then the image is divided into [0, t] and [t+1, m] using t as a threshold. 251 

The probabilities w0 and w1 are then calculated for each class, along with the means μ0 and μ1 and the overall mean value μ. 252 

δ2 = w0(μ0 − μ)2 + w1(μ1 − μ)2       (Equ.3) 253 

Where w0 and w1 are the class probabilities of the two classes means μ0 and μ1 , δ2 is the between-class variance. 254 

In this study, the pixel attributes of the study areas were initially acquired through the SNAP offered by ESA, along with the 255 

image processing and analysis software ENVI. Then the histogram thresholds and those determined by Otsu’s method were 256 

processed using Excel. Following this, classification was performed using the decision tree approach within the image 257 
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processing software mentioned above, and the post-processing was executed to address any misclassifications that arose. In 258 

the end, Python and Origin software were employed to assist in the data processing and mapping tasks. 259 

Misclassifications 260 

The low albedo of surface objects makes it challenging to detect ground objects on low-resolution remote sensing images, 261 

which is one of the key barriers to separating water from other ground objects. As a result, both the histogram thresholding 262 

and Otsu’s method suffer from misclassification or omission. This study examined three categories of misclassifications, 263 

including 1) misclassification of a water body as land occurs when the pixels at the boundary between water and land contain 264 

features of both in remote sensing images with a resolution of 10 m. This is particularly problematic if the radar 265 

backscattering coefficient of the water body is used as a threshold, which can result in a smaller separated water body area 266 

than the actual water body area, 2) misclassification of land as a water body is a common issue, especially in mountainous 267 

regions where the radar beam is obstructed by the terrain, creating a shadow on the back side with a low backscattering 268 

coefficient that may be mistakenly identified as water, 3) misclassification of different objects due to other reasons, such as 269 

impurities in water, surface roughness, soil dielectric content, etc.  270 

Decision tree classification 271 

Decision tree classification performs inductive learning by supervised training samples and developing decision rules, which 272 

are subsequently applied to data classification. In this study, the decision tree classification approach was employed to 273 

integrate the incident angle, VV and VH polarizations, DEM, and vector features of the study area. 274 

Accuracy assessment 275 

The confusion matrix was used in this study to express the accuracy assessment by comparing the classification results with 276 

the actual measured data. The accuracy was used as a performance evaluation metric, which was calculated by Equ.4. More 277 

specifically, the confusion matrix was calculated by comparing the position and the category of each measured pixel with the 278 

corresponding position and category of the pixel in the image. To ensure the authenticity of information on ROI, it can be 279 

selected on high-resolution images or acquired through field measurement. Four sub-areas containing water bodies were 280 

selected from the upper, middle, and lower reaches of the Dawenhe River catchment, as shown in Fig. 1. After establishing 281 

the land-water separation model using Area 1, the accuracy of the overall classification can be verified through Areas 2, 3 282 

and 4. 283 

Accuracy = (TP + TN)/Total       (Equ.4) 284 
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Where TP (True Positive) denotes the count of pixels classified as water within the water bodies of the study area, TN (True 285 

Negative) denotes the count of pixels classified as land within the non-water regions of the study area, and Total is the 286 

overall pixel count. 287 

Results 288 

Water indices evaluation 289 

NDWI & MNDWI 290 

The NDWI and MNDWI were computed for the Sentinel-2 images of the Dongping Lake acquired on 23 February 2022, and 291 

the resulting images are shown in Fig. 3, respectively. A red line segment was drawn on each of the two images for 292 

extracting the pixel values. In Fig. 3a, the spectral features of similar ground objects show good consistency throughout the 293 

images. However, the spectral features in Fig. 3b are different. The northern part of the red line contains approximately one-294 

third of the image. It shows a visibly bright cypress forest on the mountains, exhibiting spectral signatures that closely 295 

resemble those of the adjacent water bodies. In addition, the Yellow River is clearly highlighted in the upper left of the image, 296 

indicating that the MNDWI performs favorably for water bodies with high sediment content. 297 

 298 

a                                                                                   b 299 

Fig. 3. a) NDWI and b) MNDWI images of the Dongping Lake on 23 Feb 2022. 300 

Fig. 4. depicts the distribution of data value along the transects drawn across the study area, where the transects are 301 

represented by the red lines in Fig. 3. The data value distribution of NDWI and MNDWI for water and land pixels in Fig. 4 302 

is generally similar, but the pulse width and height vary. The difference between water and land is observed to be 303 

approximately 0.10 for the spectral profile in Fig. 4a, while in Fig. 4b, this difference is approximately 0.05. 304 
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 305 

a 306 

 307 
b 308 

Fig. 4. The transects show the location and value of pixels in the a) NDWI and b) MNDWI images. x-axis is the distance 309 

along the transect (m) and y-axis is the pixel values along the transect (intensity). 310 

Line graphs (Fig. 5) were created by extracting pixel values from NDWI and MNDWI of the study area. Fig. 5 shows that 311 

NDWI has higher and more concentrated bimodal peaks, indicating its greater suitability for water and land separation 312 

analysis. 313 
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 314 

Fig. 5. Pixel identification of NDWI and MNDWI. 315 

Post-processing results 316 

NDWI was prepared to extract the water bodies as it performed better than MNDWI. Fig. 7a shows the water and land 317 

separation map generated by NDWI using Otsu’s method with a threshold of 0.02148. Then the separation results were 318 

validated using true and false color composites from Sentinel-2 images (Fig. 6). The colors of the ground objects depicted in 319 

Fig. 6a closely resemble those perceived by the human eye. The water bodies are dark green, the Yellow River with high soil 320 

content is yellowish-brown, and most farms are green, while the pixel colors of urban areas and buildings are mixed up with 321 

those of water bodies. In the false-color image shown in Fig. 6b, the water bodies appear as dark blue and the built-up 322 

appears pink, making it possible to distinguish most of the water bodies from the land on the map. As for ground objects with 323 

minimal spectral signatures, a more accurate map of watershed-land distribution (Fig. 7b) was developed based on Fig. 7a 324 

by combining visible images, drones and field observations. 325 
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 326 

a                                                                       b 327 

Fig. 6. a) True and b) false color composite of Sentinel-2 images on 23 Feb 2022 in Dongping Lake. 328 

 329 
a                                                                      b 330 

Fig. 7. a) The water and land separation map of Dongping Lake produced by NDWI using Otsu’s method with a threshold of 331 

0.02148 and b) An accurate land and water classification map derived from a) through post-processing and refined through 332 

visible images with a spatial resolution of 0.6 m, drones, and field surveys. 333 

Polarization comparison 334 

Fig. 8 shows the grayscale maps of the Sentinel-1 images in the study area on 23 Feb 2022 for both VH and VV polarization 335 

modes. In Fig. 8a, the backscattering coefficients of Dongping Lake, Dawenhe River, and Yellow River are different from 336 

those of other ground objects, making it easier to distinguish the water bodies from the background in the VV polarization 337 

mode. However, the difference between the water bodies and the background is not as prominent in the VH polarization 338 

mode, resulting in water bodies appearing similar in color to the grayscale of the surrounding land (Fig. 8b). Thus, in water 339 
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and non-water classification, the single polarization (VV) exhibits a high degree of separability compared to the cross-340 

polarization (VH). 341 

 342 

a                                                                      b  343 

Fig. 8. Images in a grayscale of a) VV and b) VH polarization modes of the Sentinel-1 in the study area. 344 

 345 

a 346 
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 347 
b 348 

Fig. 9. Histograms of the frequency distribution of the Sentinel-1 SAR backscattering coefficient over water and land in a) 349 

VV and b) VH polarization modes on 23 Feb 2022. 350 

Utilizing the water-land distribution map depicted in Fig. 7b as a reference, the pixel values of water and land were extracted 351 

from Fig. 8 and generated histograms of pixel values, as demonstrated in Fig. 9. Fig. 9a and Fig. 9b display the frequency 352 

distributions of the pixel values from water and land in the study area in VV and VH polarization modes, respectively. As 353 

can be seen in Fig. 9a, both lines have a single peak shape with a relatively concentrated pixel value, the overlap area of land 354 

and water is 0.02%, and the intersection point of the two lines is around -18.00. On the other hand, Fig. 9b shows a larger 355 

overlap, with two peaks closer to each another, and the intersection point of the two lines is approximately -21.19.  356 

 357 

Fig. 10. Retrieved the values of all pixels from the Sentinel-1 image on 23 Feb 2022, then these pixel values are sorted 358 

by size and displayed in a histogram. 359 
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Fig. 10 shows the pixel values of study area on the Sentinel-1 image of 23 Feb 2022. In VV polarization mode, the pixel 360 

frequency curve of the study area exhibits two peaks that are far off from one another, and a deep valley in between. Because 361 

the two peaks there represent the clustering of water and land pixels, respectively, the pixel value in the lowest valley can be 362 

chosen as the threshold to separate the two. In addition, the pixel overlap between water and land is quite large in VH 363 

polarization mode and the valley between the two peaks on the curve is very shallow, indicating that it is difficult to classify 364 

the two apart. If the lowest pixel value in the valley is made to serve as a threshold to distinguish between water bodies and 365 

land, there will be plenty of misclassifications and omissions. Therefore, the Sentinel-1 images of the VV polarization mode 366 

were selected for water and land separation analysis in this study. 367 

Thresholding comparison 368 

Histogram thresholding 369 

The histogram threshold of the binary image was -18.0, which corresponds to the lowest pixel value between the two peaks 370 

in the VV polarization mode and the intersection between the two curves in the water and land frequency histogram. The 371 

obtained water classification map is shown in Fig. 11. The classification accuracy was evaluated using water and land 372 

distribution map provided by Fig. 7b as a validation benchmark, and the confusion matrix was used for this purpose. Table 4 373 

shows that the overall classification accuracy was 97.58% in Dongping Lake on 23 Feb 2022. 374 

 375 

Fig. 11. Map of the water classification outcome obtained by choosing the valley’s lowest point as the threshold (-18.0). 376 
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Otsu’s method 377 

The appropriate threshold of Otsu’s method was -16.64. Based on this threshold, the classification result of water bodies and 378 

land in the remote sensing image is shown in Fig. 12. The overall accuracy of Otsu’s method for classification was 97.36%, 379 

which is less than that of the histogram thresholding. 380 

 381 

Fig. 12. Mapping the calculations of Otsu’s method at Dongping Lake. 382 

Error analysis 383 

Error analysis was performed on the results of histogram thresholding. Most of the water bodies and land areas were 384 

accurately classified by histogram thresholding, as evidenced by the clear distinction between rivers and hills in the image. 385 

Nonetheless, some of the study areas remained misclassified. To better assess these classification errors, the satellite imagery 386 

of the study area was zoomed in, from which a river area (top left of Fig. 13) and a mountain-shaded area (lower left of Fig. 387 

13) were chosen for analysis. Three types of errors are worth mentioning. 388 
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 389 

Fig. 13. The classification results of the histogram thresholding were overlaid on the true color imagery of Sentinel-2 to 390 

obtain the maps of the river area (top left) and of the hill area (lower left). True color imagery of Dongping Lake is on the top 391 

right. 392 

Mixed water-land pixels 393 

Mixed pixels have a negative impact on the extraction of accurate water bodies in remote sensing images using histogram 394 

thresholding, which frequently results in extracted water bodies that are much smaller than the actual size of the river. The 395 

low resolution of the satellite imagery is the primary reason for this discrepancy, particularly for a fine river like the one in 396 

the River Area of Fig. 13. Due to this limitation, the water body extracted from the remote sensing image fails to cover the 397 

entire natural river area. At the boundaries between land and water bodies, pixels contain both water and land information 398 

inevitably, making it likely for their values to exceed the threshold. Therefore, if that threshold is used for classification, the 399 

water body would be misclassified as land. 400 

Radar shadows 401 

The Hill Area in Fig. 14 shows a series of irregular "water bodies" on the slope near the summit, which were classified by 402 

the Sentinel-1 A/B satellites, though field surveys confirmed that a large part of them were "radar shadows". This 403 

phenomenon occurs because when the mountain slope is perpendicular to the radar incidence angle, the radar signal bounces 404 

back with the strongest intensity. On the other hand, when the radar beam is obstructed by a ground object at an angle, it 405 

creates a radar shadow with low pixel values. If the pixel value falls below the designated threshold for distinguishing 406 

between water and land, the histogram thresholding based on pixel values attributes the radar shadow to a water body. 407 
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Different objects with the same features 408 

 409 

Fig. 14. Comparison of two Sentinel-2B images and two classification results. The top left shows true-color composite, 410 

RGB (4, 3, 2), and the top right displays false-color composite, RGB (8, 4, 2). The lower left corner shows a water map (blue) 411 

generated using the NDWI of Sentinel-2B, with a threshold of 0.02 for classification. On the lower right side, a classification 412 

map depicting water (blue) and land (dark yellow) based on the VV polarization of Sentinel-1, using a threshold of -18.0. 413 

As the NIR and red bands are more sensitive to water bodies, the remote sensing images of the study area have been 414 

processed with true color (top left) and false color (top right) to improve the image contrast, as shown in Fig. 14. The 415 

resulting processed images were then compared with the different classification effects of the water bodies. The lower left 416 

image shows the classification of water bodies using NDWI in remote sensing imagery, and the lower right image shows the 417 

classification result of water bodies using the VV polarization mode of the Sentinel-1 satellite. Upon comparing these two 418 

images, discernible discrepancies emerged. Specifically, it was found that the VV polarization mode for water classification 419 

incorrectly identifies certain build-up regions and numerous land areas with irregular contours as "water bodies". This occurs 420 

because of the similarity of backscattering coefficients between water and land, which cannot be resolved by changing the 421 

threshold in the histogram thresholding approach. 422 

Misclassification correction 423 

Dilated water areas 424 
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To address the issue of water body area being underestimated due to low satellite resolution during histogram thresholding, a 425 

morphological dilation operation (Dilate: 2 × 2, Erode: 1 × 1) was employed. By adding pixels to the boundaries of the 426 

extracted water bodies, this operation moderately expanded their boundaries outward. The dilated map of the water bodies is 427 

shown in Fig. 15. 428 

 429 

Fig. 15. Map of the dilated water bodies obtained by the morphological dilation. 430 

The accuracy of classification was assessed by employing the confusion matrix, yielding an overall classification accuracy of 431 

97.71%, representing a 0.13% improvement compared to the pre-dilation results as presented in Table 4. Morphological 432 

dilation can effectively add water pixels for large water areas, but it is not as effective for fine water bodies where water 433 

pixels get mixed up with those of the land, making their classification impractical. Thus, the issue of distinguishing between 434 

water and land pixels persists, rendering it impossible to identify thin and delicate rivers as water bodies through 435 

morphological dilation operations. 436 

Radar shadow removal 437 

Low pixel values in radar imagery can lead to mistaken identification of radar shadows as water bodies. The production of 438 

shadows in radar images depends on several factors, including the altitude angles and azimuth angles of the radar sensor, as 439 

well as topographical factors such as slope and the DEM. To remove these shadows, it is necessary to determine the shadow 440 

direction using the incidence angle and locate the shadow location using DEM and slope. This study found that shadows 441 
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were produced with an incidence angle of 0-180˚ and slopes greater than 20.5˚. Fig. 16 was obtained after removing shading 442 

from the water body classifications, and the overall classification accuracy improved to 97.76%, representing a 0.19% 443 

increase over histogram thresholding, as shown in Table 4.  444 

 445 
Fig. 16. Map of water body classification with non-water shadows removed using incidence angles, DEM, and slope. 446 

Manual correction 447 

Considering the lower reflectivity of water bodies, it is possible for water bodies to exhibit the same or similar characteristics 448 

as other objects (e.g., buildings and shadows) on remotely sensed images, leading to the erroneous classification where the 449 

thresholding method may identify built-up areas as regular water bodies and shadows as irregular water bodies. To prevent 450 

the potential misclassification of features like built-up areas, topography, and cultivated land as water bodies within the 451 

agricultural areas, a combination of field surveys and visual interpretation can be conducted. Moreover, a comparative 452 

analysis of the reflectance spectra associated with distinct water quality parameters can serve as a reference for 453 

distinguishing water bodies. For example, a segment of the Yellow River tributary in the remote sensing imagery, 454 

characterized by an elevated sand content and clear differentiation from the Dongping Lake, was deliberately eliminated 455 

from both the classification and validation samples (Fig. 17b). Due to the limited resolution of the satellite, some of the tiny 456 

water bodies situated within Dongping Lake were inaccurately classified as land (small islands) in the classification image. 457 

However, through visual interpretation and manual correction, these erroneously labeled “water bodies” were appropriately 458 

reclassified as land entities, as depicted in Fig. 17a. Therefore, the overall classification accuracy was 97.90% by manual 459 
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correction, marking an improvement of 0.32% compared to the accuracy of the histogram thresholding, as detailed in Table 460 

4 and evaluated through the application of the confusion matrix. 461 

 462 

a 463 

 464 
b 465 

Fig. 17. Map of water bodies where a) build-up and non-water areas and b) Yellow River have been manually removed. 466 
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Verification 467 

Table 4 shows the classification accuracies obtained by NDWI from Sentinel-2 across four areas (Areas 1, 2, 3, 4) of 468 

Dawenhe River basin, and the average classification accuracy is 98.76%. It also provides the accuracies and differences 469 

within the four areas following the rectification of misclassifications taken by Sentinel-1 on three distinct dates. The remote 470 

sensing images from both Sentinel-1 and Sentinel-2 were used to validate the model process, taken within a day of each other. 471 

The results show that all four areas witnessed a rise in accuracy following post-processing, with improvements ranging from 472 

0.32% to 3.05%. 473 

Table 4. Accuracy (%) and differences (%) in water-land separation results across four subregions of Dawenhe River basin 474 
using NDWI from Sentinel-2 based on validation benchmark, thresholding method and post-processing approaches in VV 475 
polarization of Sentinel-1. 476 

 477 

Discussion 478 

This study attempted to establish a high-precision method for distinguishing between water and land within the Dawenhe 479 

River basin, characterized by its variable meteorological patterns, intricate topographical features, and the occurrence of 480 

  Date   
Area 1 Area 2 Area3 Area 4 

Accuracy Difference Accuracy Difference Accuracy Difference Accuracy Difference 

S2 
23/02/2022 NDWI 98.1512   99.1537   99.0011   98.7512   
19/05/2022 NDWI   99.0125      

30/05/2022 NDWI 98.0891   99.1352           

S1 

23/02/2022 

Histogram 
thresholding 97.5758  92.1505  95.8343  97.1159  

Morphological 
dilation 97.7082 0.1324 92.7411 0.5906 96.7358 0.9015 97.3151 0.1992 

Eliminating 
shadows 97.7632 0.1874 93.0101 0.8596 97.1034 1.2691 97.4905 0.3746 

Manual 
correction 97.8964 0.3206 94.9275 2.7770 97.2194 1.3851 97.5063 0.3904 

19/05/2022 

Histogram 
thresholding     92.7578          

Morphological 
dilation 

  92.9254 0.1676     

Eliminating 
shadows 

  94.3092 1.5514     

Manual 
correction     95.8072 3.0494         

30/05/2022 

Histogram 
thresholding 97.5259  95.9496      

Morphological 
dilation 97.5550 0.0291 96.5611 0.6115     

Eliminating 
shadows 97.7883 0.2624 96.9798 1.0302     

Manual 
correction 97.9981 0.4722 97.2062 1.2566         
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recurrent floods. This method was implemented and subjected to accuracy assessment across four distinct areas, including 481 

Dongping Lake, Daicun Dam, Qingyun Lake, and Xueye Lake, each situated within the Dawenhe River basin.  482 

In a vast agricultural area such as the Dawenhe River, remote sensing is the optimal choice for timely and precise surveys of 483 

surface water. Nevertheless, there is a dearth of studies employing SAR satellites for the classification of land and water in 484 

this region. Furthermore, the application of optical satellites remains highly constrained (Yu et al., 2020; Liang et al., 2021; 485 

Zhang et al., 2022). Zhou (2022) applied multiple sensors of Landsat satellites to monitor changes in the landscape pattern of 486 

Dongping Lake from 1980 to 2020, finding a gradual enlargement of the natural water surface over four decades. However, 487 

the author employed a supervised classification method rather than adopting the water body index and neglected to assess the 488 

accuracy of the classification method. Xing et al. (2022) calculated spatial variations in surface water frequency of Dongping 489 

Lake from 1990 to 2020 on Landsat-7 images through the Google Earth Engine (GEE) platform, but the accuracy of water 490 

body identification was compromised by the inadequate quantity and poor quality of available satellite data. Compared to 491 

Landsat satellites, Sentinel-2 has a higher spatial resolution, thus Sentinel-2 optical images were used to extract the water 492 

bodies on cloud-free days in the study area. 493 

Water bodies were differentiated from land on Sentinel-2 images using NDWI and MNDWI in this study. Two approaches 494 

were adopted to compare the classification accuracies of these two water indices. One involved selecting a line segment on 495 

the image containing pixel information of both water and land areas and analyzing their separability based on the spatial 496 

distribution characteristics of the pixels. Another approach involved extracting pixel values of distribution maps in both 497 

water body indices, drawing frequency histograms, and comparing their separability. The results showed that NDWI had a 498 

higher separation accuracy as compared to MNDWI, and therefore, NDWI was used to extract water bodies for this study.  499 

The application of the thresholding method for the purpose of classifying water bodies and land on NDWI images leads to 500 

classification errors, primarily attributed to the similarity of spectral features between water and other landscape elements. 501 

Zhang et al. (2022) described that previous studies have applied costly and time-consuming field observations to assist in 502 

post-processing, but the results have been unsatisfactory. Nowadays, the spread of cutting-edge monitoring tools such as 503 

hyperspectral remote sensing, drones, and other advanced technological resources has escalated substantial datasets for the 504 

study of surface water bodies on Earth. This study introduced a new attempt involving the post-processing of NDWI-derived 505 

land and water classification outcomes through the incorporation of multiple datasets with improved accuracy. To measure 506 

the effectiveness of this method, the accuracy of NDWI applied in four specific study areas within the Dawenhe River basin 507 

was assessed. This assessment was validated against an accurate water-land distribution map as a benchmark for validation, 508 

and impressively, the average classification accuracy was 98.76%, exceeding the accuracy of 97.16% achieved by Li et al. 509 

(2021), who used Sentinel-2 and GEE to automatically extract surface water in intricate environments. 510 
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For the purpose of comparing the capability of two polarization modes, VV and VH, in distinguishing between water and 511 

land on Sentinel-1 imagery, this study extracted pixel values of water, land, and the complete study area in both polarization 512 

modes, and plotted the frequency histograms, respectively. The results indicated that the VV polarization was more accurate 513 

in distinguishing between water and land in the Dawenhe River basin compared to the VH polarization. This contradicts the 514 

conclusion reached by Brisco (2015) in surface water and wetlands, which found that the VV polarization is the least 515 

preferred polarization for monitoring open water. 516 

The remote sensing images in VV polarization mode were subjected to two thresholding methods - histogram thresholding 517 

and Otsu’s method. In the study area of Dongping Lake, the classification accuracy of the histogram thresholding method 518 

reached 97.58%, while the Otsu’s method had a classification accuracy of 97.36%. The application of these two methods 519 

revealed that the overall accuracy of the histogram thresholding in separating water and land was superior to that of the 520 

Otsu’s method.  521 

To mitigate potential inaccuracies in the classification of water bodies through microwave sensors of radar satellites, 522 

researchers have considered eliminating the disturbances of dielectric constant and soil roughness (Shepard et al., 2001; 523 

Liang et al., 2021). Both of these factors can affect the sensitivity of the radar backscattering coefficients when using SAR 524 

satellites to monitor surface water bodies and soil water content (Fung et al., 1992; Michelson, 1994). Nevertheless, there are 525 

several factors that lead to misclassification of water bodies. 526 

First, the ability of satellites to detect fine water bodies is significantly influenced by their spatial resolution. For example, 527 

Sentinel-1 A/B images are resampled to 10 m × 10 m at a spatial resolution of 5 m × 20 m, the resolution limitation makes it 528 

challenging to detect fine water bodies less than 20 m wide. Moreover, the edge pixels of water bodies are often mixed with 529 

land pixels, leading to a higher pixel value than that of the pure water body. Thus, the thresholding method often 530 

misclassifies the edges of water bodies as land. Another factor contributing to the misclassification of water bodies is the 531 

shadow cast by the radar beam. The radar beam is obstructed when it illuminates tall ground objects, leading to the formation 532 

of shadow areas with low pixel values on the rear side of these objects. If their pixel values fall below a specific threshold, 533 

the thresholding method tends to misclassify these shadows as water bodies. Ground objects with similar features to water 534 

bodies may be misclassified as water bodies, which is the third factor that affects the accuracy of water-land separation. For 535 

instance, the Sentinel-1A/B mistakenly identified built-up areas and farmland as water bodies. However, remote sensing 536 

images and field observations demonstrated that the misclassified built-up complexes have a regular shape, and that their low 537 

backscattering coefficients are related to the absorption properties of building materials for radar waves. In contrast, the 538 

farmland that has been misclassified as a water body is more densely clustered, often irregularly shaped, with high soil 539 

moisture or surface roughness. 540 
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To address the issue of the detected water body area being smaller than the actual water body area due to pixel mixing at the 541 

water-land boundary, a morphological dilation algorithm was applied to moderately enlarge the area of water bodies. For 542 

large water bodies classified by the histogram thresholding, the optimal classification results were obtained with a 2 × 2 543 

dilate, which improved the average classification accuracy from 95.56% to 95.93% across the four study areas. Since narrow 544 

and elongated rivers with widths less than 20 m cannot be identified by the Sentinel-1 A/B satellite, the morphological 545 

dilation algorithm could not expand on existing small water bodies. As a result, this solution works well for determining the 546 

extent of inundated areas and the boundaries of large water bodies such as lakes, reservoirs, and wide rivers during flood 547 

occurrences, but not for ponds and narrow rivers, where the limited spatial resolution of satellites makes it difficult to 548 

identify tiny water bodies. 549 

By utilizing satellite incidence angle data and DEM, it is possible to determine the shadows of objects and eliminate them, 550 

which can effectively address the problem of shadows being misclassified as water bodies. When a slope of 20.5˚ was chosen 551 

along with an incidence angle of 0-180˚, a large proportion of building or hill shadows were eliminated, increasing the 552 

average classification accuracy to 96.35% in the four study areas of the Dawenhe River basin. Approximately one-third of 553 

the Dawenhe River basin is characterized by rugged terrain, this solution has improved the accuracy of distinguishing 554 

between water bodies and shadows, helping to calculate the area of surface water and the amount of water storage in the lake. 555 

In regions with low water reflectivity or unremarkable land signatures, alternative methods can be used for obtaining 556 

accurate surface water information. For instance, researchers engage in field surveys, use drones to conduct monitoring, or 557 

acquire commercial satellite data with enhanced resolution. Moreover, the post-processing function integrates data from 558 

multiple sources and combines them with reliable ground truth information to manually correct misclassifications. For 559 

example, by adjusting the threshold value appropriately, the misclassification of areas with high humidity or roughness as 560 

water bodies can be avoided. After manual correction, the average accuracy in this study improved from 95.56% to 96.94%, 561 

with an improvement of 1.38%. While no previous studies have been conducted using radar satellites for land-water 562 

separation in Dawenhe River catchment, Xing et al. (2018) showed an overall accuracy of 94.5% in applying the VV 563 

backscattering coefficient of Sentinel-1 to extract the surface water distribution in Dongting Lake. 564 

The growing interest in harnessing the enriched open-source data and robust computational capabilities of GEE highlights its 565 

dominance in acquiring, processing, and retrieving remotely sensed images. This paper provides a comprehensive description 566 

of the entire procedure from the acquisition of satellite images to the subsequent processing stage, which involves a 567 

substantial workload coupled with intricate processing demands. If a considerable proportion of these tasks, or ideally all of 568 

them, could be executed with enhanced efficiency through the GEE platform, the resulting enhanced ability to extract surface 569 
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water quickly and easily would greatly improve the responsiveness of flood management in agricultural areas. In future 570 

research, it is of utmost importance to contemplate implementing these studies within the framework of the GEE platform. 571 

Conclusions 572 

Agricultural productivity is closely interlinked with the availability of water resources. As a significant region for the 573 

cultivation of winter wheat and maize in East China, the Dawenhe River basin plays a pivotal role in sustaining agricultural 574 

production. However, the occurrence of extreme weather events such as floods, combined with topographic factors, results in 575 

an uneven distribution of surface water. It severely constrains agricultural production within the basin and poses potential 576 

threats to the lives and property of residents. In these circumstances, a pressing need exists to address the challenges of water 577 

management. As a result, this effort holds significance not only for enhancing agricultural practices but also for the effective 578 

monitoring and rapid response to frequent flood events. 579 

Remote sensing technology makes it possible to fulfill this urgent imperative by flexibly observing the changes in surface 580 

water dynamics within agricultural catchments. Nevertheless, the application of remote sensing to the Dawenhe River basin 581 

remains exceedingly scarce. In this study, the acquisition of all-weather images for water-land distribution within the 582 

catchment using Sentinel-2 and Sentinel-1 platforms was presented. Also, three solutions were introduced to improve the 583 

accuracy of water and land classification. These solutions involved addressing the underlying causes of misclassification, 584 

including dilating water areas using a morphological dilation operation, removing radar shadows in conjunction with DEM, 585 

and performing manual corrections. 586 

This study effectively resolves a longstanding challenge associated with the insufficiency of reliable water body monitoring 587 

amid severe climatic conditions within the Dawenhe River basin, previously reliant solely on optical satellites. The scope of 588 

remote sensing applications within this agricultural region is broadened, concomitantly refining the accuracy of the water 589 

body and land classification. These outcomes demonstrate the successful application of remote sensing technology in 590 

identifying water bodies within agricultural catchments, constituting a valuable contribution to the development of local 591 

flood control research. Owing to the broad applicability of the methods employed, there is considerable potential for 592 

implementing and replicating this research in different agricultural catchments. In the future, these achievements require 593 

close collaboration between water management authorities to identify and address emerging challenges.  594 

Availability of data and material 595 

Publicly available datasets were analyzed in this study. This project was carried out using the Sentinel products from the 596 

Copernicus Sentinel missions conducted by the European Space Agency (ESA). The ASTER Global Digital Elevation Map 597 
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