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Satellite-derived changes in floodplain productivity and freshwater1

habitats in northern Australia (1991-2019)2

Christopher E. Ndehedehea, Michele. A. Burforda, Ben Stewart-Kostera, Stuart E. Bunna3

aAustralian Rivers Institute and Griffith School of Environment & Science, Griffith University, Nathan,4
Queensland 4111, Australia.5

Abstract6

The ecological communities supported by freshwater habitats and wetlands that persist from7

floodplain inundation generate numerous cultural, recreational and economic values via com-8

mercial fisheries and other human uses of these habitats. However, the alteration of flow9

connectivity, degradation, and disruption of physical processes that sustain different levels10

of organisms (e.g., primary producers) are threats that affect aquatic biodiversity and the11

productivity of these habitats. Therefore, the large scale assessment of freshwater habits for12

proactive water resources planning and the development of climate change mitigation and13

resource management strategies is essential. However, such monitoring and assessment is14

complicated by the inaccessibility of many large wetland systems during times of inundation,15

making in-situ sampling impossible at a time when high levels of aquatic primary production16

are generating food and energy sources for higher order consumers. To understand the physi-17

cal dynamics of aquatic primary producers and freshwater habitats (1991− 2019) during such18

times in a large floodplain river in northern Australia (Gilbert catchment), this study inte-19

grated Landsat-derived modified normalised difference water index and normalised difference20

vegetation index in a classification tree model. Thereafter, key hydrological drivers (rainfall21

and river discharge) of floodplain productivity and connectivity were assessed using a range22

of multivariate techniques. Results show that the floodplain had a high aquatic plant biomass23

during the summer wet season based on the correlation between aquatic biomass accumulation24

(hot spots) and inundation (r = 0.83 @ phase lag < 1 month) during such period. River dis-25

charge (r = 0.68 @ lag=1 month) at downstream Gilbert catchment appear to be a relatively26

stronger indicator of hot spots of floodplain biomass accumulation as opposed to local rainfall27

(r = 0.57 @ lag=3 months). While the downstream discharge explains a significant proportion28

of variability in the leading orthogonal mode of rainfall (r = 0.83), statistical relationships de-29

veloped between discharge/rainfall and the distribution of aquatic primary producers confirm30

∗Corresponding author
Email address: c.ndehedehe@griffith.edu.au (Christopher E. Ndehedehe)Preprint submitted to Ecological Indicators December 24, 2019



that both rivers (flow) and local rainfall are key optimal predictors of inundation and sites of31

primary producers with river flows being a better indicator of the latter. It is therefore argued32

that hydro-meteorological fluctuations will be key constraints on freshwater habitats and the33

growth of primary producers, albeit, human disturbance of flow can impact on floodplain pro-34

ductivity. As illustrated in this study, such constraints are reflected in the spatial patterns35

and changing characteristics (connectivity and spatial heterogeneity) of hot spots of primary36

producers and freshwater habitats (Palustrine, Lacustrine, and riverine ecosystems).37

Keywords: Classification tree, Landsat, Image classification, Floodplain, Macrophytes,38

Aquatic vegetation39

1. Introduction40

Freshwater habitats such as rivers, lakes, streams, floodplain ecosystems, and vegetated41

wetlands are critical environmental resources that provide several ecosystem functions (e.g.,42

Keddy et al., 2009). These freshwater systems and wetlands are highly valued because of their43

prominent roles in water quality improvement, provision of shelter for fish and native wildlife,44

flood water storage, drought relief for wildlife, recreation and tourism, and support for a range45

of terrestrial and aquatic biodiversity (e.g., Ward et al., 2014; Chen et al., 2014b; Tockner46

et al., 2010; Gidley, 2009; Bunn et al., 2006; Ozesmi and Bauer, 2002). In addition to this, they47

most often function as hot spots of biodiversity because of the wide spectrum of complexity48

in the heterogeneity and variations of habitats in space and time (e.g., Ward et al., 2016;49

Bunn et al., 2015; Karim et al., 2012; Tockner et al., 2010; Bunn et al., 2003). Consequently,50

because of these ecological, cultural and economic values and services, wetlands have been51

globally recognised as high prorities for conservation and management (e.g., Midwood and52

Chow-Fraser, 2010). Large-scale assessment of the productivity of these systems is therefore53

crucial to understanding (i) their response to multiple stressors and impacts on ecosystem54

processes and biodiversity (e.g., Davranche et al., 2010; Tockner et al., 2010) and (ii) important55

biogeochemical processes on floodplains, e.g., the interactions of green house gas with the56

atmosphere (e.g., Ward et al., 2014).57

The abundance of higher order organisms (e.g., fish, invertebrates, and waterfowl) and58

aquatic plants (e.g., macrophytes, algae) in these freshwater systems during extreme wet pe-59

riods (characterised by above-normal precipitation) and high flows result in the formation of60

a food web and highly productive habitats (e.g., Kingsford et al., 2014; Gidley, 2009; Bal-61
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combe and Arthington, 2009). However, extreme hydro-climatic (e.g., droughts), human (e.g.,62

construction of dams and development of water infrastructure), and environmental (e.g., pol-63

lution) factors threaten freshwater habitats and affect aquatic biodiversity in streams and64

riverine systems (e.g., Kingsford et al., 2014; Bunn and Arthington, 2002). These existential65

threats are evidence by the global trend of degradation and destruction of floodplain wetland66

ecosystems, alteration of flow connectivity, and disruption of integrated physical processes that67

sustain different levels of organisms (e.g., primary and quaternary producers) who depend on68

these freshwater habitats (e.g., Ward et al., 2013; Davranche et al., 2010; Bunn et al., 2006;69

Bunn and Arthington, 2002).70

The monitoring of floodplain productivity and dynamics in freshwater habitats, be it,71

riverine (e.g., rivers streams), lacustrine (large water holes in low elevation areas) or palus-72

trine (swamps, intermittent floodplain water channels) systems (see, e.g., Ward et al., 2013)73

is therefore required to predict the impacts of hydro-meteorological fluctuations and the con-74

sequences of changes in flow dynamics on floodplain wetland ecosystems. This is essential75

among other things, for proactive water resources planning and the development of climate76

change mitigation and resource management strategies. Such monitoring and assessment is77

complicated by the inaccessibility of many large wetland systems during times of inundation,78

particularly in remote parts of the world. This can make in-situ sampling impossible at a time79

when high levels of aquatic primary production are generating food and energy sources for80

higher order consumers.81

Several studies have highlighted and showcased the merits of optical and multi-mission82

satellite remote sensing techniques as the only viable alternative in large-scale environmental83

monitoring and assessment of natural systems, including floodplain wetlands. These optical84

systems, in addition to satellite gravity methods (e.g., Tapley et al., 2004) have been employed85

in multidisciplinary aspects of remote sensing hydrology and include, inventorying of wetlands86

and mapping of aquatic plants (e.g., Ward et al., 2016; Tockner et al., 2010; Midwood and87

Chow-Fraser, 2010; Ozesmi and Bauer, 2002), assessment of floodplain inundation and con-88

nectivity (e.g., Karim et al., 2018; Ward et al., 2013, 2014; Syvitski et al., 2012; Sakamoto89

et al., 2007), quantifying land-water storage (e.g., Ndehedehe, 2019; Kim et al., 2017; Lee90

et al., 2014; Frappart et al., 2012), monitoring and extraction of surface water in extensive91

floodplains (see, e.g., Tulbure and Broich, 2019; Normandin et al., 2018; Khandelwal et al.,92

2017; Feyisa et al., 2014; Xu, 2006), hydrological controls on surface vegetation (e.g., Nde-93

hedehe et al., 2019b; Chen et al., 2014a), and analyses of extreme events (e.g., Ferreira et al.,94
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2018; Agutu et al., 2017), amongst others. As the threats to water resources are widening95

owing to a broad range of climate and environmental stressors such as land use change and96

agricultural expansion (Tulbure and Broich, 2019), the use of such methods to quantify the97

extent of aquatic primary producers during times of inundation is key to understanding the98

large-scale synergistic impacts of these stressors on floodplains.99

Furthermore, methodological developments in the classification of water bodies from opti-100

cal imageries, e.g., two-band thresholding and multiple-band index, and advances in satellite101

sensors have resulted in (i) an improved flood inundation mapping capability (see, e.g., Feyisa102

et al., 2014; Xu, 2006) and (ii) in the tracking of flood hydrographs and pathways, in addition103

to sedimentation patterns on a different time scales (Syvitski et al., 2012). However, there104

is limited large-scale remote sensing of primary producers centres in freshwater habitats, i.e.,105

riverine, lacustrine, and palustrine systems with high biomass of aquatic plants (e.g., phyto-106

plankton and macrophytes). While medium resolution images (e.g., Landsat) have not been107

fully explored to simultaneously quantify the spatio-temporal dynamics of these primary pro-108

duction centres (hot spots) and floodplain productivity on a large catchment-scale, the lack109

of standard field-based protocols and technological limitations in the mapping of aquatic veg-110

etation have been identified (e.g., Zhao et al., 2013). Moreover, other past studies (see, e.g.,111

Chen et al., 2018; Davranche et al., 2010; Cho et al., 2008) have argued that the overlapping112

spectral profiles of aquatic plants (emergent and floating macrophyte beds) at peak biomass113

and the limitations of the near-infrared wavelength in aquatic vegetation studies are key issues,114

warranting further research.115

The aim of this study therefore, is to quantify historical changes (1991 − 2019) in the116

floodplain primary producer biomass and freshwater habitats of a large floodplain river in117

northern Australia (Figs. 1a-c) by integrating Landsat-derived modified normalised difference118

water index and normalised difference vegetation index in a decision tree framework. The119

specific objectives of this study are to (i) assess historical dynamics in floodplain inundation120

in space and time (ii) map the distribution of hot spots of primary producers in freshwater121

habitats using a classification tree model, and (iii) examine the key hydrological drivers of122

floodplain productivity and connectivity using multivariate techniques (e.g., Preisendorfer,123

1988). Freshwater habitats in most northern Australia catchments are characterised by a wide124

range of turbidities and spectral properties whose surface becomes cluttered with different125

aquatic plants after wet season (e.g., Ward et al., 2014; Faggotter et al., 2013). For this reason,126

most classification algorithms will be restricted in these freshwater systems (e.g., Gidley, 2009)127
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for delineating floodplain inundation and primary production centers.128

2. Study region129

The Gilbert catchment in northern Queensland, Australia (Figs. 1a-b) is one of the main130

river basins of the South gulf region, which has numerous interconnected streams that usually131

lead to high flows and severe flooding on floodplains. The Gilbert catchment covers an area132

of 46,200 km2 and is characterised by strong seasonal rainfall with 93% of rainfall occurring133

during the summer (Waltham et al., 2013). The catchment is hot and semi-arid with high134

evaporation rates (1868 mm annual mean) that exceeds rainfall by a factor of 2.4 to 1, and135

more specifically, 84% of rainfall is lost as evaporation while 13% are converted to streamflow136

(CSIRO, 2013). The upstream catchment is a high-elevation area (Fig. 1a) characterised by137

relatively low rainfall, which gradually increases towards the low-elevation areas of the down-138

stream catchment. Apart from the presence of several river tributaries that receive sufficient139

groundwater inputs to sustain permanent flows in most freshwater bodies, numerous isolated140

turbid waterholes that thrives on seasonal rainfall and flow have been identified (e.g., Waltham141

et al., 2013). These water holes are usually filled by over bank flowing from adjacent rivers142

during extreme flow events and results in the distribution of aquatic plant biomass (Fig. 1c).143

Moreover, earlier reports (e.g., Barberm et al., 2013) indicate the water holes provide refugia144

for a range of fisheries and other aquatic wildlife. The impacts of droughts and extended145

dry spells have significant influence on the spatial patterns of aquatic plant biomass on the146

Gilbert floodplain. This is because during such period several of these discreet waterholes and147

intermittent freshwater bodies usually receive no inflow (Waltham et al., 2013). In addition148

to ecological values, the agricultural assessment of the Gilbert catchment show that crop pro-149

duction can reach 60 million /year if crops are grown to full potential (CSIRO, 2013), thus150

highlighting the economic importance of the region.151

3. Data152

3.1. Remote sensing data153

Historical level 1 terrain corrected (L1T) Landsat 5 thematic mapper (TM) and Landsat154

8 OLI imageries (1991 − 2019) were retrieved from the archives of the United States Geo-155

logical Survey through an online data portal (https://earthexplorer.usgs.gov/). These156

imageries, which have temporal resolution of 16 days (i.e., overpass frequencies) and scene157
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Figure 1: Study region showing the Gilbert catchment in Australia. (a) The Gilbert catchment showing the

topographic distribution around the downstream and upstream Gilbert catchment based on corrected digital

elevation model, (b) the location of the Gilbert catchment in northern Queensland, Australia and, (c) illustration

of the physical dynamics in aquatic primary producer (hot spots) centres under different seasonal conditions

in a freshwater habitat (riverine, lacustrine, and palustrine systems) located south-east of the downstream

catchment. The red arrow is a typical water hole covered with macrophytes (primary producers) as was the

case on the 2nd April 2004. The imageries in (c) were adapted from historical Google-Earth satellite images

and World imagery.

quality of nine were retrieved mostly for the wet seasons (January-March) to assess the phys-158

ical dynamics in freshwater habits and the impacts of hydro-meteorological fluctuation on159

floodplain productivity during the period. However, few scenes covering the dry seasons of160

2009, 2016, and 2018 were also included in the analyses to understand the characteristics of161

floodplain inundation and primary production centers in extreme wet years and other years.162

As with several optical systems, the Landsat scenes covering the Gilbert catchments were af-163

fected by clouds. So, the imageries with cloud cover greater than 28%, especially those that164

affected the floodplain corridors (i.e., along the Gilbert river) were excluded while others were165
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preprocessed using a cloud-removal algorithm described in Section 4.1. There were no cloud-166

free Landsat imageries available for the wet seasons of 2018, so Sentinel-2 image acquired in167

March, covering most downstream sections of the Gilbert catchment was used to fill that gap.168

Further details of the satellite imageries used in this study are indicated in Table 1. We noted169

the years with considerable cloud impacts on wet season satellite images (e.g., 1991, 1998,170

2007, 2009).171

3.2. Precipitation, river discharge, and stream water levels172

The monthly Australian gridded rainfall data used was accessed from the SILOS cli-173

mate database (https://silo.longpaddock.qld.gov.au/gridded-data). This 8-kilometer174

monthly rainfall is the accumulated total rainfall over all days in the given month and cov-175

ers the period between 2000 and 2019. Ground observations of monthly stream water level176

covering the period 2000−2019 were obtained from the Queensland Water Monitoring Informa-177

tion Portal (https://water-monitoring.information.qld.gov.au/). The gauged rainfall178

(1991 − 2019) observed at downstream Gilbert at Rockfields station (ID-917001D; Lat:-18.2;179

Long:142.8; Elev:167.7m) was also used to analyse the impact of local precipitation on flood-180

plain productivity. The water level observed at the same station in Rockfield was used in this181

study as a hydrological indicator to assess the relationship of downstream inundation with182

averaged satellite precipitation over the entire catchment.183

4. Methods184

The methodological framework of this study was based on five steps; data acquisition,185

image preprocessing, classification and segmentation, estimation of floodplain inundation, and186

prediction of primary production centers (Fig. 2).187

4.1. Pre-processing of remote sensing data188

The pre-processing involved two main steps; cloud removal and calibration of the raw digital189

numbers of landsat imageries to surface reflectance. The spectral bands of optical sensors are190

usually affected by clouds, cloud shadows, and snow, necessitating their identification and191

removal before use. The influence of cloud varied between 0 and 28% for the Landsat TM192

and 0 and 12% for the Landsat 8 OLI imageries used in this study (Table 1). To this end,193

the Fmask algorithm (Zhu et al., 2015) was applied to flag and remove the presence of all194

clouds and shadows from the multi-band imagery. To calibrate each landsat scene to standard195
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Figure 2: Schematic representation of the methodological framework used in this study.

surface reflectance, the QUick Atmospheric Correction Code (QUAC, Bernstein et al., 2005)196

module in ENVI 5.5 (Exelis Visual Information Solutions) was employed. QUAC performs197

atmospheric correction on multi-band imageries in a more sophisticated manner (e.g., the use of198

in-scene approach that relies on information about sensor band locations and their radiometric199

calibration) and tend to show more merits as opposed to other physics-based methods (see,200

Bernstein et al., 2005, 2012). Apart from computational efficiency and speed, one key merit of201

QUAC is its approach to aerosol optical depth retrieval, which does not require the presence of202

dark pixels (see, Bernstein et al., 2005). The output from QUAC are atmospherically-corrected203

multi-temporal imageries with similar radiometric scale, regardless of their image acquisition204

dates, which are usually accompanied by variations in solar irradiance and sensor geometry205

among other parameters (e.g., Chander et al., 2009). A visual inspection of the False Color206

Combination (FCC) of these imageries for the target variable (water) in the Gilbert catchment207

show improved visibility as opposed to other image normalisation approaches and relative208

atmospheric correction methods (e.g., Song et al., 2001).209

4.2. Image classification and segmentation210

4.2.1. Floodplain inundation mapping211

Based on the expert knowledge of the target variables and field reconnaissance by the212

project team, visual criteria of the aerial footage was used as a strategic first step to identify the213
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spatial distribution of freshwater bodies in the catchment. This criteria relied on a false colour214

composition of the red and two infra red bands of landsat data (e.g, Bands 573 for TM) because215

of the unique spectral property of surface water and its reflectance in these wavelengths.216

Thereafter, spatio-temporal patterns of floodplain inundation and water bodies were quantified217

by applying the widely used modified normalised difference water index (MNDWI, Xu, 2006),218

which combines the green (G) and mid-infra red (MIR) bands as MNDWI = bG−bMIR/bG+219

bMIR. There have been several methodological developments around the automated extraction220

of surface water bodies (e.g., Fisher et al., 2016; Feyisa et al., 2014), which are usually compared221

against the MNDWI. The latter nonetheless, remains an ideal, mainstream automated water222

extraction metric because of its accuracy, computational efficiency, and simplicity, especially in223

threshold identification and definition (ranges from 0-1 for water-related pixels). Supervised224

and unsupervised algorithms showed limitations because of the diversity in landscapes and225

the range of turbidities that characterise the Gilbert floodplain rivers and plethora of discrete226

waterholes. Through segmentation, all waterbodies and inundated areas were extracted and227

aggregated before estimating their spatial extents.228

4.2.2. Identifying hotspots of primary producers229

In the characterisation of floating, emergent, and submerged vegetation, it has been argued230

that rule-based approach such as decision tree could give better results unlike conventional231

methods (Ozesmi and Bauer, 2002). Consequently, the application of decision trees in the232

mapping of canopy-forming aquatic vegetation is gradually emerging (Midwood and Chow-233

Fraser, 2010; Davranche et al., 2010; Zhao et al., 2013). In this study, the distribution of234

hot spots of primary producers (inundated areas covered with different aquatic species such235

as macrophytes) in the catchment were mapped by combining the MDNWI and NDVI (nor-236

malised difference vegetation index) in a decision tree framework. The spectral properties of237

the red (R) and near-infred (NIR) bands of landsat, which show relatively low reflectance and238

high reflectance, respectively were used to estimate NDVI (i.e., NDV I = bNIR−bR/bNIR+bR)239

in each of the landsat image. The normalisation of each atmospherically corrected imagery240

enabled the derivation of catchment-specific quantitative thresholds from NDVI and MNDWI,241

which were applied in our classification tree model. For instance, the water (e.g., freshwater242

habitats, floods) isolation phase in this study relied on relied on water-related pixels on the243

catchment with MNDWI values greater than 0 (Xu, 2006). Whereas the normalisation of244

calibrated imageries ensures that external factors like water quality difference do not interfere245
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with the classification stability (e.g., Zhao et al., 2012), several species of floating, emergent,246

and aquatic plants are known to have mean NDVI values ranging from 0.40− 0.82 (Cho et al.,247

2008). So, the threshold definition for pixels associated with aquatic plants in our classifica-248

tion tree model was NDVI values greater than 0.20. The combination of these thresholds for249

MNDWI and NDVI in the CT model resulted in the identification of aquatic vegetation within250

and around freshwater habitats over the Gilbert catchment.251

4.2.3. Model validation and accuracy assessment252

To minimize the need for field campaigns and validation whilst making it an accurate253

general-purpose application suitable for other floodplain wetlands, our classification tree model254

is compared to a physically-based spectral classification algorithm (Kruse et al., 1993) as sum-255

marised in Fig. 2. The output from the classification tree (CT) was compared with spectral256

angle mapper (SAM), a pixel-based classification algorithm that depends on the spectral sim-257

ilarity between two spectra (Kruse et al., 1993). So, to assess the efficacy of physically-based258

spectral classification algorithm, several endmember spectra (i.e., spectral profiles) in the259

catchment were collected from hot spots of primary production and freshwater bodies using260

the Google Earth image as a reference. The classification of hot spots and inundation from261

the SAM (ten different endmember spectra were collected) and CT model based on the April262

2005 landsat data were subsequently compared with pure pixel validation data from Google263

Earth imageries. Notably, image-to-image co-registration of Google Earth imagery and land-264

sat image (23rd April, 2005) based on several control points was employed for the validation265

sites. The geo-referenced Google Earth data was then used as reference map for accuracy266

assessment based on kappa statistics (e.g., Congalton and Green, 2009).267

4.3. Multivariate analysis of hydrological indicators268

– Identifying dominant patterns of rainfall269

The multivariate analyses of rainfall over the Gilbert catchment was achieved with the270

use of principal component analysis (PCA, Preisendorfer, 1988). The Bartlett’s test271

statistics (Snedecor and Cochran, 1989) was first employed to identify the statistically272

significant orthogonal modes of rainfall variability over the catchment. The rainfall grids273

were masked over the Gilbert catchment and statistically decomposed using the PCA274

technique. Consider a centered matrix of rainfall grids (i.e., after removing the mean)275

masked over the Gilbert catchment as X= [x(pk, t)] where pk is spatial locations; k = 1,276
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2, . . ., nx, which are the number of spatial locations for X, and t is the monthly time277

step from 2000 − 2019. The statistical decomposition of rainfall grids into spatial and278

temporal patterns using this method is given as (e.g., Ndehedehe et al., 2019a),279

X(t) =

n ∑
k=1

a(k)pk (1)

where a(k)(t) are the temporal variations also called expansion coefficients (or sometimes280

standardised scores) and pk are the corresponding spatial maps (empirical orthogonal281

functions-EOF loadings). The dominant orthogonal modes of rainfall (a combination of282

the temporal and spatial patterns) are the first few pairs obtained from the PCA method.283

Each principal component represents a fraction of the total variation that is proportional284

to the amount of covariance in time explained by each eigenvector (spatial loadings). The285

total variance accounted for by each orthogonal mode was computed similar to previous286

studies (e.g., Ndehedehe et al., 2019a). By reducing the number of orthogonal modes,287

the dominant patterns of rainfall variability associated with floodplain productivity in288

the catchment were identified.289

– Cross-correlograms, regression, and estimation of mutual information290

Cross-correlograms were employed to examine the relationship and similarity between291

hydrological indicators (rainfall, river discharge, and water level) and floodplain produc-292

tivity whilst also estimating their corresponding lags (i.e., the number of time periods293

that separate the two variables). In addition to the use of linear regression to assess294

relationships, Mutual Information (MI) criteria (e.g., Moon et al., 1995; Sharma, 2000)295

was employed as a more reliable measure of statistical dependence between two variables296

because of its merits over other statistical measures that rely on residual sum of squares.297

Whereas MI is useful in understanding the dependence between two time series that298

appear to be related or independent, one key advantage of this technique is that it mea-299

sures more than linear dependence (e.g., Brillinger, 2004; Moon et al., 1995). This could300

be the case with either rainfall or flow with aquatic primary production in the Gilbert301

catchment, hence the suitability of the MI criteria. If a set of two variables (e.g., river302

discharge and hot spots) are denoted as X = x1, x2, x3, ..., xn and Y = y1, y2, y3, ..., yn303

where n is the sampling length, the MI between these variables for the non-parametric304

case is defined as (e.g., Brillinger, 2004; Moon et al., 1995),305

MIx,y =

∫ ∫
k(x, y)p(x, y) log p(x, y)

pX(x)pY (y)
dxdy, (2)
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Table 1: Summary of the remote sensing data used in this study to generate inundation and vegetation metrics

used in the classification tree.
Data Sensor Resolution cloud coverage (%) Period Data type Swath width (km). Paths/Rows Providers

Spatial (m) Temporal (days) Spectral (bands)

Landsat 5 TM 30 16 7 0-28 1991-2010 Level 1 TP 180 98/72 USGS

Landsat 8 OLI & TIRS 30 16 11 0-12 2014-2019 Level 1TP 180 98/72 USGS

Sentinel-1 S2A & S2B 10, 20, 60 5-10 13 0.1 2018 Level 1C 290 ESA

Table 2: Summary of accuracy assessment parameters (overall accuracy, kappa coefficients, commission and

omission errors) for open surface water mapping and prediction of hot spots of primary production in the two

reference sites at the Gilbert catchment using NDVI and MNDWI in classification tree framework.

Reference location Overall accuracy (%) Kappa (%) Producers accuracy (%) User accuracy (%)
Omission

error (%)

Commission

error (%)

Open water Hot spot Open water Hot spot Open water Hot spots Open water Hot spots

Site 1 94.50 89.10 95.24 93.55 100.00 93.55 4.70 6.50 0.00 6.50

Site 2 94.60 74.0 97.01 75.00 98.48 100.00 2.99 25.0 1.52 0.00

where p(x, y) is the probability density function and k is a kernel function that is aimed306

at improving asymptotic properties (e.g., Brillinger, 2004). The kernel density function307

that was plugged into Eqn. 2 is the multivariate Gaussian probability density function308

and follows the formulation in Moon et al. (1995). For comparability, the MI for bi-309

variate samples (e.g., rainfall vs inundation and discharge vs extent of aquatic primary310

production, etc.) were scaled similar to cross-correlation coefficients.311

5. Results312

5.1. Classification trees versus endmember spectra collections313

The classification tree (CT) model extracted 95353 pixels (0.97%) as hot spots of primary314

production and 51279 pixels (0.52%) as open water in the validation image used. The endmem-315

ber spectra profiles (Figs. 3a and b) used in the SAM algorithm of the same validation image316

resulted in the classification of 37902 pixels as hot spots of primary production while 20894317

pixels were extracted as open water. From the visual assessment of spatial patterns (Figs. 3c318

and f) and the separability of freshwater habitats (i.e., for riverine and lacustrine systems)319

and hot spots of primary production (Figs. 3d and i), the CT model performed better than320

the SAM algorithm. For instance, the river systems extracted by our CT model are uniform321

and well connected (Fig. 3d) as opposed to the SAM model, which appear to be patchy and322

sketchy with several disconnections along the river channel (Fig. 3g). Within the same river323

system or water channels, be it inland or coastal waters, there is a significant difference in the324
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Figure 3: Separability of freshwater habitats and hot spots of primary production. (a-b) Spectral profiles for

land cover states associated with aquatic ecosystems and water bodies with a range of spectral properties in the

Gilbert catchment, including the two reference locations. These endmember spectra (signature profiles) were

collected from calibrated Landsat imagery (21st April 2005) for the reference locations and other randomly

selected sites (include areas near the coast) and used in the Spectral Angle Mapper supervised algorithm. (c-e)

and (f-h) are raster maps from classification tree and endmember collections of freshwater habitats (blue) and

hot spots of primary production (green), respectively.

physical properties of water (Figs. 3a and b), making the use of SAM algorithm in large-scale325

floodplain productivity mapping more complex and challenging. To improve the performance326

of SAM in Figs. 3g and h, this would require rigourous collection of numerous endmember327

spectra in the Gilbert catchment. But the rule-based approach simplifies the classification of328

these freshwater ecosystems. A further validation step for the CT model used for the mapping329

of floodplain inundation and hot spots was achieved using the Google Earth image of the330

same month as the landsat TM image. Based on a first-order polynomial transformation, the331

geo-referenced accuracy of the referenced data showed RMSEs of 0.013 and 1.24 for the first332

and second spatial locations, respectively. Differences encountered in the process of image-333

to-map registration before kappa analysis can contribute to the overall accuracies and kappa334

coefficients. The latter is relatively lower in the second location (74%) compared to the first335
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Figure 4: Efficacy of classification tree framework in assessing floodplain inundation and mapping freshwater

habitats in the Gilbert catchment. The vectorized polygons in (a), (c), (e), (g), (i), and (k) were derived from

the combination of NDVI and MNDWI in a classification tree while (b), (d), (f), (h), (j), and (l) are spectral

angle mapper classification using a range of endmeber spectra collection. The pairs (a)/(b), (e/f), (i/j) are some

illustrations highlighting the performance of classification tree and spectral g mapper for Riverine, Lacustrine,

and Palustrine systems, respectively. Satellite imageries in (c-d) and (g-h) are from Google Earth while others

are 0.5 m spatial resolution World View-2 data archived by Digital Globe and were captured in April 2015.

location with kappa value of 89.1% (Table 2). While the geo-referenced accuracy of the ref-336

erenced image in the second location may contribute to this kappa value and the entire error337

matrix as already echoed in the literature (e.g., Congalton and Green, 2009), generally the338

kappa statistics, including all assessment parameters indicate that the CT model performed339

considerably well (Table 2). The efficacy of the CT framework over the SAM algorithm in340

assessing floodplain productivity is further illustrated for other freshwater habitats using the341

post processed classification outputs, i.e., vectorized layers overlayed on referenced imageries342

and 0.4 m World imagery (Figs. 4a-l). The extracted Lacustrine (Figs. 4e and f) and Palustrine343

(Figs. 4i and j) systems from both methods show significant differences with SAM showing344
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some patches and disconnections as earlier highlighted contrary to the CT model. These same345

attributes are also evident in the zoomed-in floodplain rivers and predicted hotspots of primary346

production (Figs. 4c-d and g-h).

Figure 5: Spatial patterns of Landsat-derived wet season (January, February and March) floodplain inundation

over the Gilbert catchment for selected years based on the MNDWI. Owing to the lack of cloud-free Landsat

data for wet season in 2018, available cloud-free Sentinel 1 data covering most segments of downstream Gilbert

catchment was used to estimate inundation for March 2018.

Figure 6: Comparing floodplain inundation during dry season (e.g., April, May and July) for years with high

magnitude flood events and relatively dry periods.
347
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Table 3: Association of local rainfall and observed discharge at downstream Gilbert with estimated extents of

hot spots (HS) of primary production and inundation (Inund) using Mutual Information criterion and maximum

(max) correlation. The relationship between HS and inundation extent is also indicated.
Criteria Rainfall vs HS Rainfall vs Inund Flow (mean) vs HS Flow (max) vs HS Flow (mean) vs Inund Flow (max) vs Inund HS vs Inund

Mutual Information 0.46 0.57 0.32 0.36 0.56 0.55 0.87

Correlation (max) 0.57 0.71 0.68 0.65 0.61 0.66 0.83

5.2. Floodplain inundation and hotspots of primary production348

5.2.1. Floodplain dynamics and seasonal inundation349

The spatial patterns of inter-annual floodplain inundation during wet season over the down-350

stream Gilbert catchment showed marked differences (Fig. 5). From the historical cloud-free351

imageries retrieved from the landsat archives, the period between 1998 and 2010 are the wettest352

since 1991 while the years between 1993 and 1997 were relatively dry (Fig. 5, cf. Fig. 7). The353

magnitude of the 1998 flood event was a considerable deviation from this previous dry peri-354

ods or spells (excluding 1991) and led to about 1144 km2 inundation extent. However, the355

hydrological records (discharge and water levels) of the downstream Gilbert catchment indi-356

cate 2009 has been the wettest year in more than two decades. Although about 26% of the357

January 2009 landsat imagery was affected by cloud (mostly around floodplains), inundation358

extent recovered within the main floodplain along the Gilbert river was about 708 km2. The359

floodplain remained highly productive in March 2009, resulting in an inundation extent of360

approximately 940 km2. Moreover, it seems the impacts of extreme wet season flood have361

considerable influence on the floodplain productivity of dry season within the same year. For362

example, comparing the floodplain inundation in May and July of 2009 and 2016, years with363

different levels of flood magnitude, 2009 was relatively more productive even in dry season364

unlike 2016 (Fig. 6). Similarly, April and July 2018 inundation was not very different given365

that the wet season of the same year was relatively wetter than 2016 (Fig. 6). Except for the366

2016 − 2018 period (though rather wet, there was no cloud-free image for 2017 wet season),367

2014− 2019 is generally much similar to the dry cycles of the mid-1990s with 2015 being the368

driest (26.7 km2) (Fig. 5, cf. Fig. 7).369

Rainfall seasonality is a critical indicator of the spatial distribution of floodplain inundation370

in the Gilbert downstream catchment. For example, floodplain inundation extent as at 31st371

of March 2009 was approximately 940 km2. By 21st July of the same year when there is372

usually little or no rainfall, estimated inundation extent was 108 km2 (Fig. 6). Similarly,373

about 326 km2 spatial inundation extent was estimated on 18th March 2016. This inundation374
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extent receded to approximately 25 km2 by 24th July 2016. Notably, the change in seasonal375

floodplain inundation have impact on the distribution of primary producers both in the wet376

and dry seasons (Figs. 6-8). For example, the predicted extent of primary production reduced377

from 25 km2 in early April 2018 to about 3 km2 in mid-July of 2018. The spread of hot spots378

of primary producers were also revealed in their transitional patterns during wet seasons. In379

2009 for instance, hot spot extent was about 44 km2 as at January 26th (though this month’s380

imagery was significantly affected by cloud) because of the heavy flood and standing water on381

the floodplain. By 31st March, 2009 rainfall and discharge had reduced significantly, resulting382

in extensive evolutions of hot spots of primary production (859 km2) (Fig. 7). These same383

patterns were observed in other imageries, including those of 2010 (13th January-265 km2;384

18th March-454 km2), 2016 (14th January-4 km2; 18th March-79 km2), and 2019 when the385

estimated extents of hot spots rose from about 5 km2 in January to about 11 km2 in mid-386

March.387

Figure 7: Historical patterns of wet season floodplain inundation and predicted hot spots of primary production

derived from a combination of NDVI and MNDWI. These vegetation and inundation metrics were employed in

a decision tree framework to estimate hot spots of primary production and aquatic ecosystems.

5.2.2. Spatial and temporal distribution of floodplain productivity388

The temporal patterns of the predicted hot spots of primary producers for the 1991 −389

2019 period are embedded in Fig. 7. Except for overwhelming flood periods (e.g., February390

1991, January 1998, January 2009, and March 2018), these patterns show that there is a391

reasonable agreement between floodplain inundation and the evolution of primary production392

(r = 0.73). While mutual information (MI) and maximum correlation between extents in hot393

spots of primary production and inundation are considerably higher (r = 0.83 and MI = 0.87,394
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Figure 8: Raster maps showing spatial patterns of hot spots of primary production for years with flood events

and relatively dry years.

respectively) with a phase lag less than one month, the distribution of hot spots show spatial395

heterogeneity over the Gilbert catchment (Fig. 8). Spatially, the year 2019 show less primary396

production with spatial extents of approximately 11 km2 each in the months of January and397

February unlike 2005 (Figs. 8, cf. Fig. 7). However, the drought in 2015 affected productivity398

on the floodplain and showed the lowest extent (about 2 km2) since 1997, i.e., based on the399

available imageries (Fig. 7). Spatial patterns of productivity (Fig. 8) in dry seasons of extreme400

wet years (e.g., July 2009) are significantly different from dry seasons of moderately wet years401

(e.g., July 2016).402

On a more localised scale, the influence of floodplain inundation and impacts on the spatial403

patterns of aquatic habitats, especially water holes and primary production centers are indi-404

cated (Figs. 9a-j). The biomass accumulation of aquatic canopy-covering plants in water holes405

(Fig. 9a) and the persistence of similar freshwater habitats depend on over bank spilling of406

floodplain rivers into these freshwater domains during extreme or severe wet periods (Figs. 9d,407

f-g, and i). The connectivity of these rivers with slightly isolated water holes and other in-408

termittent water bodies can last up to 4 months and more during such extreme wet periods409

(Figs. 9f-g). At the start of the wet season, they exist independently and get connected as the410

wet season progresses or depending on the intensity and magnitude of flood (Figs. 9c-d and h-411
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i), and later disconnect at the end of the wet season (Fig. 9e). Note that Fig. 9j does not imply412

the disappearance of the floodplain river but rather implies a contraction of the river beyond413

what the 30 m pixel size of landsat can capture. This contraction could be caused by change in414

precipitation patterns, which in turn influence flow variability and subsequently floodplain in-415

undation patterns. Further, the spatial patterns of floodplains in the riverine systems towards

Figure 9: Seasonal floodplain inundation and impacts on the physical dynamics of aquatic habitats and primary

production centers. (a) Freshwater habitats showing intermittent floodplain water bodies in downstream Gilbert

catchment (red arrow is a typical water hole covered with macrophytes-hot spot of primary production). (b-j)

indicate the changing patterns of inundation and primary production in these freshwater habitats. The high-

resolution satellite imagery in (a) is taken from Google Earth and was captured in April 2004 while others were

taken in May 2015.
416

the end of wet season (March ending) also show interesting patterns (Figs. 10a-j). As the dry417

season approaches, some tributaries of the Gilbert river remain disconnected in relatively dry418

years with no significant floods (Fig. 10a-c) while the riverine systems in wet years remain419

connected with some wet years having excessive flood waters along the floodplain rivers as was420

the case in 2009 and 2018 (Fig. 10d, g, and i-j).421

5.3. Impacts of rainfall variability on floodplain productivity422

The downstream monthly total rainfall and river discharge did not appear to be directly423

related with the estimated extent of hot spots of primary producers (Figs. 11a-c) unlike flood-424

plain inundation (Figs. 11d-e). However, from the cross-correlograms and mutual information425
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Figure 10: Illustration of the spatial dynamics of floodplains in the riverine systems towards the end of wet

seasons using available Landsat imageries. (a)-(j) show the inundation patterns (temporal and spatial) of the

lower Gilbert river located downstream and their connectivity to the tributaries in March ending.

(Table 3), rainfall was moderately associated with predicted extents of primary production426

(Figs. 11 g and j), indicating peak correlation of 0.57 at three months phase lag while the427

rainfall-floodplain inundation relationship shows a maximum correlation of 0.71 at zero phase428

lag. Although a cause and effect relationship is expected, preceding rainfall in the downstream429

or upstream (conveyed through discharge) catchment drives the productivity of the catchment.430

In this regard, similar to rainfall, we also found a linear relationship between discharge and431

floodplain inundation (Figs. 11e) but not with hot spots. That is, correlation (r) of hot spots432

with rainfall (r = −0.21) and mean discharge (r = −0.13) are negative, suggesting poor asso-433

ciations contrary to the rainfall-inundation (r = 0.36) and discharge-inundation relationships434

(r = 0.39). However, the mean and maximum river discharge observations of the downstream435

catchment showed linear associations (maximum correlations r = 0.61 and r = 0.66, respec-436
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Figure 11: Correlation of downstream wet season rainfall (monthly totals) and flow with floodplain productivity

during the 1995−2019 period. The relationship of total monthly rainfall amounts with predicted extents of hot

spots of primary producers and total inundation extent are indicated in (a)-(e). (f-k) Are their corresponding

cross-correlograms during the same period with lags indicated in months. (f and i) Are the cross-correlograms

of observed maximum discharge at downstream catchment with floodplain inundation and hot spot while (l)

is the cross-correlogram between floodplain inundation and hot spot. Periods corresponding to Fig. 7 with

missing total rainfall amounts (30/03/1997, 1/03/2004, 06/01/2019, and 23/02/2019) and discharge have been

excluded in the analyses.

tively) with floodplain inundation extent at phase lags less than one month and (Figs. 11k and437

f). As opposed to rainfall, relatively higher peak correlations between discharge (r = 0.68 and438

r = 0.65 for mean and maximum discharge observations, respectively) and hot spots of primary439

production were observed and indicated one month phase lag (Figs. 11h and i). Apparently,440

the maximum observed association between rainfall and hot spots is relatively lower than the441

discharge-hot spots relationship. While other biophysical factors could promote growth of442

aquatic primary producers, it is also obvious that the spread of hot spots is strongly tied to443

the presence of water on the floodplain (Fig. 11l). The relationship of estimated extents of444

aquatic primary production with local rainfall and discharge at downstream Gilbert as identi-445

fied using the mutual information criteria (Table 3) further confirm that rainfall and discharge446

are key optimal predictors of floodplain productivity.447

There are two orthogonal modes of rainfall in the Gilbert catchment that drives the vari-448

ability in floodplain inundation. The first mode highlights the changes in annual rainfall and449
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Figure 12: Spatio-temporal rainfall variability over the Gilbert catchment (2000 − 2019). The EOFs (left) are

loadings showing spatial patterns of precipitation (mm) while the corresponding principal components (right)

are temporal variations, which are normalised using their standard deviation to be unitless. Averaged monthly

rainfall values over each grid in the catchment are jointly derived from the principal components and spatial

loadings (maps). The variances (in percentages) accounted for by each orthogonal mode are also indicated.

accounts for approximately 90% of the total variability while the second mode is a short term450

seasonal signal that accounts for about 4% of the total variability (Fig. 12). The leading rainfall451

mode observed over Gilbert has strong EOF loadings in downstream Gilbert (EOF-1, Fig. 12).452

The corresponding temporal patterns (PC-1, Fig. 12) associated with spatial patterns indicate453

2009 had the highest amount of annual rainfall and sufficiently explains the inter-annual vari-454

ability of floodplain inundation in this downstream catchment. These rainfall amounts were455

very consistent with the stream water levels and discharge (maximum discharge recorded was456

more than 6300 m3/s) of the downstream Gilbert (Supporting information, S1). However,457

the short term fluctuations in rainfall (EOF-2/PC-2, Fig. 12) contribute significantly to the458

seasonal variability in floodplain productivity. For the downstream catchment (cf. Fig. 1a)459

such years include, e.g., 2007, 2012, 2014, 2017 while the upstream catchments had marked460

fluctuations, e.g., in 2002, 2005, and 2007 (PC-2, Fig. 12). The increased alimentation of the461

floodplain and the connectivity of freshwater habits are somewhat sustained by these short462

term seasonal rainfall variations.463

Overall, averaged rainfall over the Gilbert catchment show significant associations with464

observed water level variations at the downstream region (Fig. 13). Be it averaged wet sea-465

son rainfall or monthly rainfall deviations (after removing the mean), its association with466
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monthly wet season water level (r = 0.83) or maximum monthly water level (r = 0.87) at the467

downstream catchment is considerably high and significant (Fig. 13a-b). Even the monthly468

departures (Fig. 13c) of averaged wet season Gilbert rainfall is strongly associated with wet469

season stream water levels (r = 0.96). Moreover, the leading rainfall mode over Gilbert catch-470

ment (PC-1, Fig. 12) explained a significant high proportion of observed discharge (r = 0.83)471

(Fig. 13d), confirming the contributions of high elevation upstream catchment (cf. Fig. 1a)472

to downstream floodplain productivity. For example, except for 2002, which was not anal-473

ysed, the period between 2007 and 2013 show strong deviations in water levels, rainfall, and474

discharge (Fig. 13a-b) and coincides with periods with increased floodplain inundation extent475

and evolution of hot spots of primary production (Fig. 7). Indeed, hydrological changes have476

influence on the seasonal and inter-annual characteristics of floodplain inundation, which in477

turn impacts the connectivity of freshwater habitats (Figs. 14a-i).478

Figure 13: Relationship between averaged rainfall masked over the Gilbert catchment and stream water levels

during the 2000-2019 period. (a) Monthly anomalies (i.e., after removing the mean) in observed mean values

of stream water level and averaged rainfall over the Gilbert for the wet seasons (January-March) only. (b)

Deviations in monthly (all time steps) maximum water level and rainfall, (c) cumulative departures of wet

season rainfall and water level, and (d) relationship between leading rainfall mode (PC-1, Fig. 12) over the

entire Gilbert and observed discharge downstream Gilbert catchment.

6. Discussion479

6.1. Spectral separability and optical differences of aquatic habitats in wet-dry tropics480

The properties of water can be affected by algal blooms, tidal cycles, sediment inputs481

and reflectance from depth and bottom (e.g., Fisher et al., 2016; Tulbure et al., 2016). While482
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Figure 14: The changing characteristics of inundation and impact on the connectivity of freshwater habitats.

(a-f) Show the characteristics of inundation in riverine systems and the distribution of hot spots of primary

producers while (g-i) are illustrations of the productivity and connectivity of Palustrine systems for January

2004, 2016, and 2019. The background high-resolution satellite imagery is that of Digital Globe captured in

May 2015.

waterbodies in wet-dry tropics are characterised by a range of turbidities and land cover states,483

the abundance of floodplain macrophytes and other forms of epiphytic algae within the vicinity484

of some of these freshwater habitats in northern Australia have been documented (e.g., Ward485

et al., 2016). In addition to the apparent presence of algae in larger waterholes in Australian486

inland floodplains, these waterholes are also highly turbid (e.g., Faggotter et al., 2013; Bunn487

et al., 2003). The range of turbidities in optically-different freshwater bodies over the Gilbert488

catchment is evident in their endmember spectra profiles. On the one hand, open water features489

in locations with aquatic vegetation have different spectral properties and reflectance compared490

with other open water channels. On the other hand, the spectral characteristics of inland and491

coastal waters within the same river channel were significantly different. For this reason, there492

were considerable morphological differences in the riverine systems classified by using these493
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endmember spectra collections in the spectral angle mapper algorithm (Figs. 3g). Compared494

with this supervised algorithm, the classification tree model gave better results in terms of495

the extraction of these riverine systems and hot spots of primary production (Figs. 3d and496

g and 4). Arguably, erosion, pollution, and several other landscape processes could alter the497

spectral composition of fluxes within these freshwater habitats, and can complicate the spectral498

separability of these systems. Such complication arises because the unique spectral property of499

water bodies are compromised by these factors, resulting in different levels of turbidities. This500

makes most supervised and unsupervised classification algorithms unsuitable for the mapping501

of aquatic habits and primary production centers (see, Gidley, 2009). Physically-based spectral502

techniques such as the spectral angle mapper have demonstrated this weakness. Rule-based503

approaches, as demonstrated in this study, are therefore emerging as reliable alternatives504

over traditional methods for the assessment of floodplain wetlands and mapping the spatial505

distribution of aquatic vegetation (e.g., Ward et al., 2014; Zhao et al., 2013; Davranche et al.,506

2010; Ozesmi and Bauer, 2002).507

6.2. Dynamics in tropical floodplains: climate change or human interventions508

Changes in tropical floodplains are expected to be driven by inter-annual or seasonal vari-509

ation in precipitation. These variations in precipitation could sometimes be triggered by510

multi-scale climate modes and other important processes of inter-annual variability such as511

the El-Niño Southern Oscillation (see, e.g., Ndehedehe et al., 2019a, 2017; Linage et al., 2013;512

Phillips et al., 2012). Generally, the above-average precipitation induced by these multi-scale513

climate oscillations influence local hydrology (e.g., flow dynamics) and result in considerable514

amplitudes of land water storage in highly productive freshwater ecosystems (e.g., Ndehedehe515

and Ferreira, 2019). For other tropical systems or wet-dry tropics nonetheless, it may induce516

high amount of floods on floodplains and freshwater habitats. As highlighted in this study for517

the period between 1991 and 2019 in the Gilbert catchment, the frequency and intensity of518

these high-magnitude floods and/or seasonal floodplain inundation could vary within a decade.519

Strong seasonality in rainfall is a well known climate feature in wet-dry tropical savanna re-520

gions. This usually results in short wet seasons that are immediately followed by limited river521

flows or sometimes none (e.g., Ward et al., 2013). This study confirms that increased vari-522

ability in annual rainfall of wet-dry tropical areas of Australia will apparently translate into523

strong dynamics in flow (Fig. 13d). But the influence of rainfall seasonality in the variation of524

predicted hot spots of primary producers and floodplain inundation in the Gilbert downstream525
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catchment is also noted. However, land use change/land cover change, particularly irrigated526

agriculture may increase water demand (e.g., Tulbure and Broich, 2019), and other drivers of527

streamflow characteristics. These drivers, e.g., soil property, topography, and dryness index,528

which are scale and region dependent (Trancoso et al., 2017) are key factors that could im-529

pact on the rainfall-flow interaction in the Gilbert catchment, especially river flow, which may530

convey nutrients that drive primary production.531

The knowledge of climate change as a concept is increasing but it likely impacts, for ex-532

ample, on freshwater ecosystems are still poorly understood. Some pioneering studies (e.g.,533

Mulholland et al., 1997; Bazzaz, 1990) have documented the influence of increasing greenhouse534

gas concentrations and global warming on the earth’s energy budget and natural ecosystems.535

In the freshwater ecosystems of the south-eastern United States and the Gulf coast of Mexico,536

for example, climate change has been shown to have ecological consequences, including, rise in537

the rates of primary production, loss of organisms during strong flushing events in streams and538

wetlands, amongst several other effects (see, Mulholland et al., 1997). Unfortunately, the im-539

pacts of human-induced climate change is expected to exacerbate, resulting in the acceleration540

of the water cycle and other devastating effects on natural ecosystems, including wetlands,541

freshwater habitats, and species richness. While repercussions resulting from the alteration of542

flow regimes on floodplain wetland ecosystems have been detailed (e.g., Bunn and Arthington,543

2002), results in this study have shown that rivers, especially in wet-dry tropical savannas544

with similar topographic layout (Fig. 1a) and rainfall distribution (Fig. 12) could serve as key545

indicators of floodplain productivity. This argument is further underpinned by the fact that546

the biota in the wet dry tropics are highly adapted to variable flow conditions (Kingsford et al.,547

2014).548

Indeed, hydro-meteorological fluctuations through changes in climate play critical roles in549

the observed dynamics of the downstream Gilbert floodplain. The argument for this is two550

fold. First, the stream water levels (maximum and monthly show correlations of 0.87 and 0.83,551

respectively with rainfall) of the downstream catchment and their cumulative departures (r =552

0.96) show considerable agreement with averaged rainfall over the entire Gilbert catchment.553

This also implies that changes in rainfall (i.e., decline or increase) over Gilbert will impact554

stream water levels and floodplain inundation in general. This applies to river flow and has555

been demonstrated for 2009 (Supporting information, S1), the wettest period on record in556

over two decades. Second, the leading rainfall mode localised over the downstream catchment557

(PC-1, Fig. 12) was associated with observed river discharge (r = 0.83 or R2 = 68%) and558
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stream water levels (r = 0.68 or R2 = 47%) at Gilbert downstream. Moreover, the gauge559

rainfall records of downstream Gilbert indicate that variations in floodplain inundation are560

also induced by the local rainfall amounts of previous months. We found this phenomenon561

to be true also for wet season discharge, for example in March 2005, 2009, and 2010. While562

taking note of probable uncertainties in the estimated extents of hot spots due to impact of563

cloud, the flow-hot spot relationship (r = 0.68 at one month lag) of the Gilbert catchment,564

is obviously moderately higher than the local rainfall-hot spot association (r = 0.57 at three565

months lag). This result is consistent with earlier reports on the perceived influence of flow on566

aquatic biodiversity (e.g., Bunn et al., 2006) and is also crucial for further discussions on the567

impacts of flow alterations on the productivity of floodplain rivers. Generally, the evidence568

of this composite influence of downstream rainfall and flow on the dynamics of floodplain569

productivity in downstream Gilbert underscores the role of upstream catchment in driving570

the downstream floodplain inundation and primary production. In the event of major water571

resources development along the upstream floodplains or change in government water-related572

policies, we argue that such developments could amplify flow variability, resulting in significant573

impacts on freshwater habits and hot spots of primary producers.574

6.3. Freshwater needs for the sustainability of floodplain productivity and aquatic biodiversity575

A global scale simulation of the impacts of climate change on freshwater ecosystems high-576

lights the important roles of climate and water infrastructures on ecologically relevant river577

flow characteristics, arguing that by 2050 climate change will have more impact on river flow578

alteration compared with dam construction (Döll and Zhang, 2010). Emerging economies who579

depend on hydro-power suffer shortages or lack of electricity during extreme drought periods,580

which impacts on flow dynamics and in turn limits/reduce reservoir storage (e.g., Ndehedehe,581

2019). This is obviously a negative impact of climate change and/or variability on surface582

hydrology these economies have to cope with during such times. Changes in precipitation583

patterns caused by rising temperatures and changes in atmospheric circulation patterns result584

in considerable influence on hydrology at different spatial and temporal scales. These im-585

portant climate components and its dynamics do not only impact on ecosystems (Woodward586

et al., 2010), but could also interact with other anthropogenic or human stressors that make587

freshwater habitats even more vulnerable to climate change. This was the case in Lake Chad588

where intensive water extraction from the Lake for irrigation purposes compounded the effects589

of prolonged extreme droughts, culminating in considerable contraction of the Lake Chad’s590
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surface area (e.g., Ndehedehe, 2019).591

In the Australian wet-dry tropics, the importance of flow regimes in ecological processes592

such as fish migration patterns, habitat availability, in-channel interactions with other systems593

has been highlighted (e.g., Kingsford et al., 2014; Bunn and Arthington, 2002). The influence594

of flow variability on aquatic production and food availability for fish and other consumers was595

identified in the Australian dryland rivers (e.g., Bunn et al., 2006). Even water holes around596

the vicinity of such rivers, which were found to be characterised by extreme flow variability597

supported a plethora of fish fauna after high summer flows while fewer species and lower598

numbers of fish catch were recorded during periods of low flow (Balcombe and Arthington,599

2009). Arguably, a high level of connectivity between these rivers and intermittent water600

holes as is usually the case in extreme wet summers is required to sustain aquatic biodiversity,601

fish populations and other higher level consumers. However, it has been argued that water602

resource development in dryland rivers could impact on sources of production due to increase603

in the frequency and duration of in-channel flows despite its role in the physical persistence and604

connectivity of these waterholes (see, Bunn et al., 2006). In addition to the increasing pressure605

from water resource development in the floodplain wetlands of Australian wet–dry tropics606

(e.g., Ward et al., 2013), the hydrological regimes of river–floodplain systems in are usually607

modified by human societies because of the need to provide important ecological services, which608

include recreation, water supply, production of hydropower, flood control, among others (e.g.,609

Kennard et al., 2010). In Australia, these services and other multiple streams of anthropogenic610

influence, including the degradation of riparian areas were identified as significant threats to611

freshwater ecosystems, necessitating conservation protection through a proposed establishment612

of a system of freshwater reserve (e.g., Fitzsimons and Robertson, 2005). This human footprint613

and the impacts of rainfall seasonality and key hydrological metrics (e.g., extent, timing,614

duration, and amplitude), which regulates the exchange of water fluxes within freshwater habits615

and the growth of aquatic plants highlight the need for sustainability of water resources in the616

region. With about 93% of the total annual rainfall occurring during the wet season and 84%617

of rainfall being lost to evaporation in the Gilbert catchment (CSIRO, 2013), sustainability of618

freshwater ecosystems in this region will be underpinned by frequent monitoring of large-scale619

freshwater habitats. The large-scale assessment of these remote floodplains using improved620

optical remote sensing methods is therefore a primary initiative that can be taken as a first621

step to support management and water resources planning.622
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7. Conclusions623

In the assessment of floodplain productivity and freshwater habitats in a large floodplain624

river in northern Australia, results in this study reveal that:625

(i) In terms of floodplain inundation and the spatial distribution of hot spots, the most626

productive period in the catchment since 1991 to date (from available landsat data) was627

the period between 1998 and 2010. The dearth of aquatic primary production (hot spots)628

in relatively dry years or during dry spells (periods during 1993− 1997 and 2014− 2019,629

excluding 2018 and other years affected by clouds) is in sharp contrast to the abundant630

distribution of hot spots during productive years in the catchment. The connectivity631

of slightly isolated water holes and other intermittent water bodies to adjacent rivers632

during such productive and extreme wet periods (e.g, 2009) could last up to 4 months633

and more.634

(ii) Rainfall seasonality is a critical indicator of the spatial distribution of floodplain inun-635

dation in the Gilbert catchment of northern Australia. However, peak correlation of636

downstream discharge with estimated hot spots of primary production (phase lag < one637

month) is relatively higher than the observed maximum association of rainfall with hot638

spots at three months phase lags. The considerable agreement (r = 0.83) between the639

dominant pattern of rainfall (inter-annual fluctuations) over the entire Gilbert catch-640

ment and downstream discharge provides further clue to the importance of rivers in the641

evolution of hot spots of primary producers. The interactions of anthropogenic stres-642

sors (e.g., water resources development along floodplains) with key climate components643

(e.g., precipitation and discharge) can amplify this relationship to the detriment of the644

ecological services provided by these rivers. Local rainfall however, appears to be a645

better predictor of downstream inundation (r = 0.71 @ lag=0) as opposed to discharge646

(r = 0.65 @ lag=1).647

(iii) The association of wet season rainfall anomalies over the Gilbert catchment with water648

level anomalies in the river (r = 0.83) (or maximum monthly water level anomalies-649

r = 0.87) and discharge at the downstream catchment is high and significant. The650

monthly cumulative departures of averaged wet season Gilbert rainfall is also strongly651

associated with downstream wet season stream water levels (r = 0.96). Put together,652

this confirms on the one hand, the explicit contributions of upstream catchment to653
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downstream floodplain productivity. On the other hand, it also implies that hydro-654

meteorological fluctuations through changes in climate play critical roles in the charac-655

teristics of downstream Gilbert floodplain inundation, which in turn impacts the con-656

nectivity of freshwater habitats and distribution of aquatic vegetation.657

(iv) Finally, in the delineation of inundation patterns and identification of hot spots of pri-658

mary producers (inundated areas covered with different aquatic species such as macro-659

phytes) over large tropical floodplains, where waterbodies have a range of turbidities,660

rule-based approaches are more reliable as opposed to traditional and pixel-based meth-661

ods. By combining vegetation and inundation metrics in a classification tree model, this662

was demonstrated for the Gilbert catchment in northern Australia where the spectral663

composition of fluxes complicated the spectral separability of freshwater systems using664

pixel-based methods such as the spectral angle mapper.665

Overall, the scope of this study was limited by data gaps (non-availability of wet season666

images for some months) and the impacts of cloud, which affected some wet season landsat667

imageries of the Gilbert catchment. This could impact on the interpretation of results (e.g.,668

estimated inundation extent will be lower because of images flagged for clouds) for some years669

(e.g., January 2009) with major flood events. Despite this constraint, statistical relationships670

developed between hydrological and extents of hot spots of aquatic primary producers are671

adequate to guide water-related policy and the development of climate change mitigation and672

resource management strategies.673

8. Supporting Information: Characteristics of the 2009 daily river discharge and674

stream water level observations675
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Figure 15: Daily river discharge and stream water levels of 2009 (January-August), the year with high density,

mega flood in much of the wet-dry tropics of northern Australia. The top panels show anomalies in mean and

maximum river discharge and stream water levels while the bottom panel indicates cumulative departures of

the same quantities. The gauge records are taken from Rockfield station downstream Gilbert catchment.
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