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THE BIGGER PICTURE The prediction of drug-target interactions (DTIs) plays a crucial role in drug discov-
ery. In this work, we discover that the high-order correlations in heterogeneous biological networks are
essential for DTI predictions. The hypergraph structure is ultilized to model the high-order correlations in
the biological networks, then the embeddings are generated for the drugs and targets, respectively. Finally,
the interaction between them can be predicted according to the similarity of the embeddings. Our proposed
method has been evaluated on multiple public datasets and the improved performance demonstrates that
the high-order correlations among drugs and targets contribute signiÞcantly on DTI predictions, and other
associations besides DTIs are also useful in this task.
Our method can also be used in other scenarios containing complex correlations.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The continuous emergence of drug-target interaction data provides an opportunity to construct a biological
network for systematically discovering unknown interactions. However, this is challenging due to complex
and heterogeneous correlations between drug and target. Here, we describe a heterogeneous hypergraph-
based framework for drug-target interaction (HHDTI) predictions by modeling biological networks through a hy-
pergraph, where each vertex represents a drug or a target and a hyperedge indicates existing similar interac-
tions or associations between the connected vertices. The hypergraph is then trained to generate suitably struc-
tured embeddings for discovering unknown interactions. Comprehensive experiments performed on four
public datasets demonstrate that HHDTI achieves signiÞcant and consistently improved predictions compared
with state-of-the-art methods. Our analysis indicates that this superior performance is due to the ability to inte-
grate heterogeneous high-order information from the hypergraph learning. These results suggest that HHDTI is
a scalable and practical tool for uncovering novel drug-target interactions.
INTRODUCTION

The prediction of drug-target interactions (DTIs) plays a crucial
role in drug discovery. 5 However, the biochemical experimental
This is an open access article under the CC BY-N
approaches widely used in wet laboratories are expensive and
time consuming,6 thus slowing down the progress of drug dis-
covery. The ever-growing demand for inexpensive, effective,
and rapid prediction methods has driven the development of
Patterns 2, 100390, December 10, 2021 ª 2021 The Authors. 1
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ ).
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computational approaches, which provide a cheaper and faster
way to predict potential interactions between drugs and targets.
Conventional computational approaches tend to begin with the
inherent properties of drugs and targets, such as the chemical
structure of drugs and the three-dimensional (3D) structure of
proteins. Molecular docking, 7 an important tool in structural mo-
lecular biology and computer-assisted drug design, is used to
predict the binding mode(s) of a ligand with a protein of known
3D structure. Keiser et al.8 use a complementary technique
based on the chemical similarity of ligands to quantitatively group
and relate proteins and discover unexpected ligand-target links.
However, molecular docking predictions cannot be successful
without a known and accurate 3D protein structure, and ligand-
based methods require several known binding ligands.

Recently, machine learning methods9 have attracted more
attention and shown greater promise in drug discovery. Unlike
the aforementioned methods, one key idea of current machine
learning-based approaches is that similar drugs may share similar
targets and vice versa.1 Typical computational approaches adopt
machine learning methods to catalog the similarities of drugs and
targets based on biological features and then predict DTIs. 10–12

Yamanishi et al.13 made the �rst attempt to predict DTIs based
on biological feature information, such as the similarity between
drug chemical structure and target protein sequence, unifying
the chemical and genomic spaces of known drugs and targets
into pharmacological spaces. Yu et al. 14 integrated features
from chemical and genomic space for large-scale drug discovery
using random forest and support vector machine algorithms. Gao
et al.15 used low-level representations such as Gene Ontology an-
notations, amino acids sequences, and chemical structural
graphs as inputs to the neural network, generating embeddings
for the targets and drugs, respectively, and then calculating the
similarity between the embeddings to predict the interaction.
This type of approach adequately extracts information from
inherent properties, but problems arise when suf�cient and reli-
able information is not available.

In addition to the inherent properties of drugs and targets,
there is increasing interest in exploring the correlations among
drugs, targets, and other biological entities in the data structure
of a heterogeneous biological network. Compared with biolog-
ical feature-based methods, network topology information-
based methods make predictions based on the topology
information of the network. 16,17 Several recent attempts have
explored topological structures of model DTIs, with biological
entities such as drugs, targets, side effects, and diseases
denoting vertices in the biological graph and the interactions or
associations indicating edges among them. Campillos et al. 18

constructed a network of 1,018 side effect-driven drug-drug re-
lations and validated 13 implied drug-target relations. Cheng
et al.19 compared network-based inference with drug-based
similarity inference and target-based similarity inference ,
showing that the former achieved higher-quality results. Chen
et al.20 integrated and annotated data from public datasets to
build a semantic-linked network. They developed a statistical
model to assess the association of drug-target pairs and
observed that drugs from the same disease area will cluster
together. They noted that this mode of clustering is dif�cult to
infer based on inherent properties alone. We hypothesized that
correlation among various biological entities can provide useful
2 Patterns 2, 100390, December 10, 2021
information that cannot be obtained from inherent properties.
Some recent methods formulate DTI prediction tasks as ‘‘link
predictions’’ in complex networks. 17,21,3 TriModel3 represents
heterogeneous topological correlations in the form of a knowl-
edge graph and generates embeddings to predict whether there
is a link between a drug and a target (supplementary note).
Furthermore, similarities based on both inherent properties and
topological correlations can be used to predict DTIs. DTINet 1 in-
tegrates diverse inherent properties and topological correlations
through a network diffusion process. It generates representa-
tions for drugs and targets, containing the similarities of vertices
in the biological network, and then performs predictions using
these representations (supplementary note). DeepDTnet2 is
another network-based method that integrates information
based on the inherent properties of drugs and targets ( supple-
mentary note). NeoDTI22 also integrates information from hetero-
geneous network data and predicts DTIs by learning the
topological preservation representations of drugs and targets.

In summary, previous methods have performed DTI predictions
by extracting the similarities between drugs and targets. However,
they describe the interactions between drugs and targets in a low-
order manner where only pairwise correlations are taken into
consideration, i.e., one-drug, one-target paradigms. However,
the connections among biomedical entities can be far more intri-
cate than merely pairwise links. For example, a single drug may
be connected to a number of targets (so-called multi-target drugs,
which can target various complex diseases as they are ubiquitous
and effective23), and these targets may share subtle but important
pharmacological characteristics thatcontribute to the interactions.
When further considering more connections, such as drug-dis-
easeassociationsand target-diseaseassociations, the overall het-
erogeneous biological network becomes even more complex and
emerges in a many-to-many pattern. Under such circumstances, it
is important to formulate and explore the underlying higher-order
topological correlations for drug discovery, which is beyond the
capability of the pairwise correlation-based methods. To tackle
this issue, we adopted a heterogeneous hypergraph-based model
to explore complex and heterogeneous correlations for drug-
target interaction prediction (HHDTI) (see section ‘‘experimental
procedures’’ for more details).

Unlike traditional graphs that model pairwise correlations, the
hypergraph can model higher-order correlations and is thus
more �exible and powerful, with the ability to incorporate com-
plex correlations. There are precedents for modeling biological
networks using hypergraphs, but they have not been used to
predict DTIs. Vaida et al.24 modeled relations between pairs of
drugs as a hypergraph and used a two-layer graph convolution
neural network as an encoder to predict drug interactions. Niu
et al.25 used diseases as hyperedges, connected microbes
associated with them, and developed a hypergraph-based
random walk model for microbe-disease association prediction.

Hypergraphs are indeed suitable for modeling drug-target
interaction networks. When a drug-target hypergraph is con-
structed, targets are denoted by vertices, and the interactions
between a speci�c drug and a certain number of targets can
be modeled by a hyperedge. In this hypergraph, all targets in-
teracting with the same drug are connected by a hyperedge;
therefore, all the target vertices connected by one hyperedge
can be regarded as a set. Rather than a graph edge in a



Figure 1. Schematic ßowchart of the HHDTI
pipeline
(A) Illustration of the hypergraph construction.
(B) Given the heterogeneous biological network
in (A), four distinct types of sub-hypergraphs
(drug-target, drug-disease, target-drug, and target-
disease) can be built. Taking the target-drug in-
teractions as an example, we used a hyperedge to
connect all targets that interact with the same drug,
i.e., a hyperedge in the heterogeneous biological
hypergraph represents a drug. These hypergraphs
provide the input for the key and side embedding
learning in (B). The incidence matrix H represents
the sub-hypergraph and serves as the input of the
model, and V k, V s, and V S represent the key
embeddings, side embeddings, and structural
embeddings, respectively. m and s , respectively,
refer to the means and variances obtained by the
variational autoencoder when generating the key
embeddings. ‘‘Attention’’ means bi-embedding
attention fusion module.
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heterogeneous biological graph representing a two-order pair-
wise correlation (i.e., indicating direct DTIs), a hyperedge in a
heterogeneous biological hypergraph instead models high-or-
der multilateral (i.e., many-to-many) correlations between tar-
gets and drugs. Moreover, to provide a thorough understanding
of DTIs, we comprehensively integrated several types of con-
nections among various vertices (e.g., drug-target, target-dis-
ease, and drug-disease connections) in the heterogeneous bio-
logical networks. A representation modeled on higher-order
correlations can signi�cantly improve the predication perfor-
mance of DTIs.

Speci�cally, HHDTI infers candidate DTIs by fusing two types of
embeddings: key and side embeddings. Key embeddings pro-
vide initial and major vector representations for all drugs and
targets, which are learned using the direct drug-target interaction
information. By contrast, side embeddings offer complementary
representations learned by leveraging disease-relevant informa-
tion. Structural drug-target embeddings are achieved by fusing
the key embeddings with the side embeddings, with HHDTI esti-
mating drug-target similarity to perform DTI predictions. We have
demonstrated that, based on this embedding learning process,
HHDTI consistently achieved higher-quality
prediction results when analyzing several
popular datasets compared with alternative
state-of-the-art methods. Comprehensive
evaluations have determined that the pro-
posed HHDTI is a promising and powerful
tool for drug discovery.

RESULTS

Overview of HHDTI
We propose a computational framework
for DTI prediction, called HHDTI, which
captures implicit high-order topological
correlations in heterogeneous biological
networks. HHDTI �rst uses a generative
model to construct key embeddings from
drug-target and target-drug interactions ( Figure 1). It then ex-
tracts drug-disease correlations and target-disease correlations
to generate side embeddings using hypergraph neural networks
(HGNNs).26 Ultimately, HHDTI fuses the key embeddings and
side embeddings and obtains structural embeddings to perform
DTI prediction. Integrating diverse information from heteroge-
neous biological data can assist in determining higher-order to-
pological correlations among different vertices. HHDTI then can
infer potential DTIs by computing and ranking the prediction
scores of all candidate interactions. In summary, embeddings
encode both topological properties and association information,
resulting in a low-dimensional vector space where the distance
between drug-target pairs correlates with their likelihood of inter-
action. More details of the HHDTI framework can be found in the
section ‘‘ experimental procedures .’’

Better DTI prediction performance by HHDTI
We initially evaluated the overall prediction performance of HHDTI
using a 10-fold cross-validation procedure. We conducted these
experiments on three public datasets (DTINet_17,1 deep-
DTnet_20,2 and KEGG_MED3) and compared HHDTI with four
Patterns 2, 100390, December 10, 2021 3



Figure 2. HHDTI outperforms other models
when used on all three datasets
(A–C) Experimental results as measured by AUROC
and AUPR. 10-fold cross-validations were per-
formed on (A) DTINet_17, (B) deepDTnet_20, and (C)
KEGG_MED databases to compare the prediction
ability of HHDTI with DTINet, NeoDTI, deepDTnet,
and TriModel (supplementary note). The results of
�ve trials for each method are expressed as mean ±
SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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state-of-the-art network-based drug discovery methods: DTINet,
NeoDTI, deepDTnet, and TriModel. Under the experimental
setting, 10% of the known drug-target interaction pairs and
non-interaction pairs were randomly chosen as the positive and
negative samples, respectively, for testing. The remaining 90%
were used for training. Two widely used metrics, the area under
the receiver operating characteristic (AUROC)27 curve and the
area under the precision-recall (AUPR) curve, were calculated to
comprehensively compare the performance of different methods.
We conducted separate experiments on these three datasets and
found that there was no data overlap between the training and test
sets within each dataset. The four methods were consistent with
the results provided in the original papers for their corresponding
datasets (Figure 2). However, HHDTI outperformed each of these
competitive baselines, consistently achieving the highest predic-
tion results for all three datasets. All four methods are network-
based methods, each with minor differences. DTINet, deepDTnet,
and NeoDTI blend the inherent properties of drugs and targets
and the topological correlations among biological entities. For
this reason, both methods perform poorly on the KEGG_MED da-
4 Patterns 2, 100390, December 10, 2021
taset, which does not include any informa-
tion related to inherent properties such as
the chemical structures of drugs and the
primary sequences of proteins. Although
these baseline methods attempt to fuse
diverse information in heterogeneous bio-
logical networks, they are still limited in
terms of data modeling as they can only
capture low-order pairwise correlations be-
tween vertices rather than high-order
correlations.

The superior performance of the predic-
tion methods might result from the easy
predictions of homologous proteins or
similar drugs in the dataset. To investigate
this issue, we refer to the work of Luo et al. 6

and performed an additional test on the
DTINet_17 dataset without the DTIs
involving homologous proteins (sequence
identity scores >40%). In this test, the
removal of homologous proteins can
reduce the potential redundancy in the
DTIs that may lead to an in�ated perfor-
mance evaluation. The test results were
robust even after removing homologous
proteins from the training data, suggesting
that HHDTI capturing high-order correla-
tion information can still achieve good performance and outper-
form other prediction methods even in the absence of similar tar-
gets (Figure S1.).

Additional association information for DTI prediction
We further investigated how the quantity of potential isolated data
in�uences DTI prediction results. We extracted all known drug-
target interaction pairs of three different amounts of drugs (20%,
50%, and 80%) within the datasets as positive samples and the
same number of non-interaction pairs as negative samples to
generate the test sets (i.e., there are no known drug-target interac-
tion pairs in the training data for these drugs). This experimental
setting simulated the so-called cold-start problem by arti�cially
creating isolated vertices, resulting in extremely dif�cult DTI pre-
dictions.Our analysisshowed that the sideembeddingsgenerated
from the association information (i.e., drug-disease and target-dis-
ease associations) can help improve DTI predictions to some
extent, despite the absence of any known drug-target interaction
pairs within the training sets (Figure 3). These studies also showed
that additional association information can be captured by the



Figure 3. HHDTI evaluated under cold-start
conditions
(A–C) All known interactions of three different
amounts of drugs (20%, 50%, and 80%) in the da-
tasets (A) DTINet_17, (B) deepDTnet_20, and (C)
KEGG_MED and the same number of negative
samples form the test sets. Speci�cally, in the �rst
experiment, 20% of the drug vertexes in the training
set are isolated vertexes; in the second experiment,
50% of the drug vertexes in the training set are
isolated vertexes; and in the third experiment, 80%
of the drug vertexes in the training set are isolated
vertexes. HHDTI_W/O_S means HHDTI does not
use side embeddings for DTI prediction. The results
summarize �ve trials and are expressed as
mean ± SD.
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proposed HHDTI to enhance DTI predictions, which may provide
new insights into understanding interaction mechanisms among
drugs, targets, and diseases.

High-order topological correlations for DTI prediction
We conducted ablation experiments on the DTINet_17, deep-
DTnet_20, and KEGG_MED datasets, respectively, to study the
advantages and disadvantages of high-order topological correla-
tions relative to low-order pairwise correlations. To this end, we re-
placed the hypergraph representation in HHDTI with plain graph
representations and used this as the comparative method (specif-
ically, we constructed standard plain graphs on these three data-
sets and performed a similar key-side embedding learning pro-
cedure as HHDTI for DTI prediction). The experimental results
showed that HHDTI consistently outperformed the low-order cor-
relations-based comparative method when used on either of the
three datasets (Figure 4).

Practical drug discovery
Our goal was to study HHDTI’s capability as a practical tool for
unknown DTI discovery. We chose Target Drug-UniProt Links
(approved) of the DrugBank database4 in
version 5.1.0 for the evaluation, as it con-
tains detailed and complete interaction in-
formation for targets and drugs. Deep-
DTnet2 was chosen as the comparative
method because it achieved the highest
quantitative prediction among the base-
lines. Since there is no disease associa-
tion information in this dataset, we
compared HHDTI (no disease) with Deep-
DTnet. We trained the two methods using
all the data in Target Drug-UniProt Links
(approved) and produced a top-10 target
prediction list for each drug using each
of the two methods ( Table S1). Data S1
and S2 are the lists of DTIs predicted by
HHDTI (no disease) and deepDTnet,
respectively, and validated by the litera-
ture. In the lists predicted by both
methods, aside from the known targets
in the training set, we observed that there
was a subset of new predicted DTIs that were unknown in the
training set but had been reported in the literature. Statistical
analysis showed that HHDTI successfully predicted 17.9%
more DTIs than deepDTnet. To further compare HHDTI (no dis-
ease) and deepDTnet, we used ‘‘recall @ top-10’’ as the evalu-
ation metric,28,29 which is de�ned as the fraction of true inter-
acting targets retrieved in the list of top-10 predictions for a
drug. With this evaluation metric, the average recall at top-10
of HHDTI (no disease) and deepDTNet were 0.0590 and
0.0573, respectively. This indicates that both methods can suc-
cessfully discover targets that interact with a given drug and
that HHDTI (no disease) is more powerful than deepDTNet.

Figure 5 illustrates speci�c practical drug discovery results
produced by HHDTI (no disease) and deepDTNet. The data in
the training set show that the anti-epileptic drug phenytoin acts
on nuclear receptor subfamily 1, group I, member 2 (NR1I2)
and several targets from the sodium channel family (SCN1A,
SCN3A, and SCN5A). The drug brivaracetam, which is
commonly used in the treatment of partial-onset seizures, is a
ligand of synaptic vesicle protein 2A (SV2A) and inhibits
voltage-gated sodium channels. Existing low-order correlation-
Patterns 2, 100390, December 10, 2021 5



Figure 4. Ablation experiments determine the contribution of high-order topological correlation to HHDTI
We performed ablation experiments using the DTINet_17, deepDTnet_20, and KEGG_MED datasets to evaluate the superiority of high-order correlation s. The
results summarize �ve trials and are expressed as mean ± SD; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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based methods, including deepDTNet, make DTI inferences
based on the ‘‘guilt-by-association’’ assumption that similar
drugs may share similar targets and vice versa. Since both
brivaracetam and phenytoin act on similar targets, deepDTNet
predicted that phenytoin acts on a member of sodium channel
family SCN8A. However, deepDTNet failed to predict the inter-
action between phenytoin and KCNH2, which is not similar to
NR1I2 or the sodium channel family. The experimental results
reveal that the problem with these methods is that they are
only able to predict targets that are similar to known targets. In
contrast, HHDTI (no disease) successfully predicted that
phenytoin acts on KCNH2. As shown in Figure 5, the training
data reveal the similarity between NR1I2 and KCNH2 because
both NR1I2 and KCNH2 have interactions with the same drug,
ketoconazole. The two targets NR1I2 and KCNH2 are thus linked
by a hyperedge and are regarded as a set. We �rst train the
model to �nd a certain similarity between the targets in the set
and project it into a low-dimensional common feature space as
the embedding of the drug. In the same way, we can obtain
the embedding of the target. The drug embedding and the target
embedding with known interactions are then positioned close to
each other (i.e., the embedding of ketoconazole and the embed-
ding of KCNH2 are close in the low-dimensional feature space).
Since phenytoin and ketoconazole also act on SCN5A, their em-
beddings will also be near each other in the feature space. Due to
the transfer of similarity, HHDTI successfully predicted the inter-
action of phenytoin with KCNH2. The interaction of propafenone
with SCN5A and KCNH2 can also help predict the interaction be-
tween phenytoin and KCNH2. Furthermore, SCN5A and KCNH2
belong to the voltage-gated ion channel superfamily, suggesting
that our method �nds some similarity between these two pro-
teins and facilitates us to further explore the role and structure
of the proteins. The high-order topological correlation allows
HHDTI to take full advantage of known interaction information
in the heterogeneous biological network and recall more poten-
tial DTIs in a top-N prediction list.

We conducted additional rigorous testing. We downloaded
the earliest available release (v4.6.0, released on 20 April 2016)
from the DrugBank database. 30 Using all the data in Target
Drug-UniProt Links (approved) from this release, we obtained
some results that prove the validity of HHDTI. As shown in Table
6 Patterns 2, 100390, December 10, 2021
S2, these results have been validated in the literature and the
publication time of these literatures is later than April 2016. For
example, the interactions related to the drug celiprolol
(DB04846) in the training set were �rst documented in the litera-
ture in 2007.31 HHDTI predicts that the drug also interacts with
beta-3 adrenergic receptor (ADRB3, P13945) and alpha-2A
adrenergic receptor (ADRA2A, P08913), and these results were
proved by the literature in 2017.32

DISCUSSION

The HHDTI method presented here is a computational approach
based on hypergraph networks and deep neural networks.
Based on known DTIs, HHDTI extracts the intrinsic characteris-
tics of drugs and targets, models these correlations with a hyper-
graph capable of higher-order modeling, and then enhances
these correlations with complementary information to generate
structural embeddings for both drugs and targets. The major
advantage of the proposed method lies in its powerful capability
of modeling high-order correlations among various entities and
its �exible framework capable of integrating several types of
complementary information. Our study found it can discover
more DTIs that have been previously validated by the literature
than other state-of-the-art computational approaches. It can
therefore identify potential DTI candidates to ef�ciently guide
validation experiments in the wet laboratory. In the future, we
plan to perform wet experimental validation as a method of
cross-validation through cooperation with drug discovery indus-
try partners, which will help us further improve the framework in
return.

Although network-based methods have been applied, 1,2 the
correlation modeling based on one-to-one correspondence
may not produce the essential features re�ecting a single drug
acting on multiple targets or multiple drugs acting on the same
target. Integrating network biology and polypharmacology
promises an expanded opportunity for druggable targets, 33

which cannot be achieved without effective high-order correla-
tion modeling. Capturing the high-order topological correlations
among various vertices in a heterogeneous biological network
can achieve more accurate and robust prediction performance,
which is worthy of more attention for further study. Although



Figure 5. Predicted and validated DTI examples visualized in a heterogeneous biological network
Predicted and validated DTIs refer to the predicted DTIs that can also be con�rmed by known experimental or clinical evidence in the literature. Targe ts of the
same color belong to the same protein family. HHDTI can discover more interaction targets that are not close to the known interaction targets in terms o f protein
family proximity for drugs than the state-of-art network-based method deepDTnet.
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computational approaches have achieved decent results after
years of development, there are still many under-resolved prob-
lems. The biological data used in this study are considered large-
scale datasets, but the number of drug vertices, target vertices,
and DTIs included in each dataset is quite limited. 1,3,34,35 For
example, the approved Target Drug-UniProt Links in DrugBank
database (version 5.1.0)4 only contains 2,020 drugs, 2,669 tar-
gets, and 9,796 DTIs. To construct a large-scale comprehensive
heterogeneous biological network, more types of vertices in
addition to drugs and targets should be provided to obtain
complex relationships at different levels. 36 It is not easy to
accomplish this task using a single dataset. Fortunately, we
may integrate complementary information from different public
databases. For instance, we can integrate the known drug-dis-
ease associations from Drug Central,37 clinically reported drug
side effects from the Comparative Toxicogenomics Database
(CTD),38 protein-protein interactions data from the Human Pro-
tein Resource Database (HPRD)39 and the HuRI,40 and clinically
reported drug-drug interactions data from the DrugBank data-
base. Even with plenty of data, coping with the noise from mul-
tiple databases is a challenging problem for data integration.
The sample imbalance problem may also be raised by collecting
only positive sample information and ignoring information for
non-interaction pairs. Furthermore, even an evaluated DTI may
be rejected in the future. 4 We believe that a high-quality, large-
scale dataset that integrates various classes of information will
signi�cantly progress the development of computational
approaches.

By convention, the HHDTI selects drug-target pairs with no
known interactions as negative samples. These negative sam-
ples are potentially positive, making it dif�cult to select genuine
no-interaction drug-target pairs.
The proposed HHDTI method can be further expanded to
incorporate more topological information (e.g., drug side ef-
fect associations) and other types of information. For
example, the similarity computed from the inherent property
information of drugs and targets, such as drug chemical sim-
ilarity and protein sequence similarity, can also be modeled in
the form of hypergraphs to explore the high-order correlations
in this respect, which will be considered in our future research.
Importantly, although HHDTI was developed for DTI predic-
tions, it can also be used as a general framework to address
link prediction-related problems in other �elds (e.g., drug
interactions).
EXPERIMENTAL PROCEDURES

Resource availability
Lead contact
Further information and requests for code and data should be directed to and
will be ful�lled by the lead contact, Yue Gao ( gaoyue@tsinghua.edu.cn).
Materials availability
This study did not generate any physical materials.
Data and code availability
The four datasets used in the experiments can be found in DTINet, 1 deep-
DTnet,2 TriModel,3 and DrugBank database https://doi.org/10.1093/nar/
gkx1037.4 HHDTI source code can be downloaded from https://github.com/
iMoonLab/HHDTI.

The framework of the HHDTI
The framework of the proposed HHDTI is shown in Figure 1. Taking the biolog-
ical hypergraphs as input, HHDTI can achieve prediction performance that out-
performs other state-of-the-art methods by simultaneously optimizing both the
high-order association capture process and the DTI prediction model in an end-
to-end manner. We �rst construct hypergraphs to model the biological network
and then employ a structural embedding learning framework to capture the
Patterns 2, 100390, December 10, 2021 7
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high-order correlation and generate structural embeddings for both targets and
drugs. The interaction likelihood between a given drug and target is predicted by
estimating the similarity of their structural embeddings. Speci�cally, for drug i

and target j, the DTI score can be computed as SigmoidððF S
d ÞiððF S

t ÞjÞ
T
Þ, where

F S
d and F S

t denote the drug structural embeddings and target structural embed-

dings, respectively. These low-dimensional structural embeddings, F S
d or F S

t ,
are generated by fusing key and side embeddings by a biembedding attention

fusion module; drug (target) structural embeddings F S
d (F S

t ) are generated by

fusing the key drug embeddings F k
d(F k

t ) and side drug embeddings F s
d(F s

t ).
Heterogeneous hypergraph modeling of biological networks
Biological networks in this work present both direct and indirect relationships
between drugs and targets. A heterogeneous biological network Gh = {Vh, Eh}
refers to a biological network containing multiple types of vertices and edges,
where Vh represents the set of vertices and Eh represents the set of edges. In
our biological network, the sets of vertex types O include {drug, target, dis-
ease}, the sets of correlation types R include {drug-target interaction, target-
drug interaction, drug-disease association, target-disease association}.
Given different types of correlations, a heterogeneous multiple hypergraph
G = f Vr = f v1; :::; vMr g; Er = f e1; :::; eNr gg with Mr vertices and Nr hyperedges
is constructed to model the biological networks, where r represents different
types of correlations and r = 1, 2, 3, 4. In this work, the heterogeneous hyper-
graph modeling of the biological networks is illustrated in Figure 1A. For each
correlation, we achieve an individual sub-hypergraph. We achieve four types
of sub-hypergraph in total. The heterogeneous hypergraph modeling results

are four incidence matrices, which can be represented by H� RM3 N, where
Hi,j = 1 if vertex i has connected with hyperedge j; otherwise, Hi,j = 0. We obtain
four types of incidence matrices ( Hdr-ta, Hta-dr, Hdr-di , Hta-di) based on R. Both
drugs and targets employ the same structural embedding learning framework
to generate the structural embeddings. For conciseness, we next present how
drug structural embeddings are generated from this structural embedding
learning framework.
Drug structural embedding learning
We introduce a Bayesian deep generative model that is a framework for
unsupervised learning on a hypergraph-structured data-based variational
auto-encoder 41 to learn drug key embeddings from Hdr-ta and employ the
HGNN26 model to generate the drug side embeddings from Hdr-di . For the
drug-target interaction hypergraph Hdr-ta, this Bayesian generative model
is instantiated as a vertex encoder, which models the similarity and correla-
tions of the drugs interacting with the same target. The vertex encoder
(Figure 1B, vertex encoder) performs a nonlinear mapping from the observed
space Hdr-ta to the common latent space F 0

dr� taby

F 0
dr� ta = fðHdr� taWdr� ta + bdr� taÞ (Equation 1)

where fð, Þis a nonlinear activation function to enable our model to approxi-
mate a nonlinear function.42 Based on our experiments (Figure S2), we adop-
ted the hyperbolic tangent tanh ðxÞ= ðexpðxÞ � expð� xÞÞ=ðexpðxÞ+ expð� xÞÞ
for the activation function due to its simplicity and superiority of performance.

Wdr� ta� RDin3 Dout and bdr� ta� RDout are the weight and bias learned by the
encoder, and Din and Dout are the dimensionalities of Hdr-ta and F 0

dr� ta, respec-
tively. After obtaining F 0

dr� ta, two individual fully connected layers are used to
estimate the means mdr-ta and variances s dr-ta:

mdr� ta = f
�
F 0

dr� taWm
dr� ta + bm

dr� ta

�
(Equation 2)

s dr� ta = f
�
F 0

dr� taWs
dr� ta + bs

dr� ta

�
(Equation 3)

where Wm
dr� ta; Ws

dr� ta� RDout 3 D and bm
dr� ta; bs

dr� ta� RD are the learnable weights
and biases, respectively. The dimensionality of the drug key embedding F k

d

is D, and we sample this by

F k
d = mdr� ta + s dr� ta1 � (Equation 4)

where � � N(0, I), and 1 stands for the element-wise product.
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The key embeddings characterize the high-order topological correlations
from the direct relationships between targets and drugs. Recent studies
have found that integrating multiple types of information can improve predic-
tion accuracy. 43 For example, drug side effects are observable phenotypic ef-
fects resulting from drugs acting on genetic off-targets in human bodies. 44

Phenotypic side effect similarity can be used to infer whether two drugs share
a target.18 Hu et al.45 found that targets can be used as bridges to link drugs
and diseases. Inspired by these studies, we integrated additional types of as-
sociation correlations in HHDTI to provide complementary information so that
the method can predict correctly even in the case of extreme challenges like
the cold-start problem.

As shown in Figure 1B, we learn drug side embeddings from the drug-dis-
ease incidence matrices (Hdr-di ) to provide complementary information for
the drug key embeddings. This is achieved by the HGNN 26 model (Figure 1B,
hypergraph convolutional layers). HGNN consists of hypergraph convolutional
layers that encode high-order correlations:

ConvhðH; XjWÞ= f
�

ðDvÞ� 1
2HðDeÞ� 1HTðDvÞ� 1

2XW
�

(Equation 5)

where Dv and De are the diagonal degree matrices of the vertex and hyperedge

respectively, with ðDvÞk;k =
PL

j = 1
Hk;j being the degree of vertex and

ðDeÞj;j =
PN

k = 1
Hk;j being the degree of hyperedge. X denotes the vertex features,

W is the learnable weight matrix, and ($)T is the transposition operator.
The output of the HGNN model is the side embeddings, which represent

high-order correlations. The adopted HGNN has two hypergraph convolutional
layers. Taking the drug side embedding learning on Hdr-di as an example, each
layer can be formulated as

F s
d

ðlÞ = Convh
�

Hdr� di ; F s
d

ðl� 1Þ
�
�
�Wðl� 1Þ

�
(Equation 6)

where F sðl� 1Þ
d , F sðlÞ

d , and W(l� 1) are the input, output, and trainable weight ma-
trix of the (l-1)-th layer, respectively. The vertex feature X is the inherent prop-

erties of the drugs, and we replaced with an identity matrix for F sð0Þ
d = X = I.

Then, we employ attention modules to fuse the key and side embeddings
into a shared vector space to construct low-dimensional structural embed-
dings. We propose the bi-embedding attention fusion ( Figure 1B, attention)
to compute the coef�cients u i to give different weights to the key embeddings
and side embeddings:

u i =
exp

�
f
�
F iWi + bi� , Pi�

P

j� k;s
exp

�
f
�
F jWj + bj� , Pj� (Equation 7)

where F iði � k; sÞ stands for key embeddings or side embeddings and

Wi� RD3 D0
, bi� RD0

, and Pi� RD03 1 are trainable parameters for embeddings

F i, respectively. D0 is dimensionality of the trainable parameters. The overall

structural embeddings F S can be achieved by

F S = u kF k + u sF s (Equation 8)

where F k and F s are the key and side embeddings, respectively.
Target structural embedding learning
By contrast, the target structural embedding learning uses the target-drug
interaction hypergraph and the target-disease association hypergraph as in-
puts. It models the similarity and correlations of the targets interacting with
the same drug to generate the target key embeddings F k

t through a vertex
encoder (with the same structure as the vertex encoder in drug structural
embedding learning). It also uses the HGNN26 model to generate the target
side embeddings F s

t from Hta-di and fuses the target key embeddings and
target side embeddings by biembedding attention fusion to obtain target
structural embeddings F S

t .
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DTI prediction
The DTI predictions are produced from the reconstruction space A, which is
achieved by computing the likelihood of the drug and target structural
embeddings.

A = Sigmoid
�

F S
d

�
F S

t

� T
�

(Equation 9)

where sigmoid($) is the sigmoid activation function. We optimize the variational
lower bound L:

L = Eq

�
log p

�
A

�
�F S

d ; F S
t

��
� b

�
KL

�
q

�
F k

d

�
�A

� �
�
�
�p

�
F k

d

��
+ KL

�
q

�
F k

t

�
�A

� �
�
�
�p

�
F k

t

���

(Equation 10)

where KL[q($)||p($)] is the Kullback-Leibler divergence between q($) and p($).
Varying b encourages different learned representations by changing the
degree of applied learning pressure during training. Referring to the work of

the variational autoencoder, we further take Gaussian priors pðF k
dÞ=

Q
i pð4 d

i Þ=
Q

i N ð4 d
i

�
�0; IÞandpðF k

t Þ=
Q

j pð4 t
j Þ=

Q
j N ð4 t

j

�
�
�0; IÞ. Eq[log p($|$)]

is the likelihood of reconstruction space A learned by HHDTI.

Model evaluation metrics
We introduced two evaluation metrics, the AUROC curve and the AUPR curve,
to evaluate prediction performance. A confusion matrix is shown in Figure S3.
In the receiver operating characteristic (ROC) space, the ROC curve gives a
pair of x and y values where x is the false-positive rate (FPR) and y is the
true-positive rate (TPR). We connected all points obtained by changing the
cutoff to create the ROC curve.

TPR =
TP

TP+ FN
(Equation 11)

FPR =
FP

TN+ FP
(Equation 12)

where true-positives (TPs) and false-positives (FPs) are positive samples
correctly predicted as positive and negative samples incorrectly predicted
as positive, respectively. True-negatives (TNs) are negatives correctly identi-
�ed as negative. False-negatives (FNs) correspond to positives incorrectly pre-
dicted as negative.

The precision-recall curve is plotted in a comparable way to the ROC curve
but with the x axis being recall and the y axis being precision:

recall =
TP

TP + FN
(Equation 13)

precision =
TP

TP + FN
(Equation 14)

As discussed in previous work, 46,47 AUPR can provide a better assessment
when the data for testing are highly skewed (supplementary note).

Datasets
The three public datasets proposed in DTINet, 1 deepDTnet,2 and TriModel3

(named DTINet_17, deepDTnet_20, and KEGG_MED, respectively) as well
as the Target Drug-UniProt Links (approved) from the DrugBank database
(version 5.1.0)4 were used for evaluation.

The data in DTINet_17 were collected from public databases. Drug vertices,
protein vertices, and disease vertices were obtained from the DrugBank data-
base (version 3.0),48 the HPRD database (release 9),39 and CTD,38 respec-
tively. The known DTIs were imported from the DrugBank database (version
3.0),48 and the drug-disease and target-disease associations were extracted
from the CTD.38

The deepDTnet_20 dataset was also derived from the integration of informa-
tion in multiple databases. The DTIs were collected from the DrugBank data-
base (version 4.3),30 the Therapeutic Target Database,49 and the PharmGKB
database.50 The drug-disease association information came from the Drug-
Bank database (version 4.3),30 Drug Central,37 and repoDB.51 The drug-dis-
ease association data were integrated from the bioinformatics data sources
CTD38 and HuGe navigator.52
The KEGG_MED dataset was larger than the above two datasets and was
extracted from multiple databases, including KEGG, 53 DrugBank database,54

InterPro,55 and UniProt.56

The Target Drug-UniProt Links (approved) dataset was extracted from the
DrugBank database (version 5.1.0).4

More speci�c information regarding the four datasets is shown in Table S3.
For more information about the datasets, please refer to the works of DTINet,
deepDTnet, TriModel, and DrugBank database (version 5.1.0).

Statistical analysis
All statistical analyses were performed using GraphPad Prism software
(version 8.0.2). The data shown in the study were obtained from at least �ve
independent experiments. Values in different experimental groups are ex-
pressed as the mean ± standard deviation. p < 0.05 was considered statisti-
cally signi�cant.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2021.100390.
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