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Abstract 

Many biomedical, orthopaedic, and industrial applications are emerging that will benefit 

from personalized neuromusculoskeletal models. Applications include refined 

diagnostics, prediction of treatment trajectories for neuromusculoskeletal diseases, in 

silico design, development, and testing of medical implants, and human-machine 

interfaces to support assistive technologies. This review proposes how physics-based 

simulation, combined with machine learning approaches from big data, can be used to 

develop high-fidelity personalized representations of the human neuromusculoskeletal 

system. The core neuromusculoskeletal model features requiring personalization are 

identified and big data/machine learning approaches for implementation are presented 

together with recommendations for further research.  
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1 Background 

Computational biomedicine and artificial intelligence (AI) are scientific fields that 

developed largely independent of each other over the past four to six decades (Chambers 

et al. 2016; Coveney et al. 2013; Halilaj et al. 2018; Khoury and Ioannidis 2014; Viceconti 

et al. 2015). Both computational biomedicine and AI span public health concerns 

(Sciences 2016), have commercial scope (Saey (2018), 23andMe www.23andme.com; 

Genos genos.co), and present tremendous potential to realize the, to-date unfulfilled, goal 

of personalized medicine (Coveney et al. 2013; Esteva et al. 2017; Sciences 2016), the 

aim of which has been to make mechanistic models of biology personalized to the 

individual across multiple size-scales to solve clinical issues. 

Computational biomedicine is a physics-based approach to modelling multi-scale systems 

for health (Coveney et al. 2013; Hunter 2016; Hunter et al. 2010; Viceconti and Hunter 

2016), while AI is a mathematical approach used to extract features from large 

information sets (i.e., big data) (Halilaj et al. 2018; Hastie et al. 2009) and/or to search 

for established patterns in data (Hastie et al. 2009). The utility of AI to computational 

biomedicine has been criticized because of the complex aetiologies and pathogenesis of 

diseases (Keyes et al. 2015; Khoury and Galea 2016). Likewise, the explicit object-based 

behaviour codified in physics-based models results in enormous computational demand 

when addressing complex problems such as disease mechanisms. The assumption 

(potentially unfounded) is the ever growing power of modern computing will subdue the 

problem of computational demand in physics-based modelling (Goranson and Cardier 

2013). Potentially, AI can be used to augment physics-based modelling by making it 

faster to create and perform mechanistic modelling for health applications (Coveney et 

al. 2013; Hunter 2016; Viceconti and Hunter 2016; Viceconti et al. 2015). The purpose 

of this paper is to review the contribution of AI methods in personalised physics-based 

models of human neuromusculoskeletal biomechanics. First, we will begin by outlining 

computational modelling methods used in human neuromusculoskeletal biomechanics. 

1.1 Computational neuromusculoskeletal biomechanics 

Computational neuromusculoskeletal biomechanics encompasses physics-based 

modelling of the complex, multi-scale, non-linear, and dynamic interaction between 

neural drive to muscles, muscle dynamics, joint kinematics and kinetics, and their effects 

on the loading experienced by musculoskeletal tissues. Computational 

neuromusculoskeletal biomechanics aims to understand and manage many 

neuromusculoskeletal conditions, and to rehabilitate patients and have been used to study 

http://www.23andme.com/
https://genos.co/


Page 4 of 40 

many phenomena ranging  from muscle function during locomotion in healthy individuals 

(Hamner et al. 2010; Killen et al. 2018; Pandy and Andriacchi 2010; Sasaki 2010; Saxby 

et al. 2016b; Schache et al. 2012; Shelburne et al. 2006; Thelen and Anderson 2006) and 

those with pathologies (Gerus et al. 2013; Hoang et al. 2019; Konrath et al. 2017; 

Montefiori et al. 2019a; Saxby et al. 2016a; Shao et al. 2009), to model-driven control of 

prostheses or rehabilitation robotics (Sartori et al. 2018; Sartori et al. 2016). Other 

applications include estimation of tissue loading (Kim et al. 2009; Saxby et al. 2016b; 

Wellsandt et al. 2016) and how this is effected by ergonomic aids (Hall et al. 2019) or 

occupational demands (Lenton et al. 2018). Musculoskeletal loading (Pena et al. 2006; 

Shim et al. 2016; Yang et al. 2010) is of particular clinical interest, as loading has 

mechanistic links to tissue remodelling (Andriacchi et al. 2009; Eskelinen et al. 2019; 

Gardiner et al. 2016; Myller et al. 2019; Pizzolato et al. 2017a; Smith et al. 2013) (Saxby 

et al. 2017; Young People With Old Knees Research et al. 2017) and is therefore a logical 

target for physical therapy. 

To translate the power of computational neuromusculoskeletal biomechanics from 

laboratory settings where almost all research has taken place to clinical or “field” 

conditions, the models themselves may require high levels of personalization to match 

the individual, the modelling methods must become fast enough to be of use to the 

clinician/coach/commander, and the instruments used must be developed into portable 

and/or body-worn version to “escape the laboratory”. There is general enthusiasm for use 

of AI in computational neuromusculoskeletal biomechanics, as highlighted in recent 

reviews (Coveney et al. 2013; Ferber et al. 2016; Halilaj et al. 2018; Hunter et al. 2010; 

Ku et al. 2015; Viceconti et al. 2015) and original papers (Lee et al. 2019; Peng et al. 

2018; Peng et al. 2017). In this review, we will focus on use of big data and AI to make 

fast personalized computational neuromusculoskeletal biomechanical models. 

1.2. Model personalization – a step toward credibility 

The answer to the question of how personalized a model should be depends on the 

research question. A generic model, i.e., one with no particular personalization, is 

appropriate when studying neuromusculoskeletal phenomena decoupled from the 

individual/group, investigating motor control principals, or determining simple external 

biomechanical quantities (e.g., spatiotemporal parameters such as locomotion speed, 

cadence, etc) which are not particularly sensitive to model personalization. Another 

example is the study of the dependency of simulated muscle forces on model joint degrees 

of freedom (Jinha et al. 2006), wherein a generic model without personalization is 
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adequate. Likewise, if one is demonstrating changes to muscle function by simulating a 

surgical relocation of muscle attachment, a generic model will perform admirably (Delp 

et al. 1990). However, if modelling neuromusculoskeletal function of specific 

individuals/groups the model should properly represent their unique anatomy and 

neurophysiology. 

Throughout the biomechanics literature, the terms “subject-specific” or “patient-specific” 

are used to describe different levels and aspects of model personalization (Bahl et al. 

2019; Barzan et al. 2019; Brito da Luz et al. 2017; Gerus et al. 2013; Kainz et al. 2017a; 

Marra et al. 2015; Modenese et al. 2018; O'Connor et al. 2018; Wesseling et al. 2016a; 

Wesseling et al. 2016b), even in cases when minimal personalization was achieved. The 

level of model personalization in biomechanical studies varies substantially, ranging from 

using anatomical landmarks identified by skin-surface markers to scale generic models 

of the underlying musculoskeletal system (O'Connor et al. 2018) to incorporation of 

complex and subject-specific bone geometry, joint anatomy, and joint function (Barzan 

et al. 2019; Kainz et al. 2017a; Lenhart et al. 2015; Modenese et al. 2018; Smith et al. 

2016; Wesseling et al. 2016a). Studies examining model personalization typically focus 

on the effects on end-point biomechanical variables (Gerus et al. 2013; Hannah et al. 

2017; Lerner et al. 2015; Marra et al. 2015; Modenese et al. 2018; Montefiori et al. 2019a; 

Wesseling et al. 2016a). Even when simulation accuracy is not reported, an implicit 

assumption is that a more personalized model has greater physiological and physical 

plausibility (Brito da Luz et al. 2017; Hoang et al. 2019; Hoang et al. 2018) or relevance 

to health state (Anderson et al. 2010; Favre et al. 2016a; Favre et al. 2016b; Smith et al. 

2006; Wellsandt et al. 2016), as the individual relationships between anatomy, function, 

and motor control are, in principle, modelled. However, many previous studies exploring 

the influence of personalization on model function typically included only one or a small 

number of personalization features, neglecting others (Gerus et al. 2015; Kainz et al. 

2017b; Lerner et al. 2015). The interaction between personalized features has been 

examined only in few studies (Gerus et al. 2013; Hoang et al. 2018; Navacchia et al. 

2017), thus, it is difficult to understand the incremental and likely complex interactions 

of personalization features and their effects on model outputs. 

We have summarised model personalization into five main categories (Table 1): 

mathematical definitions (e.g., functions prescribing complex joint kinematics), model 

parameters (e.g., muscle tendon parameters), anatomy (i.e., external and internal 

structure), tissue material properties, and (neuro) physiology. All features influence 
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model performance and their incorporation should be guided by the research question and 

the credibility the authors require of their results (Viceconti et al. 2020a). If model results 

will have high levels of influence (e.g., decisively inform a therapy or design) and carry 

significant consequences (e.g., if wrong, people are harmed or worse), the model is high 

risk and requires extensive validation and verification (Viceconti et al. 2020b). 

Part of validation and verification may involve personalizing the model to the individual. 

Data needed for personalization may be sourced from laboratory-based motion capture 

methods and dynamometry (Andriacchi et al. 2009; Astephen et al. 2008; Dempsey et al. 

2009; Knoll et al. 2004; Lee et al. 2013), prior literature or cadaveric testing (Lloyd and 

Besier 2003; Pizzolato et al. 2015; Sartori et al. 2014; Sartori et al. 2012a), and/or medical 

imaging (Bahl et al. 2019; Marra et al. 2015; Modenese et al. 2018; Wesseling et al. 

2016a; Zhang et al. 1999; Zhang et al. 2015). However, establishing robust model 

personalization involves more than customizing a model to match targets, but doing so in 

respect of standards and using methods than can be repeated and audited. 

To achieve robust model personalization, we need a framework within which to work. 

Open frameworks, such as the Virtual Physiological Human (Hunter 2016; Hunter et al. 

2010; Viceconti and Hunter 2016), are bold and ambitious endeavours enabling users 

around the world to produce mechanistic models of human physiology. However, the 

Virtual Physiological Human and other large-scale initiatives are still developing a 

neuromusculoskeletal system focus, and do not yet encompass what is required for proper 

personalization. We highlight an existing framework that encompasses, and is built upon, 

open platforms such as Virtual Physiological Human (Fernandez et al. 2018b; Hunter et 

al. 2005; Viceconti and Hunter 2016) and OpenSim (Delp et al. 2007; Seth et al. 2018): 

the Musculoskeletal Atlas Project (Zhang et al. 2015; Zhang et al. 2014) , which supports 

development of personalized neuromusculoskeletal models. It is our hope the 

Musculoskeletal Atlas Project, or similar initiatives, will serve as rational basis to create 

and execute personalized models for the wider biomechanics and clinical communities. 

Currently, creation of personalized neuromusculoskeletal models is resource intensive, 

requires considerable technical skills, and is bespoke without standards – although 

research teams are attempting to codify this process with notable inroads (Modenese et 

al. 2018). The critical achievement of Modenese and colleagues was a step-by-step 

procedure for creating musculoskeletal models that minimizes user involvement and 

quantifies the reliability of a codified workflow (Montefiori et al. 2019b). This ensures 

different users will create very similar final models from common input imaging data. 
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Indeed, for personalized models to be widely adopted, especially in clinical fields, the 

technology used to generate them must be highly automated, hence, the importance of 

recent work to automate creation of personalized and complex muscle geometries from 

muscle segmentations obtained from MRI (Modenese and Kohout 2020). 

1.3. Machine learning to accelerate neuromusculoskeletal modelling 

Machine learning is a subset of AI (Hastie and Tibshirani 2009; Hastie et al. 2009). 

Herein, we will briefly summarize the classes of unsupervised and supervised machine 

learning methods, and demonstrate how they may be used to develop, deploy, and refine 

personalized neuromusculoskeletal models. Although machine learning is undoubtedly a 

powerful tool for identifying relationships within, and predicting from, data, it assumes 

no underlying mechanistic representation of the physical system under examination. We 

may consider machine learning a ‘black box’ of arbitrary, but sophisticated, organization. 

Many machine learning methods require large quantities of data (i.e., big data) to robustly 

establish relationships, or use unique data to tune an established machine learning system. 

This dependency on data presents some problems as phenomena within a system may not 

be measurable, data may be ill conditioned (Khoury and Ioannidis 2014) and/or not 

relevant to the problem in question (Bayer and Galea 2015). Machine learning is powerful 

but needs to be used cautiously as biomechanical data may be ill-conditioned and total 

reliance on data-driven approaches may have many unpredictable and negative 

consequences. Furthermore, a narrow focus on data input-to-output relationships in 

systems that are inherently deterministic seems to be missing the point of causal models. 

We contend that physics-based modelling can, in part, help overcome limitations 

associated with machine learning by creating data reflecting physical and physiological 

mechanisms. In turn, machine learning can help physics-based modelling by decreasing 

computational demands in data processing, creating models, and executing analysis, or 

by reducing need to acquire new experimental data. For example, the finite element 

analysis (FEA) can be reduced to a surrogate using statistical interpolation of a 

meaningful sample of outputs – a process often referred to as “Kriging” after statistician 

Danie Krige. This is relevant because the computational gains of Kriging make FEA 

outputs such as tissue stresses and strains viable in real-time, as has been demonstrated 

in impressive fashion recently to understand femur mechanics (Ziaeipoor et al. 2019a; 

Ziaeipoor et al. 2020; Ziaeipoor et al. 2019b). Real-time capacity is a requirement for 

future translation to clinical or in-field conditions, where clinicians/coaches/commanders 

and their patients/athletes/soldiers want immediate feedback about how behavioural 
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choices influence sub-tissue level mechanics. Once measured and physically modelled 

data are compiled, an array of machine learning approaches can be used to explore 

relationships between biomechanical variables, health, and disease states, potentially 

revealing new and non-intuitive findings. 

2 Framework for personalized modelling 

The proposed framework to develop and use personalized neuromusculoskeletal models 

is a combination of (i) multi-modal imaging data, (ii) physics-based modelling, and (iii) 

machine learning (Figure 1). The framework has five steps: creation, tuning, calibration, 

validation, and execution, with each step using various imaging modes, physics-based 

modelling, and machine learning methods. 

<Insert Figure 1 about here> 

Model creation refers to the generation of model form and function using any data 

acquired from the individual, such as non-medical motion capture or external body hull 

imaging, magnetic resonance imaging (MRI), X-ray computed tomography (CT), 

fluoroscopy, plain and low-dose multi-plane X-ray. 

Tuning involves adjusting model features and parameters to achieve anatomical and 

physiological plausibility. Tuning does not require data from the individual but is 

informed through cadaveric and/or literature-based data to provide targets and 

boundaries. Tuning adjusts model parameters to match empirical patterns such as joint 

kinematics (Brito da Luz et al. 2017), muscle tendon unit (MTU) passive stiffness (van 

der Krogt et al. 2016), and (MTU) moment arms (Arnold et al. 2000; Rajagopal et al. 

2016). Tuning can adjust models to prevent shortcomings such as discontinuities in joint 

kinematics and interpenetration of musculoskeletal tissues. 

Unfortunately, tuning is often a manual process, making it tedious and subjective. Strides 

are being taken to automate this process robustly. An example is the automated tuning of 

personalized closed-chain joint mechanisms (Brito da Luz et al. 2017), created through 

direct segmentation of medical imaging with physical constraints to predict joint motion 

(Figure 2). As there are errors associated with MRI imaging and processing, and errors in 

the formulation of the physical constraints (i.e., ligament isometry), the initial 

personalized closed-chain joint mechanism is ill-conditioned and numerically stiff. The 

parameters governing these mechanisms (e.g., bone shapes, ligament lengths, etc.) are 

then tuned, by optimising design variables (e.g., bone shape radii, positions, orientations, 

etc.), to maximise correlation between closed-chain joint mechanism 6 DOF kinematics 
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and literature data from cadaveric specimens and/or previously validated models. 

Importantly, tuning personalized closed-chain joint mechanisms prevents cartilage-into-

cartilage penetration and kinematic discontinuities, which are both indications of a 

physically implausible model. 

<Insert Figure 2 about here> 

Calibration relies on data measured from the individual to optimize model features. In 

neuromusculoskeletal biomechanical modelling, parameters governing muscle’s 

excitation to activation dynamics (Buchanan et al. 2004) and/or MTU physiology 

(Pizzolato et al. 2015) are optimized to minimize error between joint moments estimated 

via neuromusculoskeletal modelling and corresponding joint moments from inverse 

dynamics. Likewise, MTU physiological parameters (Walter et al. 2014) or MTU 

moment arms (Serrancoli et al. 2016) can be adjusted to better predict measured knee 

contact forces. Further, calibrating FEA continuum material properties can ensure good 

matching between modelled and measured three-dimensional deformations in tendons 

(Hansen et al. 2017; Shim et al. 2019b), ligaments (Gardiner and Weiss 2003; Weiss et 

al. 2002), and cartilage (Keenan et al. 2009; Keenan et al. 2013). Importantly, calibration 

ensures correspondence between model outputs and experimentally acquired 

measurements. 

Validation involves examining model parameters and derived end-point biomechanical 

outputs against independent data not used in model creation, tuning, and calibration. 

Model validation can also be performed by comparing calibrated parameters to surrogate 

measures from imaging or other assessments. For example, tissue material properties are 

often quite challenging to directly measure, particularly non-invasively; however, 

calibration of a FEA model can involve optimizing material properties to match a physics-

based target (i.e., measured object deformation) and be validated using proxies of tissue 

quality from medical imaging (i.e., elastography or specific echo times from MRI). 

Many different end-point biomechanical outputs can be used for indirect (e.g., model 

parameters) or direct (e.g., joint moments, kinematics, and EMG) validation. 

Furthermore, validation can employ literature-based comparison data, such as 

instrumented joint implant forces (Bergmann et al. 2001; Fregly et al. 2012; Kutzner et 

al. 2010), or bone kinematics measured in vivo (Benoit et al. 2007; Lafortune et al. 1992; 

Stagni et al. 2005) and/or from cadavers (Blankevoort et al. 1991). Alternatively, 

validation can use data collected directly from the individual, for example muscle fascicle 

kinematics (Gerus et al. 2015), ground reaction forces (Johnson et al. 2019a; Johnson et 
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al. 2018), joint moments (Lloyd and Besier 2003), joint contact forces from instrumented 

prosthetic implants (Walter et al. 2014), three-dimensional bone surfaces (Bahl et al. 

2019; Davico et al. 2019a; Kainz et al. 2017b; Suwarganda et al. 2019), joint centres (Bahl 

et al. 2019; Zhang and Besier 2017; Zhang et al. 2015), and EMG (Hoang et al. 2019; 

Hoang et al. 2018; Lenton et al. 2018; Sartori et al. 2014). As load sharing amongst the 

many tissues of the body is indeterminate (Crowninshield 1981), it is important to ensure 

model tuning and calibration are robust to different initial starting conditions (Ong et al. 

2019) and to use many sources of validation data to establish a personalized model as 

valid (Lund et al. 2012). Indeed, validation is essential for establishing model credibility 

and supporting their use in critical clinical and industrial applications. 

Execution refers to the operation of the previously developed neuromusculoskeletal 

model. Execution results in estimates of end-point biomechanical variables modelled 

during human function and is often the focus of modelling workflow as it yields 

mechanistically determined results establishing cause and effect between external 

biomechanics and internal tissue loading. Each of the previously mentioned steps is vital 

to ensure model execution produces results in which there can be confidence. 

In summary, personalized model generation and operation, as outlined above, relies on 

literature and data collected from the individual. Subject-specific anatomy and joint 

models rely on segmentations of medical imaging of bone, cartilage, and ligaments 

(Modenese et al. 2018; Scheys et al. 2006; Wesseling et al. 2016a), or laboratory-collected 

kinematic and kinetic data from cadavers (Sancisi et al. 2014; Sancisi and Parenti-Castelli 

2011). Segmentation of musculoskeletal tissues is not only time consuming, but image 

acquisition is also costly, particularly if MRI is used. Additionally, the required imaging 

facilities may not be accessible to many research teams, so these data are not routinely 

acquired as part of standard biomechanical data collection. If any models are to be 

operated in real-world scenarios, data acquired in a traditional motion capture laboratory 

needs to be alternatively obtained using wearable sensors or via non-invasive means such 

as image auto-tracking. We propose that both personalized model generation and 

operation in real-world scenarios can be assisted through big data and machine learning. 

2.1. Machine learning to facilitate model personalization 

Machine learning methods can facilitate neuromusculoskeletal modelling across five key 

domains (Table 1). These domains are: i) feature extraction (Diamond et al. 2017; Zhang 

et al. 2014), (ii) synthesizing data (Bahl et al. 2019; Clouthier et al. 2019; Davico et al. 

2019b; Nolte et al. 2016a; Suwarganda et al. 2019; Zhang and Besier 2017), (iii) model 
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generation (Bahl et al. 2019; Clouthier et al. 2019; Johnson et al. 2019a; Johnson et al. 

2018; Nolte et al. 2016b; Zhang and Besier 2017), (iv) execution (Eskinazi and Fregly 

2015; Eskinazi and Fregly 2018; Ziaeipoor et al. 2019b), and v) data digitization, 

processing (Ambellan et al. 2019; Heimann and Meinzer 2009; Liu et al. 2018) and 

classification (Akhundov et al. 2019). Importantly, machine learning can be applied to 

measured data (e.g., medical imaging, EMG, ground reaction forces) as well as results of 

created (e.g., rigid multi-body joint model, tendon mesh) and/or executed (e.g., muscle 

tendon lengths and moment arms, FEA stresses and strains) models. 

<Insert Table 1 about here> 

Feature extraction (i) – Unsupervised machine learning identifies patterns in data, making 

use of different clustering and dimensional reduction methods. Regarding 

musculoskeletal modelling, machine learning has been used to rapidly and automatically 

process medical imaging to isolate structures of interest. In particular, artificial neural 

networks have proven particularly effective in medical image processing and have been 

used in a wide range of applications from automatically determine body composition 

(Hemke et al. 2020), cartilage pathologies (Liu et al. 2018) and geometries (Nikolopoulos 

et al. 2020), bone geometries (Ambellan et al. 2019), and muscle volumes (Yeung et al. 

2019) and geometries (Ni et al. 2019). Using a dataset of reconstructed anatomical 

structures or organs exists, statistical shape models have been used to extract features 

from anatomical data, using principal component analysis (Rodriguez-Florez et al. 2017; 

Varzi et al. 2015; Williams et al. 2010) to create representations of anatomical tissue with 

associated principal components for bone (Grant et al. 2020; Suwarganda et al. 2019; 

Zhang and Besier 2017; Zhang et al. 2014), cartilage (albeit indirectly) (Van Dijck et al. 

2018), meniscus (Dube et al. 2018; Vrancken et al. 2014), and other connective tissues 

(Neubert et al. 2015). Once a statistical shape model has been created using a large sample 

of tissue morphometries (i.e., big data), weighted principal components can be used to 

reconstruct morphometry of a novel tissue using minimal (i.e., sparse) data. The capacity 

to automatically and accurately reconstruct tissue geometries from sparse imaging is an 

important technical development, as it enhances accessibility of this technology for 

clinical and research applications. 

Analogous to statistical shape models for musculoskeletal tissues, factorisation methods 

can be used to extract features from measures of muscle activation (i.e., EMG). These 

EMG features represent the central coordination of multiple muscles and are commonly 

referred to as a muscle synergy (Chhabra and Jacobs 2006; Ferrante et al. 2016; Neilson 
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and Neilson 2010). Numerous studies suggest the central nervous system activates 

muscles in synergy, rather than individually, which reduces the complexity in selecting 

muscles to activate to produce a movement (d'Avella et al. 2003; Ting and McKay 2007). 

Muscle synergies can be mathematically quantified using one of many factorisation 

methods described in literature (Tresch et al. 2006), such as non-negative matrix 

factorisation (Lee and Seung 1999), Gaussian primitives (Ivanenko et al. 2006), principal 

component analysis (Diamond et al. 2017; Falck 1983; Soechting and Lacquaniti 1989), 

and independent component analysis (Kargo and Nitz 2003). Temporal and spatial 

synergies have been extracted from EMG recordings of many upper- and lower-limb 

muscles during various movement tasks (e.g., walking, running, upper-limb movement) 

(Tresch et al. 2006), and muscle synergies have been used extensively in literature to 

identify differences in motor activity between healthy and pathological populations (e.g., 

post-stroke (Clark et al. 2010), cerebral palsy (Shuman et al. 2017), Parkinson’s disease 

(Falaki et al. 2017), and spinal cord injury (Perez-Nombela et al. 2017). Although the 

neurophysiology underpinning muscle synergies is not established, feature extraction 

from EMG both well represents the CNS recruitment coordination and may be 

computationally favourable for neuromusculoskeletal modelling. 

Synthesising missing data (ii) – In addition to feature extraction, machine learning 

methods enable synthesis from sparse datasets, once critical features have been extracted 

from large datasets. Instead of the costly, subjective, and tedious processes of manually 

segmenting medical imaging to create three-dimensional models of musculoskeletal 

anatomy, we can deform a template model along the primary modes of shape variation to 

match the individual. The free and open-source framework the Musculoskeletal Atlas 

Project Client (MAP) (Zhang et al. 2014) employs principal component analysis scaling 

as a method to synthesis 3-D bone geometries from sparse data. A principal component 

analysis scaling is more sophisticated than simple linear scaling (available in most 

musculoskeletal modelling software) and can accurately reconstruct bone shapes (Bahl et 

al. 2019; Nolte et al. 2016a; Nolte et al. 2020; Suwarganda et al. 2019; Zhang and Besier 

2017; Zhang et al. 2015), but is limited by the variation contained within the training data. 

For example, large bone reconstruction inaccuracies occur when using an adult statistical 

shape model to synthesize paediatric data (Davico et al. 2019a). An advantage of the MAP 

Client is that muscle origin and attachment points/regions from classic computational 

models and physical models (SOMSO, https://www.somso.de/en/anatomie/) are 

embedded (Zhang et al. 2016). Consequently, when a digital representation of bone is 

deformed, the attached tissues are also deformed. It is recommended future work focus 

https://www.somso.de/en/anatomie/
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on compiling open data as well as statistical shape models of different populations and 

additional musculoskeletal tissues (e.g., ligaments, cartilages, MTU three-dimensional 

shapes, origins and insertions). 

Like musculoskeletal tissue morphometry, EMG can be reconstructed from muscle 

synergies (Bianco et al. 2018) as has been done for rigid multi-body 

neuromusculoskeletal modelling (McGowan et al. 2010; Sartori et al. 2013; Serrancoli et 

al. 2016; Walter et al. 2014). Furthermore, Sartori et al. (2013) have showed the same 

synergies could predict joint moments for different tasks. However, the selection of 

muscle EMGs from which synergies are extracted affects the reconstruction accuracy of 

missing EMG, so it is recommended large data from many muscles, patient populations, 

and tasks are collated for analysis. 

With more open and complete data, in combination with appropriate machine learning 

and morphing methods, synthesizing many types of missing data from incomplete data 

sets is not only possible, but provides many advantages. Specifically, this will enable 

accurate reconstruction of musculoskeletal geometry with minimal imaging 

requirements, which eventually translates to faster and cheaper assembly of personalized 

musculoskeletal models. Moreover, reconstruction of EMG from statistical models may 

remove the onerous requirement of collecting many EMG signals through laboratory 

experiments, which is also resource intensive. This would make EMG analysis more 

viable for routine clinical settings. 

Model generation (iii) – Bones, muscles, and articular soft tissues reconstructed using 

machine learning methods can then be incorporated into high-fidelity subject-specific 

musculoskeletal models. The combination of population-based machine learning with 

model personalization is particularly powerful because the same machine learning 

techniques used to generate population-based statistical models of tissue morphology can 

also be used to investigate effects model personalization on simulation outputs (Clouthier 

et al. 2019). Specifically, tissue geometries can be varied systematically along the primary 

modes of population variance and the effect on model outputs studied. In this way, the 

variation in model personalization is grounded in empirical quantification of natural 

variation, rather than numerically techniques (e.g., Montecarlo). 

Model execution (iv). Different supervised machine learning methods can overcome 

limitations of physics-based models such as missing input data, difficulties in creating 

models, discontinuities in models, and speed of computing. Generally, surrogate models 
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have no underlying mechanistic model of a system’s physics, but rather use mathematical 

methods that map biomechanical input data to output data. 

Recently, Rane and colleagues used a deep-learning approach to train and then 

independently validate a neural network that used motion capture data (i.e., kinematics, 

kinetics, and EMG) to predict muscle forces and internal joint loading (e.g., medial knee 

contact forces) (Rane et al. 2019). Their network predicted the internal biomechanics with 

excellent accuracy, and, critically, the computations were real-time capable (i.e., <80 ms). 

The speed of the neural network predictions, which were previously achieved through 

efficient computational of the equations of motion (Pizzolato et al. 2017b; Pizzolato et al. 

2017c; van den Bogert et al. 2013), is quite important, because for modelling to eventually 

be used in clinical workflows a practical requirement is minimal computational time. 

Continuing in the vein, Dao presented predictions of muscle forces from a deep learning 

method that contains a “long short-term memory” layer in its computational architecture 

(Dao 2019). Network memory purports to enable a system to learn dynamic relationships 

by exposing the network to training data exhibiting these dynamic behaviours. In 

principle, network memory makes the system sensitive to the time history, a dynamic 

property essential to predict time series and evident in real muscle. Dao demonstrated this 

method, when coupled with a learning transfer process, could well predict novel muscle 

forces estimated through static optimization. However, this implementation suffers of the 

same limitation of static optimization, in that it is unable to account for subject-specific 

muscle activations, which are known to vary across individuals and control tasks, as well 

as being affected by training and pathology, thus the generalizability is questionable. 

Another recent study into the utility of neural networks has been to use simple two-

dimensional ultrasound to estimate muscle states during passive and active contractions 

(Cunningham and Loram 2020). The authors trained a convolutional neural network 

based on inputs of joint angle, moment, and EMG with the associated ultrasound image 

of the muscle. The network achieved approximately 50% accuracy in predicting muscle 

state (activity, joint angle, joint moment) from any arbitrary ultrasound image. A criticism 

of their implementation is that isometric and passive tasks were used, neglecting the 

force-velocity relationships present in muscle force production, which are highly non-

linear and dependent on contraction mode (i.e., concentric or eccentric). Likewise, the 

mapping between a 2D simplification of fibre mechanics to 3D muscle function is a 

tenuous one, as such the limited network performance is no unexpected. Finally, for 

muscles that cross two joints, an infinite combination of angles can result in a specific 
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passive and active force production, thus a simplified model of joint postures (from 

wearable sensors) could help make solutions unique. The advantage of the approach of 

Cunningham and Loram is ultrasound sensors are being miniaturized and cheapened at a 

tremendous pace. In the future, many muscles could be simultaneously tracked using 

small and cheap body worn arrays, and subsequently used to assess muscle states during 

dynamic tasks. If accuracy improves, such an approach could limit the reliance on Hill-

type or other forms of muscle modelling to estimate muscle state in favour of a 

measurement passed through a neural network to reveal states. 

More broadly, surrogate models (of which we might include the product of machine 

learning approaches) can be used to avoid difficulties in creating and executing physics-

based models through phenomenological interpolating functions. Examples include the 

use of splines or polynomials fitted to measured muscle tendon lengths and moment arms 

(Bobbert et al. 1986; Spoor et al. 1990). Indeed, Hill-type muscle models themselves are 

phenomenological in nature, mapping muscle lengths, velocities and activation to 

estimate muscle force (Hill 1938; Zajac 1989) through the use of splines, exponential 

and/or trigonometric functions (Delp et al. 1990; Gordon et al. 1966; Millard et al. 2013; 

Zajac 1989). Surrogates can also help with problems of muscle geometries, such as when 

discontinuities exist in muscle-tendon lengths and moment arms. These discontinuities 

often occur in rigid body musculoskeletal models that use line representations of muscles 

passing over wrapping surfaces or articulation points that are conditional on states (i.e., 

via points) (Eskinazi and Fregly 2018; Garner and Pandy 2000; Sartori et al. 2012b). 

These splines or polynomials can provide 1st or 2nd order differential continuity for the 

computation of forward simulations of neuromusculoskeletal biomechanical models 

(Eskinazi and Fregly 2018; Menegaldo et al. 2004; Menegaldo et al. 2006; Sartori et al. 

2012b), which is helpful for reducing non-physiological force estimates caused by rapid 

changes in length (and hence velocities). Moreover, once created, the surrogates 

representing muscle-tendon unit geometries, can be evaluated in real-time as 

implemented in an EMG-driven neuromusculoskeletal model (Pizzolato et al. 2017c). 

Surrogate methods can also reduce need to execute physics-based models when they are 

either computationally demanding (e.g., FEA or elasto-structural models) (Eskinazi and 

Fregly 2018; Ziaeipoor et al. 2019b) or require peculiar inputs (Eskinazi and Fregly 2018; 

Johnson et al. 2019c). Surrogates methods, such as partial least-squares regression or deep 

neural networks, work well on big datasets consisting of input and (labelled) output from 

physics-based models. For example, to evaluate tissue three-dimensional stress and strain 
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patterns (outputs from the computationally demanding FEA) from force and boundary 

conditions (inputs), multiple or partial least-squares regression has been used for muscles 

(Fernandez et al. 2018a; Wu et al. 2014), tendons (Pizzolato et al. 2019b; Shim et al. 

2019a) and bones (Ziaeipoor et al. 2019b), and deep neural networks for whole joints 

(Eskinazi and Fregly 2015). Further, by applying convolution neural networks to large 

datasets of collected and modelled motion capture data, sparse 3-D motion data have been 

used to estimate ground reaction forces/moments (Johnson et al. 2019a) and joint 

moments (Johnson et al. 2019b), paving the way forward to use wearable sensors to 

produce laboratory quality biomechanical data in the real-world (Johnson et al. 2019a; 

Johnson et al. 2018; Johnson et al. 2019c; Pizzolato et al. 2019a; Pizzolato et al. 2017c). 

Data curation, processing, and classification (v) – Experimental data is often acquired in 

an array of diverse file formats from many different instruments, collectively referred to 

as “raw data”. Some curation of these data, involving quality checks to ensure ‘data 

hygiene’, is needed. Digitisation of analogue data from the laboratory (e.g., EMG, ground 

reaction forces) is a common procedure performed using standard analogue-to-digital 

conversion methods and will not be discussed here. However, processing of medical 

imaging data (e.g., MRI, ultrasound) is subjective, time consuming, and tedious. Notably, 

convolutional neural networks  and similar deep learning methods have been used to 

automatically segment various joint  tissues and muscles (Ambellan et al. 2019; Le Troter 

et al. 2016; van den Noort et al. 2018; Zhou et al. 2018) from medical images. Particularly 

promising is automatic segmentation of articular cartilages (Ambellan et al. 2019; 

Chandra et al. 2016; Neubert et al. 2016; Van Dijck et al. 2018; Xia et al. 2014; Yang et 

al. 2015) using advanced machine learning methods, as cartilage can be quite challenging 

to image (e.g., hip must be put under traction to delineate acetabular and femoral 

cartilages, very high resolution scans are required as tissues are small). Automatic and 

accurate segmentation of medical imaging will prove to be a huge boon to the field as the 

costs of manual processing of medical imaging is a major barrier to its regular use in 

computational biomechanics. 

Artificial neural networks have tremendous potential to aid neuromusculoskeletal 

modelling as a tool to classify data quality, such as EMG. Normally, EMG is assessed at 

the time of acquisition and when intended for use in post-processing through visual 

inspection from a trained operator. The operator is looking for high signal to noise, 

minimal DC-offset, phasic muscle activation during common cyclic tasks (e.g., walking), 

and quiet signal when the muscle is at rest. This is time consuming, subjective, and 
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requires trained and experienced personnel. Akhundov and colleagues (2019) used 

AlexNet CNN to classify >47,000 novel EMG signals into quality bins with >98% 

accuracy and negligible false classifications. Their work is an example of how machine 

learning, deployed as an open software tool, can accelerate processing of large data sets 

at human-like accuracy levels. 

3 Recommendations and future directions 

A large amount of time is required to collect data (e.g., medical imaging), and build the 

resulting personalized musculoskeletal models due to the highly manual (Valente et al. 

2017) or semi-automated workflows that require human interventions (Modenese et al. 

2018; Scheys et al. 2006). The manual nature of model personalization means many 

model features are influenced by the user’s knowledge and expertise, as well as the 

repeatability of the workflow itself. Consequently, many personalized models are 

bespoke, acceptable only for technical academic literature. However, when performed in 

a robust manner, personalized models can inform mission critical applications, such 

design of parts for installation in the body or assisting vital functions and can provide 

insight into function following medical procedures (Taddei et al. 2012) . These models 

come with the promise to assist and inform medical procedures, develop biomedical 

devices, be human-machine-interfaces, and solve other real-world clinical problems. If 

these promises are to be realised, model creation steps must be automated, and this 

requires robust vetting and documentation to meet regulatory requirements. 

Although there are commercial software platforms that can be used, we believe the 

endeavour to generate and operate neuromusculoskeletal models will require large scale 

international collaboration. Consequently, we advocate the use of open data, tools, and 

software that are readily customisable and available for widespread adoption with the 

different software and associated models capable of interaction. To this ideal, the 

previously introduced MAP, with its Database, Query, and Client, provides a lightweight 

but powerful open-source framework with solutions to many of these problems. Notably, 

the MAP client a highly automated framework for development of rigid multi-body 

models compliant with OpenSim and solid meshes for subsequent FEA modelling. This 

will enhance interaction between anatomical modelling, multi-body simulation and 

analysis, and FEA. 

There are several features of the MAP Client (the workflow tool of MAP) that are 

essential for engagement with the biomechanics community. First, its dependent software 

libraries are freely available (https://github.com/MusculoskeletalAtlasProject/mapclient), 

https://github.com/MusculoskeletalAtlasProject/mapclient


Page 18 of 40 

but require more contributions with updates and user modifications. Second, the 

underlying software libraries are written or wrapped in Python, which means they are 

cross-platform, widely supported (https://simtk.org/projects/map), and without 

requirement for expensive user licenses. Third, the MAP Client workflows are organized 

through a graphical canvas where users link plugins that perform computational steps. In 

this way, workflows can be exchanged between different groups without the need to 

customize code. Fourth, as many computational steps are standard (e.g., opening a file 

type, serializing data, etc.), there are many plugins already available for use from the user 

community (https://github.com/mapclient-plugins), which reduces the burden on 

researchers to program their own workflows. Fifth, because the MAP Client can interact 

with the native MAP Database, the user gains access to a large database of bone 

geometries already processed into a statistical shape model. This means that with limited 

subject-specific data (e.g., skin surface markers and/or limited medical imaging), the user 

can create accurate personalized bone geometries by reconstructing the principal 

components to fit these subject-specific anatomical points and readily print an OpenSim 

model informed from this geometry. An important endeavour going forward will be to 

continue to contribute dataset of the different musculoskeletal tissues, such as cartilages, 

muscles, and ligaments, to MAP and expand the dataset to specific populations such as 

paediatrics or those with known musculoskeletal conditions. 

Computational biomechanics is a rich and rewarding discipline, but not without 

challenges. If the promise of personalized medicine in the domain of physical therapy has 

not been realized to date, this failure resides in part with the scientists and engineers 

producing technology and establishing the causal mechanisms of pathology. Indeed, the 

limited uptake of our technologies by the clinical community is, in part, because we have 

failed to produce a compelling product. What is needed is a technology that is unified, 

simple to use, robust, fast, and accessible such that it may be applied to myriad examples 

of neuromusculoskeletal conditions that clinicians treat only a daily basis. Despite 

shortcomings to date, the present conditions are ideal for the field of biomechanics to 

move forward and bring these new technologies to address real-world problems. 

In this narrative, we have outlined currently available methods to rapidly generate high-

fidelity personalized models with limited involvement of the human operator. We have 

outlined the software frameworks that can be used to personalize a model from the 

perspectives of form and function. The developers of free and open-source software are 

typically open to work with those who would like to make contributions to their ongoing 

https://simtk.org/projects/map
https://github.com/mapclient-plugins
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development. Machine learning methods have the capacity to drive down costs associated 

with data acquisition (e.g., less medical imaging, reduced instrument requirements in 

laboratories, etc.), rapidly accelerate model creation processes, and launch us out of the 

confines of the laboratory and into real-world settings. 

Taken together, personalized neuromusculoskeletal models will soon be able to estimate, 

in real-time, internal tissue strains in the real world (e.g., during field-based practice, 

work-tasks, or military operations) with minimal imposition on humans (e.g., sensor-

integrated garments). Independently, the required technologies exist: machine learning to 

predict human motion and external loading using trivial measurements (Johnson et al. 

2019a; Johnson et al. 2018), computational methods to estimate real-time applied tissue 

loading (Pizzolato et al. 2017c) and internal tissue strains, and sensor integrated garments 

to measure biological signals. What remains is to intelligently and robustly integrate these 

different technologies into a usable package for research and clinical use. The integrated 

package will shortly be a reality and we hope any of our clinical colleagues reading this 

paper will seize the opportunity to use cutting-edge technology to help their clientele. 
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Table 1 

Model 

Personalisation 

Feature 

Feature 

Extraction 

Synthesising 

Missing Data 

Model 

Generation 

Model 

Execution 

Data 

Digitisation and 

Processing 

1. Segmental and Skeletal 

 †Underlying 

mechanical model 
MLSR - - MLSR - 

 *Morphometry PCA PCA PCA - CNN, PCA 

 ‡Mechanical model 

parameters 
MLSR MLSR MLSR MLSR - 

2. Musculotendon Unit 

 †Underlying 

mechanical model 
PLSR - - PLSR - 

 *Morphometry 

PCA, B-

Splines, 

Polynomials 

PCA PCA 
B Splines, 

Polynomials 
CNN, PCA 

 ‡Mechanical model 

parameters 
- - - - - 

3. Joint      

 †Underlying 

mechanical model 

Splines, 

DNN 
- - 

Splines, 

DNN 
- 

 *Morphometry PCA PCA PCA - - 

 ‡Mechanical model 

parameters 
- - - - - 

4. Muscle Activation Patterns 

 NNMF, GP NNMF, GP - NNMF, GP CNN 

5&6. Movement and External loading 

 CNN, PCA, 

PLSR 

CNN, PCA, 

PLSR 
- 

CNN, PCA, 

PLSR 
- 

✢CNN=Convolution neural network; DNN=Deep neural network; PCA=Principle component 

analysis; MLSR= Multivariate least squares regression; PLSR= Partial least squares regression; 

NNMF= Non-negative matrix factorisation; GP=Gaussian primitives 

†Underlying mechanical model concerns the type of mechanical model (e.g., rigid multi-body, finite 

element method, Hill-type muscle model) and data produced (e.g., kinematics, forces, tissue stress 

and strain) 

*Morphometry regards the static quantitative three-dimensional external and internal anatomical 

structural model representation 

‡Mechanical model parameters pertain to parameters that define how the mechanical model operates 

(e.g., Young’s modulus, Poisson’s ratio, tendon slack length, and muscle optimal fibre length) 
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Figure captions 

Figure 1. Schematic representation of the proposed framework to develop and use subject-specific 

neuromusculoskeletal models. Schematic shows each of the five steps to generate and operate models 

from the different forms of input data. 

Figure 2. (A) Anterior and (B) medial view of three-dimensional reconstruction of the tibiofemoral 

joint with detailed segmentations of the bones (cream), cartilage (green), ligaments (red), and menisci 

(orange). This model is used for rapid development of a close-chain mechanism of subject-specific knee 

motion. 
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