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Placental, maternal, fetal, and technical origins of
false-positive cell-free DNA screening results

Yvette Raymond, BMedSc (Hons); Shavi Fernando, MBBS (Hons); BMedSc (Hons), PhD;
Melody Menezes, BSc (Hons) GDipGenetCouns, PhD; Ben W. Mol, MD, PhD, MSc;
Andrew McLennan, BSc, MBBS (Hons); Fabricio da Silva Costa, MD, MSc, PhD;
Tristan Hardy, MBBS (Hons) MRMed, PhD; Daniel L. Rolnik, MD, MSc, PhD, MPH
The introduction of noninvasive prenatal testing has resulted in substantial reductions to
previously accepted false-positive rates of prenatal screening. Despite this, the possibility
of false-positive results remains a challenging consideration in clinical practice,
particularly considering the increasing uptake of genome-wide noninvasive prenatal
testing, and the subsequent increased proportion of high-risk results attributable to
various biological events besides fetal aneuploidy. Confined placental mosaicism,
whereby chromosome anomalies exclusively affect the placenta, is perhaps the most
widely accepted cause of false-positive noninvasive prenatal testing. There remains,
however, a substantial degree of ambiguity in the literature pertaining to the clinical
ramifications of confined placental mosaicism and its potential association with placental
insufficiency, and consequentially adverse pregnancy outcomes including fetal growth
Introduction
The detection of placenta-derived cell-
free DNA (cfDNA) in maternal plasma
by Lo et al, and the subsequent devel-
opment of prenatal screening technolo-
gies to analyze this genetic material
revolutionized prenatal screening for
fetal chromosome anomalies.1 The
introduction of cfDNA screening,
commonly termed noninvasive prenatal
testing, provided substantial improve-
ments to the accuracy of prenatal
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restriction. Other causes of false-positive noninvasive prenatal testing include vanishing
twin syndrome, in which the cell-free DNA from a demised aneuploidy-affected twin
triggers a high-risk result, technical failures, and maternal origins of abnormal cell-free
DNA such as uterine fibroids or unrecognized mosaicisms. Most concerningly, maternal
malignancies are also a documented cause of false-positive screening results. In this
review, we compile what is currently known about the various causes of false-positive
noninvasive prenatal testing.

Key words: cancer in pregnancy, cell-free DNA screening, confined placental mosai-
cism, genome-wide screening, maternal malignancy, noninvasive prenatal testing,
placental insufficiency, prenatal screening, rare autosomal trisomy, segmental copy
number variation, uterine fibroids, vanishing twin syndrome
screening.2 This is of particular impor-
tance because invasive diagnostic testing
is typically offered as a consequence of
high-risk screening results. These diag-
nostic investigations bring with them
small but significant risks of procedure-
related pregnancy loss, estimated to be
approximately 1 in 500 and 1 in 1000 for
chorionic villus (CVS) and amniocen-
tesis, respectively.3

Noninvasive prenatal testing has a
much lower false-positive rate than
alternative methods of prenatal
screening, with the rate for targeted
screening panels being approximately
0.13%.2 Comparatively, the next most
accurate screening investigation, com-
bined first trimester screening, has a
false-positive rate of 3% to 5%.2,4

However, recent expansions to
MONTH 2023
screening panels to analyze the entire
fetal genome (as opposed to exclusively
targeting chromosomes 21, 18, or 13),
have resulted in an increase in the
number of women obtaining high-risk
results despite carrying a euploid fetus,
prompting the U.S. Food and Drug
Administration to issue a statement of
caution regarding the interpretation of
high-risk screening results.5e7 In addi-
tion, the emerging literature detailing
observations of adverse pregnancy out-
comes associated with high-risk results
even after fetal aneuploidy exclusion has
raised interest in the possible cause of
these false-positive results, and whether
additional interventions are warranted
to monitor these pregnancies.8,9 In this
article, we review the scientific literature
regarding the documented causes of
American Journal of Obstetrics & Gynecology 1
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false-positive noninvasive prenatal
testing results.

Confined placental mosaicism
Contribution to false-positive
noninvasive prenatal testing results
Confined placental mosaicism (CPM)
refers to a situation where the placenta is
affected by genetic anomalies in a mosaic
distribution, but the fetus is euploid.
CPM is classified into types 1, 2, or 3
depending on the cellular lines involved
in aneuploidy (Table). Type 1 CPM de-
scribes aneuploidy exclusively in the
cytotrophoblast, type 2 CPM involves
aneuploidy exclusively in the mesen-
chymal layer, whereas type 3 involves
aneuploidy in both the cytotrophoblast
and mesenchyme.10

CPM is the most widely-recognized
cause of false-positive noninvasive pre-
natal testing (NIPT) results, because the
cfDNA analyzed is of placental, not fetal,
origin.11 Given that most nonmosaic
fetal trisomies are incompatible with life
(other than the common trisomies of
chromosomes 21, 18, and 13 which have
well-documented phenotypical syn-
dromes), it is accepted that these
anomalies are more likely confined to
placental tissues when detected by NIPT
after 10 weeks’ gestation.12,13 In addi-
tion, CPM is not a rare phenomenon,
estimated to affect up to 2% of all
pregnancies.14

A recent meta-analysis by Acreman
et al investigating the diagnostic accuracy
of NIPT for rare autosomal trisomies
(RATs, defined as any autosomal trisomy
excluding 21, 18, or 13) revealed that
approximately 90% of fetuses screened
as high-risk for these anomalies are
TABLE
Characteristics of different types of c

Characteristics

Layers involved

Likely origin

Commonly involved chromosomes

Expected NIPT result

NIPT, noninvasive prenatal testing.
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unaffected by trisomy, with these results
potentially being attributable to CPM
instead.15 Van Opstal et al observed
CPM in all (10/10) term placentas bio-
psied from pregnancies with a false-
positive trisomy screening result; how-
ever, NIPT in these women was per-
formed following a high-risk first
trimester combined screening test result,
which includes placental biomarkers in
the risk algorithm.16 Because trisomy
may disturb placental functioning and
thereby derange these biomarkers, the
frequency of CPM observed in this study
may not be comparable to that in preg-
nancies receiving false-positive results
when NIPT is used as a first-line inves-
tigation.17 It is worth noting that though
this review will focus on CPM involving
trisomy, CPM of segmental copy num-
ber variants may also generate false-
positive NIPT results, although docu-
mentation of this phenomenon occur-
ring is significantly less robust.

Mechanism of aneuploidy and degree
of placental involvement
Aneuploidy involved in CPM may arise
from either meiotic or mitotic errors
(Figure 1). In mitotic errors, there is
nondisjunction during mitosis causing
uneven division of chromosomes into
daughter cells, with one cell becoming
trisomic and the other monosomic. This
can theoretically occur at any point
during development. Therefore, CPM
resulting from these errors may feature
either large proportions of mosaicism
from early nondisjunction events per-
sisting throughout subsequent cell cy-
cles, or only small portions resulting
from mitotic errors later in
onfined placental mosaicism

Type 1 Type 2

Cytotrophoblast Mesenchyme

Mitotic errors

2, 3, 7, 8, 10, 12

High-risk Low-risk

esults. Am J Obstet Gynecol 2023.
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development. Type 1 and type 2 CPM
usually result from mitotic errors
occurring after differentiation of the
cytotrophoblast and mesenchymal
layers.10,18 NIPT analyzes DNA arising
only from the cytotrophoblast, and
therefore type 2 CPM is unlikely to
generate a high-risk NIPT result
(Figure 2).19

Meiotic errors occur when there is a
nondisjunction event in meiosis causing
1 gamete to receive 2 copies of the same
chromosome, resulting in a trisomic
zygote following fertilization. For aneu-
ploidy of this origin to cause CPM, tri-
somy rescue must occur early in
embryonic life after differentiation of the
inner cell mass from the trophectoderm
and, subsequently, uniparental disomy is
a common occurrence among these
cases.18 Placentas affected by meiotic
errors generally have a high proportion
of trisomic cells because the error is
present from fertilization and will persist
through all cellular divisions unless
rescue occurs. These contribute to a high
proportion of type 3 CPM, the most
concerning subtype.10,18 Previous
studies have revealed association be-
tween the percentage of mosaic cells and
the extent of placental functional
impairment.20e22

Patterns of placental mosaicism by
respective chromosomal trisomy
Several studies have sought to establish
patterns regarding the chromosome
involved in CPM, and the mechanism
by which trisomy likely occurred. This
is of clinical importance because the
mechanism of trisomy may predict the
proportion of mosaicism in the
Type 3

Cytotrophoblast and mesenchyme

Meiotic errors

14, 15, 16, 22

High-risk
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FIGURE 1
Mitotic vs meiotic development of confined placental mosaicism
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placenta, and in turn the extent of
functional impairment. CPM involving
trisomy of chromosomes 2, 3, 7, 8, 10,
or 12 tends to arise from mitotic
nondisjunction, whereas trisomies of
chromosomes 14, 15, 16, or 22 are
more likely resultant from meiotic
errors.18,23,24 These represent trends
rather than definitive mechanisms and
there is a degree of ambiguity in the
literature. An exception to this is tri-
somy 16, which almost exclusively re-
sults from meiotic errors causing type 3
CPM.25
MONTH 2023
Confined placental mosaicism and
placental insufficiency
Given the strong correlation between
type 3 CPM and T16, it is unsurprising
that CPM involving this trisomy has
been strongly correlated with adverse
pregnancy outcomes including fetal
American Journal of Obstetrics & Gynecology 3
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FIGURE 2
Confined placental mosaicism types involving trisomy and expected NIPT
result

NIPT, noninvasive prenatal testing.
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growth restriction and stillbirth as a
result of placental insufficiency.26e28 For
other trisomies and chromosome
anomalies, predicting the extent of
placental involvement and in turn the
likelihood of placental insufficiency is
more complex.

A 2022 meta-analysis found that CPM
not involving T16 corresponded to a 3-
fold increase in the risk of a small for
gestational age infant, compared with a
control cohort with euploid placentas.28

The results of this analysis were gener-
ated by findings of CPMonCVS, and did
not include cases of suspected CPM
based on NIPT (high-risk NIPT with a
typical fetal genome revealed by amnio-
centesis), unless direct cytogenetic ana-
lyses on placental tissue were also
conducted. This is important because
4 American Journal of Obstetrics & Gynecology M
NIPT is theorized to be more sensitive
than CVS in the detection of CPM, given
abnormal cfDNA may be released into
maternal plasma by even small areas of
mosaicism, compared with CVS in
which low-level mosaicism may be
missed if not involved in the biopsy
site.29 Therefore, the results of this meta-
analysis may not be applicable in the
clinical setting of assumed CPM based
on NIPT findings alone, because they
represent the risks associated with CPM
involving a higher proportion of
trisomic cells thanwhat may be observed
in NIPT-detected cases.
A small number of studies have sought

to investigate the outcomes of pregnan-
cies with suspected CPM based on NIPT
results; however, the findings have been
limited by incomplete follow-up
ONTH 2023
introducing the possibility of attrition
bias, as well as failure to confirm CPM
with analysis of placental tissue after
confirmation of an euploid fetus.6,8,9

Given that CPM is not the only cause
of false-positive NIPT, failure to confirm
placental aneuploidy may overestimate
the risk profile of NIPT-detected CPM
by accounting for complications result-
ing from other biological explanations
(such as uterine fibroids), or inversely,
could undermine the associated risks by
diluting results with observations from
euploid placentas.30

Persistence of placental mosaicism
throughout pregnancy
Another consideration for suspected CPM
following a high-risk NIPT result is the
possibility of resolution, either by trisomic
rescue or by selective advantage of normal
cell line growth diluting the aneuploidy-
affected site with increasing gestation.
Prior studies in preimplantation genetics
have revealed that there is selection during
the blastocyst stage against proliferation of
cells affected by chromosomal abnormal-
ities, and it is conceivable that this process
may persist into later development.31 In a
study investigating placental karyotypes of
pregnancies with high-risk NIPT results,
Van Opstal et al revealed evidence of
multiple trisomic rescue events, when
previously this was considered to be
confined to a single occurrence during
early embryogenesis.16 By these mecha-
nisms, it is plausible that abnormal
placental cell lineages are diluted and
eliminated with increasing gestation,
culminating in a mostly euploid placenta
at term. It is possible that were NIPT
repeated at a later gestation, initially high-
risk results may resolve to low-risk with
increasing development of the placenta.
The proportion of pregnancies with sus-
pectedCPM,basedonfirst trimesterNIPT
findings, that have placentas affected by
aneuploidy at the end of pregnancy is
currently unknown and is another area
warranting further research.16

Vanishing twin syndrome
Prevalence of vanishing twin
syndrome
Vanishing twin syndrome (VTS) denotes
early demise of a twin in a multiple

http://www.AJOG.org


FIGURE 3
Mechanism of false-positive NIPT result by demise of aneuploidy-
affected twin

NIPT, noninvasive prenatal testing.
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pregnancy, most often during the first
trimester, with another fetus remaining
viable. The detection of VTS has
increased with more frequent use of
early pregnancy ultrasonography and the
incidence has also increased with rising
rates of assisted reproductive technology
and delayed childbearing contributing to
a higher frequency of multiple preg-
nancy conceptions.32 Currently, VTS is
thought to occur in 15% to 35% of twin
pregnancies and in up to 10% of all IVF
pregnancies resulting in a singleton
birth.33,34 Although VTS is observed
more frequently in IVF pregnancies, this
may in part be due to these pregnancies
generally having earlier ultrasounds to
confirm pregnancy viability, and the
frequency in spontaneous pregnancies is
potentially similar.33

The classification of VTS is made
difficult by the lack of clinical indicators,
with the only recognizable symptom
being early pregnancy bleeding,
although this presentation is nonspecific
and only occurs in 25% of VTS cases.35

Routine first-trimester ultrasonography
may miss VTS if not performed before 7
weeks gestation because early embryo
demise commonly results in resorption
of the products of conception.33

Vanishing Twin Syndrome and
noninvasive prenatal testing
Fetal aneuploidy is a major cause of twin
demise in VTS and consequently may
cause an abnormal NIPT result that is
discordant with the genome of the sur-
viving fetus (Figure 3). A demised twin
may release cfDNA for up to 15 weeks
post demise; however, the likelihood of
this cfDNA being detected by NIPT de-
creases with time, such that co-twin
demise is an uncommon cause of false-
positive results received after 14 weeks’
gestations.36

A 2013 study found that VTS
accounted for 15%of false-positive NIPT
results which is likely to be an underes-
timate, given the inherent difficulties in
identifying VTS.33,37 Furthermore, this
study was conducted before the intro-
duction of genome-wide screening
panels and given the lethality associated
with RATs and many other rare chro-
mosomal anomalies, it is likely that the
frequency of false-positive NIPT results
generated by VTS is even greater today.12

Themost frequent implication of VTS on
NIPT is fetal sex discordance, whereby
the Y chromosome from a demised
male twin is detected in a pregnancy
carrying a phenotypically female fetus.11

Single nucleotide polymorphism (SNP)
ebased NIPT platforms are able to
distinguish the genome of a demised
twin but countingebased NIPT
methods (including all currently avail-
able genome-wide screening platforms)
cannot.32
MONTH 2023
The evidence regarding the clinical
consequences of VTS is conflicted. This
is partially attributable to inconsistency
in the literature regarding the definition
of VTS. Studies that include twin losses
beyond the first trimester reveal an as-
sociation between increasing gestational
age at vanishing and worsening preg-
nancy outcomes.38,39 These late losses
represent the minority of cases; however,
with most instances of VTS occurring
early in pregnancy, including those
associated with false-positive NIPT re-
sults. Adverse outcomes for the
American Journal of Obstetrics & Gynecology 5
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surviving twin in these instances are far
less frequent.33,40

Maternal origins of false-positive
noninvasive prenatal testing
Maternal mosaicism
Most commercially available NIPT
platforms (excluding those which utilize
SNP-based methods) are unable to
distinguish between maternal and
placental sources of cfDNA; thus,
anomalies of maternal originmay trigger
false-positive NIPT screening results
(Figure 4).32 A 2017 study by Zhou et al
investigating the causes of false-positive
screening results for trisomies 21, 18,
and 13 revealed that 8.1% were attrib-
utable to maternal segmental duplica-
tions affecting the flagged
chromosome.41 Benign copy number
variants exceeding 500 Kb are thought to
be present in as many as 10% of the
general population, which could in-
crease false-positive NIPT results,
FIGURE 4
Maternal origins of false-positive non

Example of triple X is given for maternal mosaicism

Raymond. Origins of false-positive cell-free DNA screening resu
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although most genome-wide screening
panels are only able to detect those
exceeding 7 Mb.42 More rarely, unrec-
ognized mosaic maternal autosomal
trisomies may generate a high-risk
result, with several documented in-
stances of mosaic T8 and T18 revealed by
NIPT in asymptomatic pregnant
women.43

Sex chromosome aneuploidies (SCAs)
are the most common screening results
found to be attributable to maternal
mosaicism, with 1 study finding that
8.6% of all high-risk SCA results were
due to an abnormal X chromosome
karyotype in the mother.44 Many SCAs,
particularly triple X, present no distinct
phenotypical features, especially when
mosaic. Triple X is the most common
chromosomal anomaly in females, with
a birth incidence of 1 in 1000; however,
only 10% are diagnosed.45 Another
cause of high-risk SCA results attribut-
able to a maternal origin is the age-
invasive prenatal testing results

.

lts. Am J Obstet Gynecol 2023.
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related loss of an X chromosome in
maternal blood cells, resulting in a pos-
itive monosomy X screen for a euploid
fetus.42,46 Russell et al47 found that after
the age of 25 years, X chromosome loss
increased with increasing age. Finally,
maternal blood transfusions or organ
donations from a male donor may also
cause discordant assessment of the sex
chromosomes. More rarely, a donor may
have a mosaic autosomal chromosome
anomaly; however, in the case of a blood
transfusion this is only likely to cause a
false result for NIPT if performed within
4 weeks of the transfusion.48

Uterine fibroids
Uterine leiomyomas (fibroids), are the
most common female pelvic tumors and
are present in an estimated 11% of
pregnant women.49 Fibroids are char-
acteristically monoclonal, comprising
cells with the same genome irrespective
of fibroid size or plurality. Approxi-
mately half of all fibroids, most notably
large fibroids, possess karyotypically
detectable chromosome anomalies.30

The genetic alterations observed in fi-
broids tend to be similar, affecting genes
responsible for regulating cell growth,
hormonal responses, and apoptosis.

Abnormal cfDNA originating from
fibroids provide another cause of false-
positive NIPT results because genetic
anomalies confined to fibroid cells may
be identified during genome-wide NIPT
screening.50 A 2022 study by Scott et al
found that the risk of receiving a false-
positive NIPT result was significantly
higher in women with fibroids and the
risk ratio significantly increased with
increasing number and total volume of
fibroids, although this was only true for
results indicating rare chromosome
anomalies such as RATs, segmental copy
number changes or multiple anomalies,
and not for SCAs or trisomies 21, 18, or
13. It is however worth noting that most
women with fibroids will not receive a
discordant NIPT result, with the same
study observing that the absolute false-
positive rate of NIPT among women
with fibroids remained low, being only
2%.30 Still, given that the false-positive
rate of NIPT among women without fi-
broids is approximately 0.5%, it is
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reasonable that a higher clinical index of
suspicion of a false-positive result be
employed for women with fibroids,
particularly when there are no other in-
dications of fetal aneuploidy, or NIPT
indicates an anomaly known to be
associated with fibroids, such as chro-
mosome 7q deletions.30,51

Maternal malignancies
Undoubtedly, the most alarming
consideration of false-positive NIPT re-
sults has been the discovery that cfDNA
released by maternal malignancies may
be a causative agent. Most circulating
cfDNA in the plasma of pregnant
women is derived from maternal tissues
(w85%e90%) rather than placental
tissue, and this concentration increases
substantially in the presence of cfDNA-
secreting malignancies.52,53 A 2014
study by Bettegowda et al53 found that
among nonpregnant patients with
known metastatic and localized cancers,
80% and 50%, respectively were found
to have abnormal cfDNA on plasma
analysis. The genomic profile of cfDNA
released bymalignant tumors tends to be
grossly abnormal, with multiple chro-
mosomal aberrations.54,55 This
abnormal circulating cfDNAmay trigger
a high-risk genome-wide NIPTresult, or
may cause test failure for targeted
screening panels due to failure of the
bioinformatic algorithm.52,56

Overall, false-positive NIPT results
due tomaternal cancer are rare; these are
thought to occur once in every 10,000
screening tests performed.55 Given the
inherent challenges in identifying ma-
lignancy in pregnancy due to often
benign symptoms beingmisattributed to
those of normal pregnancy, the capacity
of NIPT to identify cancers has been
regarded by many as having potential,
especially in light of ongoing de-
velopments of cfDNA screening tools for
malignancies in oncology.54,57 In the
TRIDENT-2 study, among 231,896
screening results, 51 were interpreted as
being suspicious of malignancy, from
which maternal cancers were subse-
quently detected in 18 (35%), most of
which were hematopoietic in origin.54

The overall cancer incidence in the
study was 0.0096%, which given the
prevalence of malignancy in pregnancy
is approximately 0.1%, suggests that
85% to 90% of cancers in this cohort
were not detected.52 In addition, it re-
mains unknown whether earlier detec-
tion ofmalignancy via NIPT translates to
better clinical outcomes. Therefore,
further development and validation
seems warranted before adoption of
NIPT as a screening tool for maternal
cancers is seriously considered.54

In the absence of universal guidelines,
the management of false-positive NIPT
results that are potentially suggestive of
maternal malignancy, particularly those
involving multiple chromosome anom-
alies, poses a significant challenge to
clinicians. A survey of over 300 certified
genetic counselors found that whereas
77% indicated they would inform pa-
tients of the implications of these find-
ings when detected, over half would feel
uncomfortable or very uncomfortable
counseling families with these results.58

Although precise management path-
ways remain unclear, there is general
consensus that given the potentially
grave consequences of ignoring these
results, further investigations are war-
ranted unless patient preference dictates
otherwise.58,59 Several proposals for the
workup of these patients have been
published, with suggested investigations
generally encompassing medical history,
clinical examination, complete blood
panels, and weighted consideration of
imaging studies such as X-ray or posi-
tron emission tomography scans.54,59,60

It bares mentioning, however, that
these management protocols are largely
formulated on opinion, and to date there
have been no concise guidelines put
forward by any professional obstetrical
organizations.61

Other causes and unexplained false-
positive noninvasive prenatal testing
results
In addition to the biological reasons
discussed above, there are technical
causes of false-positive NIPT. As is the
case with all laboratory investigations,
inaccuracies may result from rare tech-
nical errors.48 A major technical
parameter regarding the accuracy of
NIPT is “fetal” fraction, the proportion
MONTH 2023
of pregnancy-derived cfDNA in the
maternal plasma. Fetal fraction is influ-
enced by various factors, including
gestational age, placental mass, and
maternal body mass index (BMI). High
maternal BMI is associated with lower
fetal fraction values due to a dilution
effect caused by increased circulating
cfDNA in obese women, resulting in an
increased frequency of failed or “no-call”
NIPT results.62 Prior studies have found
that low fetal fraction values, generally
accepted as those <4%, are associated
with an increased frequency of inaccu-
rate NIPT results. False-negative results
are more common in these instances
than false-positive ones.63e67 False-
positive results may also be attributable
to random probability because the cutoff
for a high-risk result is set at a z-score of
3. Each respective chromosome screened
is subject to the same potential error.
Thereby the likelihood of false-positive
results attributable to probability alone
is much higher in the context of
genome-wide screening. Given that
these errors can only be suspected by
exclusion of other biologic causes,
quantifying their attribution to false-
positive results remains difficult.48

Finally, the inherent difficulties in
identifying various causes of false-
positive results, including CPM and
VTS, means that a significant proportion
of inaccuracies receive no explanation. A
2017 systematic review by Hartwig et al
found no obvious biological or technical
reason in 67% of cases of discordant
NIPT results, highlighting the need for
further research into these instances.68

Conclusion and future directions
Although the introduction of NIPT has
undoubtedly offered improvements to
prenatal screening practices, the ramifi-
cations of discordant results warrant
attention, particularly with the expan-
sion of screening panels and subsequent
increases in false-positive results.
Although there are several documented
causes of false-positive NIPT results as
outlined in this review, there is insuffi-
cient evidence available to quantify the
contribution of each to the overall
number of discordant results. Further
research is required to understand both
American Journal of Obstetrics & Gynecology 7
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the frequency and risk profile of CPM in
the context of NIPT, as well as other
causes of false-positive results, including
VTS and maternal origins, to guide the
development of management protocols.
Consequently, the authors of this review
are currently coordinating a prospective
cohort study of women with false-
positive NIPT which aims to under-
stand what proportion are attributable to
CPM vs other biological causes and
examine the outcomes of these preg-
nancies. While awaiting further evi-
dence, it is important that families
opting for NIPT are informed of the
limitations of the screening test,
including the possibility of false-positive
results, to facilitate informed choice. -
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