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Demonstrating nonclassical effects over longer and longer distances is essential for both quantum

technology and fundamental science. The main challenge is the loss of photons during propagation,

because considering only those cases where photons are detected opens a ‘‘detection loophole’’ in security

whenever parties or devices are untrusted. Einstein-Podolsky-Rosen steering is equivalent to an

entanglement-verification task in which one party (device) is untrusted. We derive arbitrarily loss-tolerant

tests, enabling us to perform a detection-loophole-free demonstration of Einstein-Podolsky-Rosen steering

with parties separated by a coiled 1-km-long optical fiber, with a total loss of 8.9 dB (87%).

DOI: 10.1103/PhysRevX.2.031003 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

In quantum mechanics, when two particles are in a pure
entangled state, a measurement of one (say, Alice’s) in-
duces an apparent nonlocal collapse of the state of the other
(Bob’s), as first discussed by Einstein, Podolsky, and Rosen
(EPR) [1]. Schrödinger realized that with a maximally
entangled state, for any given observable Bob chooses to
measure, Alice can, by an appropriate choice of her own
measurement, ‘‘steer’’ Bob’s state into an eigenstate of his
observable and thus predict its outcome [2]. The recent
formalization [3] of ‘‘EPR-steering’’ [4] as a quantum-
information task further generalizes Schrödinger’s notion
by allowing for mixed states and imperfect measurements.

In the EPR-steering task, Alice tries to convince Bob,
who does not trust her, that they share pairs of entangled
quantum particles [5]. The protocol requires Alice and Bob
to compare results from rounds of local ‘‘measurements’’
on each pair of particles. Bob’s measurement is always
genuine, but he cannot assume that Alice’s is—a dishonest
Alice may instead try to cheat. The only way for an honest
Alice to distinguish herself is by demonstrating her ability
to steer Bob’s state. A dishonest Alice may employ power-
ful cheating strategies which to Bob would appear indis-
tinguishable from loss, opening the ‘‘detection loophole.’’
For this reason, Bob cannot simply ignore cases when
Alice does not (or claims not to) detect a photon. Thus
there is a great challenge in verifying entanglement sharing

with an untrusted party over a long distance. Using high-
efficiency detectors can compensate only for moderate
transmission losses. For high losses, what is required is a
more sophisticated theoretical and experimental approach.
In this paper, we demonstrate theoretically and experi-

mentally that EPR-steering can be rigorously performed
even in the presence of arbitrarily high losses. Other pho-
tonic protocols have been implemented in parallel with this
work [6,7] using high-efficiency sources and detectors;
however, they are not arbitrarily loss tolerant—both use
at most three measurement settings and hence are limited
to losses of less than 67%. (We note that Ref. [6] also
closes the locality and freedom-of-choice loopholes [8],
which is of interest in fundamental tests of quantum me-
chanics.) Our experiment uses up to 16 settings, in con-
junction with completely new, maximally loss-tolerant
tests, allowing the first demonstration of Einstein’s
‘‘spooky action’’ [1,9] over a long (1 km), lossy (87%
loss) channel. As such, it opens the door to using
detection-loophole-free EPR-steering inequalities as tools
in quantum-information science, such as guaranteeing
secure one-way entanglement sharing.

A. EPR-steering and the detection loophole

The formal procedure Bob implements to be certain he
has observed EPR-steering is as follows (Fig. 1): (1) Bob
receives his quantum system; (2) Bob announces to Alice
his choice of measurement setting (labeled k) from a
predetermined set of n observables; (3) Bob records his
measurement outcome and Alice’s declared result, Ak;
and (4) steps 1–3 are reiterated to obtain the average
correlation between Alice’s and Bob’s results, known as
the steering parameter Sn. If Sn is larger than a certain
EPR-steering bound Cn, i.e., if it violates the EPR-steering
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inequality Sn � Cn, Alice has successfully demonstrated
EPR-steering. Such a demonstration rules out all ‘‘local
hidden-state models’’ [3,4] for the observed correlations,
i.e., the class of local realistic models in which Bob’s
system is described by a local quantum state and Alice’s
system by a local hidden variable.

The obvious strategy for Alice to cheat is to send Bob, in
each round, a single qubit in an eigenstate of one (chosen at
random) of the n observables and then decline to announce a
result whenever her observable does not correspond to Bob’s
announced measurement. In this way, she can mimic the
perfect correlations of a maximally entangled state on the
trials where she announces a result. Bob cannot be sure
whether her unannounced results are due to cheating or to
genuine loss of her qubit, e.g., by photon absorption or
scattering during transmission. He can only infer entangle-
ment from the correlations if he makes a fair-sampling
assumption that Alice’s loss events were independent of his
setting. This assumption cannot bemade ifAlice is untrusted,
because it opens up a so-called ‘‘detection loophole’’ [10].
Consequently, even if an untrusted Alice is honest, the pro-
tocol just described cannot be used by Bob to verify entan-
glement with her, or to rigorously test Einstein’s ‘‘spooky
action,’’ over a long-distance channel where losses are large.

We use the term ‘‘detection loophole’’ for EPR-steering
because it is analogous to that for Bell inequalities [11].
The latter are similar to EPR-steering inequalities except
that neither Alice nor Bob is trusted [3]. Hence the Bell
detection loophole applies to both parties, while the EPR-
steering detection loophole applies only to Alice. Note that
the detection apparatus is part of a ‘‘party’’; unless the
apparatus is trusted, the party cannot be. Bell-inequality
violations have been demonstrated experimentally
[12–15], albeit with the fair-sampling assumption, or other
extra assumptions [8,10,16–18]. Violating an EPR-steering

inequality is easier than violating a Bell inequality, but
harder than witnessing entanglement (with trusted parties)
[3]. This hierarchy has previously been demonstrated
experimentally (using the fair-sampling assumption) in
terms of both noise tolerance [5] and experimental parsi-
mony [19]. The same hierarchy exists in terms of how
loss tolerant these tests can be without the fair-sampling
assumption, and indeed the EPR-steering tests we perform
here can be made arbitrarily loss tolerant.
EPR-steering has previously been demonstrated in opti-

cal systems without the fair-sampling assumption, using
high-efficiency homodyne detectors [20,21]. However,
unlike the protocols introduced here, those protocols using
two-mode squeezed states and quadrature measurements,
in which Alice gets a result every time, cannot be used for
losses greater than 50%. The reason is that if the channel
losses are greater than 50%, then an untrusted Alice could,
as far as Bob knows, actually have a zero-loss channel, and
could be using a 50:50 beam-splitter to effect a simulta-
neous measurement of both quadratures. Such a dual mea-
surement would allow Alice to choose, after the fact, which
quadrature to report as having been measured, with no
actual measurement choice on her part. But measurement
choice by Alice is essential to any demonstration of EPR-
steering. In fact, this limit of 50% loss holds no matter how
many different quadratures Alice may measure [22,23].
In contrast to the above continuous variable versions of

the EPR paradox, and to the photonic protocols used in
other recent experiments [6,7], the type of photonic proto-
col we introduce works for arbitrarily high losses. As a
consequence, ours is the first that can overcome long-range
transmission losses due to scattering in the atmosphere or,
as in our experiment, absorption in optical fiber. Indeed,
our demonstration through a 1-km fiber is a key technical
advance, showing theway forward to long-range application
of EPR-steering, whether for fundamental investigations
of quantum mechanics or for quantum-communications
applications.

B. EPR-steering and quantum cryptography

Nonclassical effects such as Bell nonlocality and EPR-
steering not only illuminate fundamental issues in quantum
mechanics; they also have direct applications in quantum
technology. For instance, the security of quantum key-
distribution (QKD) systems requires the existence of a
channel that can transmit entanglement [24]. The violation
of a Bell inequality proves the existence of such a channel
with no need for any assumptions about the devices in-
volved. This allows for device-independent (DI) secure
QKD [25]: The two parties can establish a secret key
even if they bought their equipment from an adversary.
Bob’s ability to verify entanglement via EPR-steering
provides a similar resource for quantum communication.
Specifically, it has recently been shown [26] that per-

forming an EPR-steering task allows for one-sided DI

Bob
Alice 

(1)Entangled 
photon 
source

(3)

(2)

1-km 
fiber

FIG. 1. Conceptual representation of the EPR-steering task. In
each round of the protocol, Bob (1) receives a photonic qubit,
(2) announces a measurement setting, k, and (3) receives a
‘‘measurement’’ result from Alice. See text for details. Bob
must assume that Alice controls the source, her line, and her
detectors (all enclosed in the gray box). Bob implements the
measurement �̂k (pink cube) and monitors the measurement
outcome (blue cube). In the case of an honest Alice, Bob’s qubit
is half of an entangled pair and Alice’s measurement results are
genuine; Alice measures in the same direction as Bob (yellow
cube) using an identical apparatus. We demonstrate EPR-
steering over 1 km of optical fiber inserted in the line on
Alice’s side (green dashed box).
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secure QKD, appropriate when Bob (at a base station, say)
can trust his detection apparatus but cannot trust that of
Alice (a roaming agent). When Bob trusts his device, this
provides an equivalent degree of security as that of a Bell-
inequality violation [11]. In both cases, it is essential for
the security of the protocol that there be no detection
loophole. By contrast, the locality and freedom-of-choice
loopholes are not important in the cryptography context,
because it is a necessary assumption of security proofs that
no information escapes from Alice’s or Bob’s laboratory
unless they allow it.

II. LOSS-TOLERANT EPR-STEERING
INEQUALITIES

A. New EPR-steering bounds as a function
of Alice’s heralding efficiency

In EPR-steering, Bob trusts his own apparatus, so he can
discard those experimental runs where he fails to detect a
photon, without having to invoke the fair-sampling as-
sumption. Because Bob’s detector settings are known
only to him prior to the detection of his photon, Alice
cannot exploit the loss of Bob’s photon—either inside or
outside his laboratory. However, Bob cannot trust any
claims Alice makes about the propagation losses or the
efficiency of her detectors. In particular, he does not trust
Alice’s claims about how often she sees a photon, condi-
tional on his detecting one. Rather, Bob makes use only of
Alice’s heralding efficiency �: the probability that she
heralds Bob’s result by declaring a non-null prediction
Ak for it. This is a quantity determined by Bob wholly
from the experimental frequencies of events to which he
has direct access.

The key result of this paper is that Bob can close the
EPR-steering detection loophole, even with arbitrarily high
loss, by making two modifications to the EPR-steering task
described above. First, he must calculate Alice’s heralding
efficiency � from the protocol data. Second, he must
compute a new, �-dependent bound Cnð�Þ, which the steer-
ing parameter Sn must exceed in order to demonstrate
EPR-steering. This procedure, described in detail below,
involves determining Alice’s optimal ‘‘cheating strategy’’
for a given �. Her optimal strategy comprises probabilistic
combinations of deterministic strategies. Of course if Alice
‘‘cheats’’ like this she will not actually fool Bob, as she will
not violate the EPR-steering inequalities we derive.

For every set of n observables measured by Bob, there
will be a different EPR-steering inequality. Intuitively, the
most useful inequalities will result from measurements
that are as mutually distinct as possible. For qubits, this
suggests using measurement axes regularly spaced on
the Bloch sphere. Only the vertex-to-vertex axes of the
Platonic solids meet this criteria, and, as in Ref. [5],
these will be used to define our measurement sets. The
exception is n ¼ 16, for which we create a geodesic solid

by combining the axes of the dodecahedron (n ¼ 10) and
its dual, the icosahedron (n ¼ 6) [27].
Bob’s measurements are described using quantum

observables—in this case Pauli matrices �̂B
k for

k 2 f1; . . . ; ng—but we make no assumption about what
Alice is doing and thus represent her declared results by a
random variable Ak 2 f�1; 1g. Generalizing the inequal-
ities derived in Ref. [5], we derive new bounds Cð�Þ. When
the experimental statistics, postselected on Alice’s conclu-
sive results, violate the new inequality

S n � 1

n

Xn
k¼1

hAk�̂
B
k i � Cnð�Þ; (1)

they demonstrate EPR-steering with no detection loophole
(without relying on a fair-sampling assumption for Alice).

B. Determining the EPR-steering bounds Cnð�Þ
In the idealized scenario where Alice declares a non-null

result for all emitted pairs of systems (� ¼ 1), the EPR-
steering bound Cn ¼ Cnð� ¼ 1Þ in Eq. (1) is given by [5]

Cn ¼ max
fAkg

�
�max

�
1

n

X
k

Ak�̂
B
k

��
; (2)

where �maxðÔÞ is the maximum eigenvalue of Ô: Cn is
derived by considering the maximum achievable correla-
tion when Alice sends a known (to her) state j�i to Bob.
Moreover, the eigenvectors associated with the �max for
every set fAkg that attains the maximum define the set of
optimal states fj�iig which Alice can send to Bob in order
to attain the bound. These are known as Alice’s optimal
‘‘cheating ensemble’’ (although of course a dishonest Alice
cannot actually cheat Bob). For two qubits, the maximum
value of Sn that can be achieved is unity, and this requires a
maximally entangled state, while Cn < 1 for n > 1, as long
as Bob’s settings correspond to different observables.
If, on the other hand, Alice does not always declare a

result Ak when requested, then she could be using her
knowledge of Bob’s state to postselect her outcomes in a
way that allows her to violate the bound Cn even without
entanglement, hence, the need to calculate a (higher)
bound Cnð�Þ. The bounds Cnð�Þ are, by definition, the
highest correlations which Alice can achieve by using
cheating strategies, in which she sends a known (to her)
pure state j�i to Bob drawn from some ensemble which
depends now upon both n and �.
To determine Alice’s optimal cheating strategies, we

first consider deterministic strategies, in which Alice’s
declaration of þ1, �1, or null as a result is determined
by the state she sends, and the setting k that Bob specifies.
For each state j�i sent to Bob, we give Alice the power
to declare her outcome only if Bob requests a result for
k within a particular subset (depending on �) containing
m elements, and the power to declare a null result for
the remaining n�m. This gives an apparent efficiency
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� ¼ m=n. For a givenm, the set of states which allow Alice
to maximize her correlation defines a ‘‘cheating en-
semble.’’ When Alice chooses states from a single cheating
ensemble, she is employing a deterministic cheating strat-
egy. In such a strategy, the optimal bound on Sn that she
can attain is given by

DnðmÞ ¼ max
fAkgm

�
�max

�
1

m

X
k

Ak�̂
B
k

��
; (3)

where the maximization is over sets fAkgm, for which
exactly m of the Ak take values �1, while the rest are
null (and can be taken to have value 0 for mathematical
convenience). Moreover, performing the maximization re-
veals the optimal cheating ensemble, as each set fAkgm for
which the maximum �max in Eq. (3) is attained defines a
state: the eigenstate corresponding to that �max. In general,
there are several such sets fAkgm which attain the maximum
in Eq. (3), and we will use pðmÞ to denote their number,
which is thus also the number of states in the optimal
cheating ensemble for a given m. Examples of such cheat-

ing ensembles fj�ðmÞ
i igpðmÞ are shown in Fig. 2, for n ¼ 10

and m 2 f2; 3; 4; 5g.
However, Alice does not necessarily have to choose

strategies where exactly m out of her n measurements are
non-null. Indeed, the optimal deterministic strategies just
considered are not necessarily the optimal strategies for
Alice even for an apparent efficiency such that �n is an

integer m, and clearly do not apply if �n is not an integer.
For any �, we must consider Alice’s most general strategy:
a probabilistic mixture of optimal deterministic strategies
of different m, with weights wm. Because we are consid-
ering linear inequalities, the bound yielded by this strategy
for any � is simply

Cnð�Þ ¼ max
fwmg

�Xn
m¼1

wmDnðmÞ
�
; (4)

with the constraints 0 � wm � 1,
P

n
m¼1 wm ¼ 1, andP

n
m¼1ðm=nÞwm ¼ �. By linearity, the maximum is

achieved with at most two nonzero wms, so the bound
Cnð�Þ can easily be evaluated numerically for any finite
set of observables.

Note that the optimal cheating ensembles fj�ðmÞ
i igpðmÞ

have the same symmetry as the measurement settings
(Lemma 1 of Ref. [3]), which implies that Alice’s states
are identically arranged around each of Bob’s settings. As a
consequence, since Alice chooses a state at random from
her ensemble, the probability of Alice’s claiming a null
result is independent of Bob’s setting. This is an obvious
condition which Bob could place upon Alice’s results (to
be convinced that Alice’s null results really are null results)
and for less symmetric setting arrangements (such as the
n ¼ 16 arrangement), this is an additional condition which
could restrict Alice’s choice of cheating strategies. Such a
restriction can only reduce the effectiveness of Alice’s
cheating strategy, thereby lowering the bound Cnð�Þ on
what she can achieve without entanglement. Thus any
demonstration of EPR-steering without such a restriction
would still be valid with that restriction.

FIG. 2. Alice’s optimal cheating ensembles for n ¼ 10 and
� 2 ½0:2; 0:5�. This figure shows, in Bloch space, the directions
of the states in Alice’s optimal cheating ensembles that set the
bound Cnð�Þ for EPR-steering when � 2 ½0:2; 0:3� (on the left)
and when � 2 ½0:3; 0:5� (on the right), for the exemplary case of
n ¼ 10. The black dots (visible only on the left) define Bob’s
measurement axes: the vertices of the dodecahedron. For the
deterministic strategy where Alice gives non-null results for only
two of Bob’s settings (m ¼ 2), the red dots (on the left) define
the optimal states that Alice should send, and likewise for m ¼ 3
(yellow; both images), m ¼ 4 (green; right), and m ¼ 5 (blue;
right). For any heralding efficiency 0:2< �< 0:3 (left), Alice’s
optimal strategy is nondeterministic: a mixture of the � ¼ 0:2
strategy (red) and the � ¼ 0:3 strategy (yellow). For any 0:3<
�< 0:5 (right), a dishonest Alice should use a mixture of the
� ¼ 0:3 (yellow) and � ¼ 0:5 (blue) strategies. Interestingly, the
m ¼ 4 (green) deterministic strategy is never used; this is seen
also in Fig. 3 (where the corresponding point does not lie on the
curve representing the optimal strategy).
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FIG. 3. Loss-dependent EPR-steering bounds. The solid curves
are the theoretical bounds Cnð�Þ on Sn for demonstrating EPR-
steering with no detection loophole, for n ¼ 2, 3, 4, 6, 10, 16, and
1. The same-colored symbols (some of which do not lie on the
curves) correspond to the steering parameter Sn which is theoreti-
cally obtainable by a cheating Alice using a deterministic strategy
(see text). The dashed purple box is shown in detail in Fig. 5
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The theoretical values for Cnð�Þ are shown in Fig. 3. As
expected, Cnð�Þmonotonically decreases with �; the � ¼ 1
bounds correspond to those derived in Ref. [5]. The key
point is that, for any arrangement of n different measure-
ment settings, it is possible to steer using a maximally
entangled state if and only if � > 1=n. This is because Sn

can reach its maximum value of 1 with maximally
entangled states, while the only way for Alice to obtain
Sn ¼ 1 by cheating would be to send a state aligned
perfectly with one of Bob’s measurement directions, and
giving a null result for the other n� 1 settings.

It can finally be shown (see Appendix A), that for an
infinite number of measurements (n ¼ 1) uniformly dis-
tributed on the Bloch sphere, C1ð�Þ ¼ 1� 1

2 �. That is,

there is a gap between the maximum quantum correlation,
S1 ¼ 1, and the EPR-steering bound C1ð�Þ for any � > 0.
Thus, it becomes possible to demonstrate steering with
arbitrarily high losses, as long as Alice and Bob have a
sufficiently high-fidelity singlet state and employ a suffi-
ciently elaborate many-setting measurement scheme.

III. EXPERIMENTAL DEMONSTRATION
OF EPR-STEERING

A. Detection-loophole-free EPR-steering

We experimentally demonstrated detection-loophole-
free EPR-steering using photonic Bell states generated
from an efficient spontaneous parametric down-conversion
(SPDC) source—a polarization Sagnac interferometer,
based on Refs. [28,29]. (See Fig. 4 and Appendix B.)
Note that, in a genuine quantum communication context,
Bob must choose his setting independently from one shot
to the next. For the purposes of our demonstration, this
level of rigor was not imposed. In addition, since we (the
experimenters) control Alice’s implementation of honest
or dishonest strategies, there is no need to force a time
ordering of events 1–3. In a field deployment, the protocol
would require strict time ordering, which could be en-
forced using an optical delay line for Alice.

A high-fidelity maximally entangled state was required
to ensure a high value of Sn. Our tomographically recon-
structed state [30] had a fidelity of 0:992� 0:002 with the
ideal singlet state. We implemented the n-setting measure-
ment schemes for n ¼ 3, 4, 6, 10, and 16, and our experi-
ments yielded values Sn � 0:99 for each case. (See Fig. 5.)
This gives an absolute (n ¼ 1) lower bound on Alice’s
required heralding efficiency of � � 0:02. Our source and
detector configuration achieved a maximum heralding ef-
ficiency of � ¼ 0:354� 0:001 (as calculated by Bob in the
EPR-steering protocol), far above our minimum require-
ment of 0.02, enabling us to demonstrate EPR-steering for
n ¼ 3 and greater (Fig. 5), with no detection loophole.

B. Experimental demonstration over 1 km of fiber

Demonstrating transmission of entanglement over a
channel such as an optical fiber is important for real-world

applications, such as one-sided DI QKD. If the entangled
source were close to Alice, losses in the line would not be a
problem because Bob can postselect his detected events.
But if this were not the case, for instance if Alice were a
mobile field agent and the entangled source were at a base
station, line losses to Alice would be critical and loss-
tolerant protocols such as ours must be used.
Transmission through a single-mode optical fiber causes

the additional problems of polarization mode dispersion
(PMD) [31] and uncompensated birefringence, which re-
duce Sn. Thus, to test the robustness of our protocol, we
inserted 1 km of single-mode fiber between the Alice-side
output of the Sagnac interferometer and Alice’s measure-
ment apparatus (see Fig. 4). This introduced additional
losses of 4.3 dB, and for our source we found � ¼ 0:132�
0:001 for n ¼ 10 and � ¼ 0:130� 0:001 for n ¼ 16. We
successfully demonstrated EPR-steering with this setup,
observing S10 ¼ 0:985� 0:006 and S16 ¼ 0:981� 0:006
(Fig. 5), 2.6 and 5.3 standard deviations above C10ð�Þ and
C16ð�Þ, respectively. Based on the intrinsic fiber losses, we
estimate that it would still be possible to accomplish the

FIG. 4. Schematic drawing of the experimental apparatus for
demonstrating EPR-steering with no detection loophole. Bob’s
apparatus is contained within the white box, while everything
else, including the source, is assumed by Bob to be Alice’s (gray
box), per Fig. 1. A 410-nm 1-mw CW laser pumps a 10-mm-long
periodically poled potassium titanyl phosphate (PPKTP) crystal,
creating the maximally entangled singlet state at 820 nm.
Measurement settings depend on the orientation of half- and
quarter-wave plates (HWP and QWP), mounted in motorized
rotation stages, relative to the axes of polarizing beam splitters
(PBSs, blue cubes). After filtering (Bob, 2-nm interference filter;
Alice, long pass filter), photons are coupled to single-mode fibers
leading to single-photon-counting modules and counting elec-
tronics. For some experiments, we insert a 1-km fiber coil
between Alice’s detection apparatus and the source. Because
Bob trusts his own apparatus, it is sufficient for him to use only
one detector (gray hemisphere), corresponding to one (varied at
random) of the two eigenstates of his observable �̂B

k . For further

details, see Appendix B.
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EPR-steering task—with the detection loophole closed,
with n ¼ 16 measurement settings and with all other ex-
perimental parameters the same—through about 2 km of
single-mode optical fiber. Thus we can see that an honest
Alice can convince Bob that they share entanglement, even
in the presence of very significant photon losses.

C. Saturating the cheating bounds
using a dishonest Alice

We also approached the EPR-steering protocol experi-
mentally from the point of view of a dishonest Alice, by
implementing Alice’s optimal cheating strategies, which
were determined as described above.

We thus experimentally generated the states in the opti-
mal ‘‘cheating ensembles,’’ to test for correspondence
between Cnð�Þ and the maximal correlation Scheat

n attain-
able by a dishonest Alice. The experimental apparatus for
demonstrating Alice’s optimal cheating strategy (see
Fig. 6) involved single-qubit state preparation on Alice’s
side, followed by single-qubit measurement on Bob’s side.
Alice’s state preparation involved taking single photons
from one arm of a polarization-unentangled SPDC source.
Single-qubit states encoded in polarization were prepared
using a polarizing beam splitter (PBS), half-wave plate
(HWP), and quarter-wave plate (QWP), and Bob’s mea-
surement device was identical to that used in the case of
genuine EPR-steering. The state preparation stage of the
cheating experiment lets Alice send any pure state to Bob,
while the measurement stage represents Bob’s ability to
freely draw measurements from the set f�̂B

k gn, with n ¼ 3,
4, 6, 10, and 16, as in the case of genuine EPR-steering.
Additionally, Bob can implement the n ¼ 2 settings case,
which corresponds to a pair of maximally complementary
measurement settings. Alice prepares one of the pðmÞ
states in the optimal deterministic cheating ensemble

fj�ðmÞ
i igpðmÞ, each of which is (theoretically) equally good

at enabling Alice to predict Bob’s outcome, given that she
is obliged to give a non-null result only for m of Bob’s n
settings. As explained above, for a given �, Alice’s optimal
strategy is usually a mixture of two different cheating
ensembles (m0 and m00, say), with weights wm0 and wm00 ¼
1� wm0 . In a noiseless case, Bob’s observed Scheat

n is
therefore predicted to be

Scheat
n ¼ 1

n

Xn
k¼1

X
m¼m0;m00

wm

1

pðmÞ
XpðmÞ

i¼1

AðmÞ
k;i h�ðmÞ

i j�̂B
k j�ðmÞ

i i

¼ Cnð�Þ: (5)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.95

0.96

0.97

0.98

0.99

1

Alice’s heralding efficiency ε

S
te

er
in

g 
pa

ra
m

et
er

 S
n

 

 
n=3
n=4
n=6
n=10
n=16
n=∞

FIG. 5. Experimental demonstration of EPR-steering on an enlarged section of the dashed purple box in Fig. 3, showing the
experimental data. The data points show the experimental values for the steering parameter Sn obtained for n ¼ 3, 4, 6, 10, and 16
measurement settings. The d points represent data straight from the entangled source, before the fiber is installed. The j points (for
n ¼ 10 and 16 only) represent data collected after the single-mode fiber was installed, demonstrating loss-tolerant EPR-steering with a
transmission distance of 1 km. The error bars (1 standard deviation) take into account systematic measurement errors and Poissonian
photon-counting noise. The � points are experimental cheating data (shown in detail in Fig. 7), from which we derive Alice’s closest
approach using a cheating strategy (dashed curves).

Bob
Alice (dishonest)

(1)

(3)

(2)

Single photon
source

FIG. 6. Conceptual representation of the EPR-steering task for
a dishonest Alice (to be compared to Fig. 1). In each round of the
protocol, Bob (1) receives a photonic qubit, (2) announces a
measurement setting, k, and (3) receives a ‘‘measurement’’ result
from Alice. Bob must assume that Alice controls the source, her
line, and her detectors (all enclosed in the gray box). In the case
of a dishonest Alice, Alice’s optimal ‘‘cheating’’ strategy in-
volves sending a single qubit prepared in a pure state j�ii (using
a single photon with a polarization state prepared by the corre-
sponding unitary Ûi), chosen from an optimal set. She announ-
ces a ‘‘measurement result’’ Ak, or a null result (announces

nothing), from a look-up table AðmÞ
k;i based on her preparation

and Bob’s announced measurement direction. Note that the
bounds for demonstrating EPR-steering, with no detection loop-
hole, are set precisely to ensure that Alice cannot actually
cheat—a dishonest Alice will fail to surpass the upper bound
of any EPR-steering inequality.
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Here, AðmÞ
k;i 2 fþ1; 0;�1g (stored as a look-up table, in

which we treat a null result as 0) is the optimal announce-

ment for Alice given that she has sent state j�ðmÞ
i i and Bob

has announced that he is measuring along direction uk.
Using this technique, we experimentally demonstrated

that Alice could indeed come close to saturating (but not
exceed) the bounds Cnð�Þ; see Figs. 5 and 7. The small
discrepancies between the measured Scheat

n and the theo-
retical bound Cnð�Þ arose from slightly imperfect state
preparation and measurement settings.

IV. DISCUSSION

We have thus closed the detection loophole in a pho-
tonic quantum nonlocality experiment. Our photonic pro-
tocol works with arbitrarily large transmission losses.
Specifically, the novel EPR-steering inequalities that we
derived allow for arbitrarily low heralding efficiency. We
demonstrated the violation of such inequalities over a 1-km
optical fiber, with a heralding efficiency for Alice of
�8:9 dB (13%). Increasing the number of settings, the

state fidelity, or Alice’s detection efficiency would allow
for demonstrations of the EPR effect over substantially
longer distances.
The ability to keep the EPR-steering detection loophole

closed with large losses opens new possibilities for security
in long-range transmission of photonic entanglement over
optical fiber, through free space [32], or to a satellite [33].
This has potential applications in cryptography, as well as
allowing tests of Einstein’s ‘‘spooky action’’ over unpre-
cedented distances.
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APPENDIX A: CALCULATION OF C1ð�Þ FOR
INFINITELY MANY OBSERVABLES

We consider here the case n ! 1, where Bob use infi-
nitely many observables with uniform distribution on the
sphere.
Let � 2 ½0; �� be the angle between Bob’s measurement

direction and the pure state j�i sent by a dishonest Alice, so
that the expected correlation between Bob’s result and
what Alice reports is j cosð�Þj. Clearly, if Alice is allowed
an apparent efficiency �, her optimal strategy is to report a
non-null result only when j cosð�Þj> cos��, where �� is
the half-angle of a cone which subtends a solid angle �
satisfying �=4� ¼ �=2. That is, cos�� ¼ 1� �. Using
d� ¼ dðcos�Þd�, this optimal strategy gives a correla-
tion, averaged over the cases where Alice gives a non-null
report, of

C1ð�Þ¼1

�

Z 2�

0

d�

2�

�Z �1þ�

�1
þ
Z 1

1��

�
dðcos�Þ

2
jcosð�Þj

¼1��

2
;

(A1)

as mentioned in Sec. II B. Note that this is independent of
the state that Alice sends.

APPENDIX B: EXPERIMENTAL APPARATUS

In this Appendix we provide more technical details on
the experimental setup we used to demonstrate detection-
loophole-free EPR-steering.

1. Photon sources

Our source used a Toptica iBeam 405 (with 410-nm
diode) laser, operated with an external diffraction grating
(Thorlabs GR25-1204) in the Littrow configuration. The
output power after the external grating is 3 mW. The
grating output is fiber coupled and pumps a 10-mm-long
periodically poled potassium titanyl phosphate (PPKTP)
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FIG. 7. Experimental data for a dishonest Alice. The solid
curves are the bounds Cnð�Þ on Sn, for n ¼ 2, 3, 4, 6, 10, and
16. The vertical axis shows a scaled version of the steering
parameter, nSn, purely for clarity when comparing the different
bounds. The same-colored �s correspond to the experimentally
observed steering parameter Scheat

n obtained by a cheating Alice
using a deterministic strategy. The dashed lines, derived from the
data points, show the maximum Scheat

n that Alice could achieve
by combining two different deterministic strategies to simulate a
heralding efficiency �. Error bars are smaller than marker
dimensions.
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crystal bidirectionally. The PPKTP crystal is embedded
in the Sagnac interferometer [28,29], giving rise to
polarization-entangled pairs at 820 nm via spontaneous
parametric down-conversion. The Sagnac entangled source
can achieve a high heralding efficiency (� ¼ 0:354�
0:001), because the collinear quasi-phase-matching of the
PPKTP crystal provides SPDC modes that are approxi-
mately Gaussian, so that efficient coupling to single-
mode fiber is possible. At one output (Alice’s side), we
use a high-transmission long pass filter to maximize source
efficiency, while at the other output (Bob’s side), we use a
2-nm interference filter to filter the photons and reject
background light. A dichroic mirror separates the down-
conversion mode from the pump mode in Bob’s output
arm. The outputs are coupled into single-mode fibers and
connected to Perkin-Elmer single-photon-counting mod-
ules (SPCM-AQR-14-FC) and counting electronics. The
silicon avalanche photodiodes have a quantum efficiency
of approximately 50% at 820 nm. Using a coincidence
window of about 3 ns, a coincidence count rate of ap-
proximately 6000 counts per second is achieved. The
measured contribution in the coincidence rate from
double-pair SPDC emission events is very small, approxi-
mately 0.1 per second.

For the single-photon source (used in the experimental
implementation of Alice’s optimal cheating strategy), one
arm of a polarization-unentangled critically phase matched
type-I bismuth triborate down-conversion source is used.
This was pumped by a 60-mW 410-nm CW laser.

2. 1-km transmission channel

A 1-km-long single-mode fiber at 820 nm (Thorlabs
SM800-5.6-125) was introduced between Alice’s output
of the Sagnac interferometer and her measurement appa-
ratus. As well as introducing loss, the fiber implements an
unknown polarization unitary operation due to fiber bi-
refingence. We undo this unitary operation in two stages.
First, we correct the state in the Z basis using a polariza-
tion fiber controller, creating the state jc i ¼ 1ffiffi

2
p ðj10i þ

ei�j01iÞ. Second, we set the phase, �, to �
2 using a tilted

half-wave plate set at its optic axis. The slight decrease in
the steering parameter over the transmission distance is
due to a combination of fiber noise (e.g., polarization
mode dispersion causing decoherence [31]) and minor
errors in performing the polarization correction.

APPENDIX C: EXPERIMENTAL
ERROR CALCULATION

In order to be sure that we have demonstrated EPR-
steering, we need to know that the uncertainty in our
measured Sn is not so large as to make it possible that
the true value would be less than the EPR-steering bound
Cnð�Þ. By ‘‘true value,’’ we mean the value that would be
obtained if all of the assumptions that went into deriving

the bound Cnð�Þ were satisfied, namely, that Bob’s
measurements are perfect, and that the experiment yields
the true quantum averages (which would require an infinite
sample size). That is, we need to take into account (1) im-
perfection of Bob’s measurements that could lead to an
overestimation of Sn (systematic error), and (2) statistical
errors in Sn. These are determined in Secs. C 1 and C 2
below, respectively. Note that we do not have to worry
about systematic errors in Alice’s measurement settings,
since we make no assumptions about them in order to
derive the EPR-steering bound.

1. Systematic error

In an ideal experiment, Bob’s measurement corresponds
to projecting his state onto one out of two orthogonal pure
states, represented by opposite vectors uk and �uk on the
Bloch sphere. Bob’s actual measurement will be nonideal
in two ways. First, because the manufactured PBS has only
a finite extinction ratio, the ‘‘projection operators’’ for
Bob’s measurements will actually comprise a projector
mixed with a very small (equals approximately 0:01)
amount of the identity operator. This can only ever de-
crease the correlation with Alice’s results, so if Bob takes
this effect into account, it can only be to Alice’s benefit, by
making it easier for her to convince him that she is steering
his state. Therefore, to subject our demonstration of steer-
ing to the highest level of rigor, we can ignore this im-
perfection. The second sort of imperfection is that the true
states onto which Bob projects, corresponding to vectors
~uk and �~u0

k on the Bloch sphere, differ slightly from uk

and �uk, respectively. Note also that in our experiment
Bob used only one detector, for reasons of space efficiency;
thus he needs to implement two different projections for
each choice of setting k, and hence ~u0

k is not necessarily

equal to ~uk. These errors arise from Bob’s inability to
perform rotations on the Bloch sphere to arbitrary accu-
racy, for the following reasons: (a) due to imperfect align-
ment of the optic axis of his wave plates (QWP and HWP)
with projection axis (�̂Z) of the PBS, (b) the repeatability
error in the motorized stages (setting the angles of both
wave plates), and (c) due to wave-plate imperfections—
their polarization retardance is quoted only to within
��=250. The magnitudes of all of these errors is system-
atically determined, and a Monte Carlo simulation includ-
ing all of the aforementioned factors allows us to determine
the maximum infidelity of Bob’s actual measurements (~uk)
with his ideal measurements (uk). Unlike the error due to a
finite PBS extinction ratio, Bob’s measurement misalign-
ment can, in principle, make it easier for Alice to fake
steering his state. Therefore it is essential to bound the
error in our measured Sn due to this sort of error.
Because Bob uses only a single detector, we define the

outcome Bk ¼ þ1 as being Bob getting a photon and
‘‘discovering’’ that he was projecting in the direction ~uk,
and Bk ¼ �1 likewise but projecting in the direction�~u0

k.
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Provided (as is the case) that Bob chooses to project in the
directions ~uk and�~u0

k with equal probability, if there were

no misalignment errors, then the rate of occurrence of the
event ‘‘Bk ¼ þ1 or Bk ¼ �1’’ would be independent of
Alice’s results. But in the nonideal situation we cannot
make that assumption. Therefore the observed probabil-
ities ~PðAk; BkÞ for the four possible coincidences (i.e.,
postselected on both Alice and Bob detecting a photon)
are defined as

~PðAk; Bk ¼ þ1Þ ¼ R~uk
ðAk; Bk ¼ þ1Þ=Rk;

~PðAk; Bk ¼ �1Þ ¼ R~u0
k
ðAk; Bk ¼ �1Þ=Rk;

(C1)

with

R k¼
X

Ak¼�1

½R~uk
ðAk;Bk¼þ1ÞþR~u0

k
ðAk;Bk¼�1Þ�;

(C2)

where R stands for the rate of the corresponding events
occurring.

Let us represent the state Bob receives, conditioned on
Alice’s output Ak ¼ �1, by a vector vBAk

in the Bloch

sphere, with jvBAk
j � 1. (Note that these states do not de-

pend on Bob’s setup, ~uk or ~u
0
k.) The rates R~uð0Þ

k

ðAk; BkÞ are
then given by

R~uð0Þ
k

ðAk; BkÞ ¼ R~uð0Þ
k

ðAkÞP~uð0Þ
k

ðBkjAkÞ

/ P~uð0Þ
k

ðAkÞ
1þ ð�1ÞBk ~uð0Þ

k � vBAk

2
: (C3)

Note that Alice’s marginal probabilities, P~uð0Þ
k

ðAkÞ, normal-

ized so that they sum to 1 for Ak ¼ �1, do not depend on
Bob’s measurement setup: P~uk

ðAkÞ ¼ P~u0
k
ðAkÞ � PðAkÞ;

otherwise, Bob could signal instantaneously to Alice.
Note also that these may be slightly different from
Alice’s experimentally observed marginals ~PðAkÞ calcu-
lated from the full postselected distribution ~PðAk; BkÞ.

From Eqs. (C1) and (C3), one can calculate the experi-
mentally observed correlations ~Ek ¼ hAk ~�

B
k i (correspond-

ing to the actual measurement ‘‘~�B
k ,’’ rather than the ideal

one, �̂B
k ), to be

~Ek �
X
Ak;Bk

AkBk
~PðAk; BkÞ

¼
�
PðAk ¼ þ1Þ 1þ ~uk � vBAk¼þ1

2

� PðAk ¼ �1Þ 1þ ~uk � vBAk¼�1

2

� PðAk ¼ þ1Þ 1� ~u0
k � vBAk¼þ1

2

þ PðAk ¼ �1Þ 1� ~u0
k � vBAk¼�1

2

��
N k: (C4)

Here N k is defined so that the four terms above (without
the minus signs) sum to 1. Defining

�uk � ð~uk þ ~u0
kÞ=2;

�vk � PðAk ¼ þ1ÞvBAk¼þ1 � PðAk ¼ �1ÞvBAk¼�1; (C5)

�uk � ð~uk � ~u0
kÞ=2;

�vk � PðAk ¼ þ1ÞvBAk¼þ1 þ PðAk ¼ �1ÞvBAk¼�1; (C6)

we can rewrite ~Ek more simply as

~Ek ¼ �uk � �vk=N k; with N k ¼ 1þ �uk � �vk; (C7)

while the ‘‘true value’’ Ek of the correlation hAk�̂
B
k i

(corresponding now to the ideal measurement settings
�uk) is simply Ek ¼ uk � �vk.
In order to quantify the deviation of ~Ek from its ‘‘true

value’’ Ek, we characterize the misalignment of the vectors

~uð0Þ
k by their scalar product with uk, the ideal setting:

~uð0Þ
k � uk � 	ð0Þ

k . Further, we assume that we can bound the

misalignment by 	ð0Þ
k 	 Xk > 0, for some Xk less than, but

close to, unity. One can then immediately prove the follow-
ing, which will be useful later:

j �ukj2 þ j� �ukj2 ¼ 1;

X2
k � j �ukj2 � 1 and 0 � j� �ukj2 � 1� X2

k: (C8)

Let us start by bounding the normalization coefficient
N k. For that, first note that j�vkj, j�vkj � 1, and

j�vkj2 þ j�vkj2 ¼ 2PðAk ¼ þ1Þ2jvBAk¼þ1j2
þ 2PðAk ¼ �1Þ2jvBAk¼�1j2; (C9)

�2PðAk¼þ1Þ2þ2PðAk¼�1Þ2¼1þð�PA
k Þ2; (C10)

where �PA
k � PðAk ¼ þ1Þ � PðAk ¼ �1Þ. Defining in a

similar way � ~PA
k � ~PðAk ¼ þ1Þ � ~PðAk ¼ �1Þ, we find,

using Eq. (C4),N k� ~PA
k ¼ �PA

k þ �uk � �vk. Besides, from
Eq. (C7), we have j �ukjj�vkj 	 N k

~Ek. Hence, following on
Eq. (C10),

j�vkj2�1þðN k� ~PA
k ��uk � �vkÞ2�j�vkj2

�1þN 2
kð� ~PA

k Þ2þ2N kj� ~PA
k jj�ukjj�vkj�j �ukj2j�vkj2

(C11)

� 1þ 2N kj� ~PA
k j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
�N 2

k½ ~E2
k � ð� ~PA

k Þ2�: (C12)

Now, for typical experimental values, the previous expres-
sion decreases with N k. From Eqs. (C7) and (C8), we

have N k 	 1� j�ukjj�vkj 	 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
j�vkj, so that

we get
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j�vkj2 � 1þ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
j�vkjÞj� ~PA

k j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
� ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
j�vkjÞ2½ ~E2

k � ð� ~PA
k Þ2� (C13)

� 1� ~E2
k þ ð� ~PA

k Þ2 þ 2j� ~PA
k j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
~E2
kj�vkj; (C14)

where the negative terms we discarded are negligible for our experimental parameters, so they essentially do not affect the
tightness of the above bound. By resolving the quadratic equation in j�vkj above, we further obtain

j�vkj �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
~E2
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� X2

kÞ ~E4
k þ 1� ~E2

k þ ð� ~PA
k Þ2 þ 2j� ~PA

k j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

qr
; (C15)

which involves only terms obtainable from experimental data. Substituting back into Eq. (C7), we obtain jN k � 1j �
�N k, where

�N k �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� X2
k

q
~E2
k þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� X2

kÞ ~E4
k þ 1� ~E2

k þ ð� ~PA
k Þ2 þ 2j� ~PA

k j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

qr � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q
: (C16)

Let us now decompose the vectors uk and �vk onto �uk:

u k ¼ 	k þ 	0
k

2j �ukj
�uk

j �ukj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð	k þ 	0

kÞ2
4j �ukj2

s
�u?;u
k ; �vk ¼ N k

~Ek

j �ukj
�uk

j �ukj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�vkj2 �N 2

k
~E2
k

j �ukj2
s

�u?;v
k ; (C17)

where �u?;u
k and �u?;v

k are two unit vectors on the Bloch sphere, both orthogonal to �uk. One then gets

�Ek � jEk � ~Ekj ¼ juk � �vk � ~Ekj (C18)

¼
									k þ 	0

k

2j �ukj
N k

~Ek

j �ukj � ~Ek þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð	k þ 	0

kÞ2
4j �ukj2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�vkj2 �N 2

k
~E2
k

j �ukj2
s

�u?;u
k � �u?;v

k

								 (C19)

�
									k þ 	0

k

2

N k

j �ukj2
� 1

								j ~Ekj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�N 2

k
~E2
k

q
: (C20)

To bound this further, one can show that Xk � ð	k þ 	0
kÞ=2j �ukj2 � 1=Xk. Using the bound on N k derived above, we

finally obtain

�Ek � ð1� Xk þ �N kÞj ~Ekj=Xk þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� �N kÞ2 ~E2

k

q
; (C21)

where all of these quantities are experimentally defined. Because systematic errors may not be independent, we add them
linearly to obtain the total systematic error in Sn to be at most

�SnðsystematicÞ ¼ 1

n

X
k

�
ð1� Xk þ �N kÞj ~Ekj=Xk þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� �N kÞ2 ~E2

k

q �
: (C22)

TABLE I. Size of error factors contributing to �SnðsystematicÞ (Fig. 5 data) without 1-km fiber.

n �SnðsystematicÞ 1
n

Pð1� Xk þ �N kÞj ~Ekj=Xk
1
n

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� �N kÞ2 ~E2

k

q
n ¼ 3 0.0049 0:002 90 0:001 95
n ¼ 4 0.0052 0:003 11 0:002 06
n ¼ 6 0.0045 0:002 72 0:001 82
n ¼ 10 0.0045 0:002 70 0:001 80
n ¼ 16 0.0046 0:002 77 0:001 85

TABLE II. Size of error factors contributing to �SnðsystematicÞ (Fig. 5 data) with 1-km fiber.

n �SnðsystematicÞ 1
n

Pð1� Xk þ �N kÞj ~Ekj=Xk
1
n

P ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Xk

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� �N kÞ2 ~E2

k

q
n ¼ 10 0.0057 0:003 39 0:002 32
n ¼ 16 0.0063 0:003 70 0:002 56
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The size of the different components of this systematic
error can be seen in Tables I and II. The indicative sizes of
the basic experimental parameters used to calculate the
systematic error (they vary only slightly with n and k) are
~Ek � 0:99, 1� Xk � 2� 10�4, and j� ~PA

k j � 0:02, imply-
ing that �N k � 0:002.

2. Statistical error

The statistical error component �SnðstatisticalÞ in the
total error �Sn is a result of having a finite ensemble size.
The error in the total number of Alice-Bob coincident
events Nc is � ffiffiffiffiffiffi

Nc

p
, as governed by Poissonian statistics.

The error �SnðstatisticalÞ is determined by simply prop-
agating the error in the counting errors through to the
calculation of the joint probabilities hAk�̂

B
k i. This propa-

gation provides the value�hAk�̂
B
k i, and each of these terms

contributes in quadrature to �SnðstatisticalÞ.

3. Total error

Combining the statistical error with the systematic error
derived above, we calculate the error in the experimental
value of Sn as

�Sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�SnðsystematicÞ2 þ �SnðstatisticalÞ2

q
:

The magnitude of both the systematic
[�SnðsystematicÞ] and the statistical [�SnðstatisticalÞ] er-
rors in the data presented in Fig. 5 is shown in Tables III
and IV.
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