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1 INTRODUCTION 

In boiler turbines, the chemical and thermal energy is 
transformed to electricity. It is a highly complex, 
multivariable, time delayed and nonlinear process [3, 
4, 5]. In a typical boiler turbine plant a header collects 
all the steam which is generated from number of 
boilers which is then distributed to several turbines 
through header. The steam flow is directly 
proportional to power generation which is the key 
parameter to be controlled. The other parameter to be 
controlled is the drum pressure .The ultimate 
objective is to meet the load demand of electric 
power. The schematic diagram of a boiler turbine 
plant is depicted in figure 1. 

 

Figure 1. Schematic diagram of the boiler-turbine unit [1] 
 

The process has two manipulated variables, the 
governor valve position (GV) and the fuel flow rate 
(FR).The variables to be controlled are the electric 
power (EP) and the steam pressure (SP). Equation (1) 
shows the considered model of an industrial boiler 
turbine process [2]. 
  

�EP
SP� =

⎣
⎢
⎢
⎢
⎡ 68.81 𝑒𝑒−2𝑠𝑠

984 𝑠𝑠2 + 94 𝑠𝑠 + 1
(−23.58 𝑠𝑠 − 2.196)𝑒𝑒−8𝑠𝑠

372 𝑠𝑠2 + 127 𝑠𝑠 + 1    
𝑒𝑒−2𝑠𝑠

6889 𝑠𝑠2 +  166 𝑠𝑠 + 1
2.194 𝑒𝑒−8𝑠𝑠

6400 𝑠𝑠2 +  160 𝑠𝑠 + 1 ⎦
⎥
⎥
⎥
⎤
�𝐺𝐺𝐺𝐺𝐹𝐹𝐹𝐹�   (1) 

2 PID CONTROLLER 

An industrial PID controller has many extensions 
over the years that make it a more practical tool for 
operating a chemical process. Many PID controller 
tuning methods have been proposed in the literature 
e.g. Ziegler-Nichols (ZN) tuning, Cohen-Coon 
tuning, direct synthesis method, internal model 
control (IMC) etc. In the present work ZN and IMC 
tuning techniques will be employed. In general, the 
output of a PID controller is given by equation (2).  

           𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝𝑒𝑒(𝑡𝑡) + 𝐾𝐾𝑖𝑖 �𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0

+ 𝐾𝐾𝑑𝑑
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

          (2) 

Or 

   𝑢𝑢(𝑡𝑡) = 𝐾𝐾𝑝𝑝 �𝑒𝑒(𝑡𝑡) +
1
𝑇𝑇𝑖𝑖
�𝑒𝑒(𝜏𝜏)𝑑𝑑𝜏𝜏
𝑡𝑡

0

+ 𝑇𝑇𝑑𝑑
𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡

�       (3) 

Where Kp, Ki, Kd are proportional gain, integral 
gain and derivative gain respectively. 

Ti, Td   are integral and derivative time constants 
respectively. 

 

2.1 Ziegler-Nichols (ZN) Tuning 
In this method, first of all, Ti and Td are set at 

values ∞ and 0 respectively. Then the proportional 
gain K is increased from zero to a value at which 
sustained oscillations are set up at the output. Let this 
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value of gain be Pcr and the corresponding time 
period be Tcr. Now, the controller tuning is done 
using the formulas presented in table I. 

 
Table I Ziegler-Nichols tuning rules [6] 

Controller Kp Ti Td 
P 0.5 Pcr ∞ 0 
PI 0.45 Pcr (1/1.2)Tcr 0 

PID 0.6 Pcr 0.5 Tcr 0.125Tcr 

 2.2 Internal Model Control (IMC) Tuning 
Any industrial process control can be successfully 

achieved by IMC based PID controller as it is highly 
robust and gives an excellent performance in case of 
processes with large dead time [7]. An IMC tuning 
rules table has been developed providing a significant 
disturbance rejection irrespective of the position at 
which the disturbance enters [8]. 

An IMC technique has been proposed providing an 
excellent rejection of the load disturbance in the 
situation when the desired closed loop dynamics is 
faster than the process dynamics. Previously done 
work could not do well in this situation [9]. 

Figures 2 and 3 are depicting the block diagrams 
of tuned PID controller and the designed IMC 
controller respectively. 

 

 
                                                                                                                               

Figure 2. Block diagram of tuned PID controller 

Figure 3. Block diagram of IMC controller [10] 
 
Where, 

      𝑞𝑞(𝑠𝑠) =
𝑐𝑐(𝑠𝑠)

1 + 𝑝𝑝′(𝑠𝑠)𝑐𝑐(𝑠𝑠)
         (4) 

    It consists of an internal model p’(s) and IMC 
controller q(s).For the perfect internal model p’(s) = 
p(s).The internal stability of the IMC controller is 
guaranteed only if both p(s) and q(s) are stable. 

3 LQG CONTROLLER 

Consider, the state space representation of the plant to 
be controlled, given as, 
ẋ = Ax + Bu 

y=Cx                            (5) 

The block diagram of LQR (linear quadratic 
regulator) for this plant is shown in figure 4. 

 

Figure 4. Block diagram of LQR [11] 

This regulator minimizes the following objective 
function, 
         𝐽𝐽 = � [𝑥𝑥𝑇𝑇

∞

0
(𝑡𝑡)𝑄𝑄𝑥𝑥(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝐹𝐹𝑢𝑢(𝑡𝑡)]𝑑𝑑𝑡𝑡        (6) 

Where, Q and R, are weighting parameters that 
penalize the states and the control effort 
respectively. Therefore Q and R represent controller 
tuning parameters. 
                                𝑢𝑢(𝑡𝑡) = −𝐾𝐾𝑥𝑥(𝑡𝑡)                             (7) 

K is the gain given as, 

                                     𝐾𝐾 = 𝐹𝐹−1𝐵𝐵𝑇𝑇𝑆𝑆                            (8) 

Where, S is given by the solution of the following 
equation called Ricatti equation, 

              𝑆𝑆𝑆𝑆 + 𝑆𝑆𝑇𝑇𝑆𝑆 + 𝑄𝑄 − 𝑃𝑃𝐵𝐵𝐹𝐹−1𝐵𝐵𝑇𝑇𝑆𝑆 = 0              (9) 

Now, if the measurement noise w and the process 
noise v(assumed to be white Gaussian noise) are also 
present as shown in the state space representation of 
the plant in equation (10) then LQR based controller 
cannot perform well ,as in this case the entire state 
vector  is not available for control at all times. In this 
case LQG controller is designed. 



ẋ = Ax + Bu+w 

y=Cx + v                                                               (10) 

The simplified and detailed block diagrams of 
LQG controller are depicted in figures 5 and 6 
respectively showing that the LQG controller 
combines the LQR with the Kalman filter. The 
Kalman filter estimates the entire state vector which 
is required for generation of the optimal control signal 
u. The estimated error covariance is minimized by this 
filter. 

 

Figure 5. Simplified block diagram of LQG controller [11] 
 

 

Figure 6. Detailed block diagram of LQG controller [11] 
 
From this figure, we have, 

                             �̇�𝑥 = (𝑆𝑆 − 𝐿𝐿𝐿𝐿 − 𝐵𝐵𝐾𝐾)�̇�𝑥 + 𝐿𝐿𝐿𝐿                           (11) 
                                                   𝑢𝑢 = −𝐾𝐾�̇�𝑥                                            (12) 

Here, ẋ represents the estimator for the state x and 
L is called the Kalman gain which is to be determined 
by the minimization of objective function (13) subject 
to constraint (14) 

                                     𝐽𝐽 = 𝐸𝐸[(𝑥𝑥 − �̇�𝑥)𝑇𝑇(𝑥𝑥 − �̇�𝑥)                           (13) 
                                             𝐸𝐸[(𝑥𝑥 − �̇�𝑥)𝑇𝑇𝐿𝐿 = 0                              (14) 

This gives the following Kalman gain 
                                       𝐿𝐿 = 𝑆𝑆𝑒𝑒𝐿𝐿𝑇𝑇𝐹𝐹−1                                           (15) 

Where, Se is given by the solution of the following 
equation (16) 

                     𝑆𝑆𝑒𝑒𝑆𝑆𝑇𝑇 + 𝑆𝑆𝑆𝑆𝑒𝑒 + 𝑄𝑄 − 𝑆𝑆𝑒𝑒𝐿𝐿𝑇𝑇𝐹𝐹−1𝐿𝐿𝑆𝑆𝑒𝑒 = 0                 (16) 

Where, 
𝑄𝑄 = 𝐸𝐸(𝑤𝑤𝑤𝑤𝑇𝑇) ,𝐹𝐹 = 𝐸𝐸(𝑣𝑣𝑣𝑣𝑇𝑇) 

4 SIMULATION WORK 

Let G(s) be the transfer matrix of a 2x2 MIMO 
system. 
                               [𝐺𝐺(𝑠𝑠)] = �𝑔𝑔11(𝑠𝑠) 𝑔𝑔12(𝑠𝑠)

𝑔𝑔21(𝑠𝑠) 𝑔𝑔22(𝑠𝑠)�                         (17) 
Then the two respective decoupled SISO systems 

are given by equations (18) and (19) [3] 
 

                   𝐿𝐿1(𝑠𝑠) = �𝑔𝑔11(𝑠𝑠) −
𝑔𝑔12(𝑠𝑠)𝑔𝑔21(𝑠𝑠)

𝑔𝑔22(𝑠𝑠) � 𝑣𝑣1(𝑠𝑠)                  (18) 

 

                       𝐿𝐿2(𝑠𝑠) = �𝑔𝑔22(𝑠𝑠) −
𝑔𝑔12(𝑠𝑠)𝑔𝑔21(𝑠𝑠)

𝑔𝑔11(𝑠𝑠) � 𝑣𝑣2(𝑠𝑠)              (19) 

Using (17) and (18) we get two independent 
decoupled SISO systems, G1(s), which represents 
governor valve-Electric power system (SISO1) and 
G2(s), which represents Fuel flow rate-Steam 
pressure system (SISO2). The expressions for G1(s) 
and G2(s) are given in equations (20) and (21). 

Now based on Pade’ approximation, controllers 
are designed here for both decoupled SISO systems 
using three different techniques namely Ziegler 
Nichol’s (ZN) tuning, internal modal control (IMC) 
and linear quadratic Gaussian (LQG) technique. The 
transfer functions of the designed ZN, IMC and LQG 
controllers for SISO 1 are presented as equations (22), 
(23) and (24) respectively. 

The transfer functions of the designed ZN, IMC 
and LQG controllers for SISO 2 are presented as 
equations (25), (26) and (27) respectively. 

               𝐺𝐺1 (𝑠𝑠) =
(1.485 ∗ 108 𝑠𝑠5 + 4.186 ∗ 108 𝑠𝑠4 + 1.436 ∗ 108 𝑠𝑠3 + 4.334 ∗  106𝑠𝑠2 + 4.482 ∗ 104 𝑠𝑠 + 153.2 )𝑒𝑒−2𝑠𝑠

5.533 ∗ 109 𝑠𝑠6 + 2.551 ∗ 109 𝑠𝑠5 + 2.6 ∗ 108 𝑠𝑠4 +  8.53 ∗ 106𝑠𝑠3 + 1.248 ∗ 105𝑠𝑠2 + 849.1 𝑠𝑠  + 2.194
                  (20) 



        𝐺𝐺2(𝑠𝑠) =
(1.485 ∗ 108 𝑠𝑠5 + 4.186 ∗ 108 𝑠𝑠4 + 1.436 ∗ 108 𝑠𝑠3 + 4.334 ∗  106𝑠𝑠2 + 4.482 ∗ 104 𝑠𝑠 + 153.2 )𝑒𝑒−8𝑠𝑠

1.129 ∗ 1012 𝑠𝑠6 + 4.407 ∗ 1011 𝑠𝑠5 + 2.297 ∗ 1010 𝑠𝑠4 + 5.055 ∗ 108𝑠𝑠3 + 5.616 ∗ 106𝑠𝑠2 + 3.117 ∗ 104𝑠𝑠  + 68.8
    (21)

                                                                                               𝐿𝐿𝑍𝑍𝑍𝑍 =
0.0053352(1 + 26𝑠𝑠)

𝑠𝑠
                                                                                            (22) 

                                           𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 =
−1.9865 ∗ 1012(1 + 83𝑠𝑠)(1 + 12𝑠𝑠)(1 + 3.6𝑠𝑠)(1 + 0.98𝑠𝑠 + (0.54𝑠𝑠)2)

(1 + 0.39𝑠𝑠)(1 − 2.6 ∗ 1015𝑠𝑠)(1 + 3.4𝑠𝑠)(1 + 0.88𝑠𝑠 + (0.52𝑠𝑠)2)
                                                 (23) 

                                              𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
−1.9962 ∗ 1012(1 − 0.00011𝑠𝑠)(1 + 0.5𝑠𝑠)(1 + 4.8𝑠𝑠)(1 + 12𝑠𝑠)(1 + 83𝑠𝑠)

(1 + 0.47𝑠𝑠)(1 − 9.3 ∗ 1014𝑠𝑠)(1 + 4.5𝑠𝑠)(1 + 1.7𝑠𝑠 + (1.5𝑠𝑠)2)
                                              (24)

 

 
Figure 7. Set point tracking responses of ZN, IMC and LQG 
controllers for SISO1 
 

 
Figure 8. Bode plots for ZN, IMC and LQG controllers for 
SISO1 
 

 

 
Figure 9. Set point tracking responses of ZN, IMC and LQG 
controllers for SISO2 
 

 
Figure 10. Bode plots for ZN, IMC and LQG controllers for 
SISO2 
 

                                                                                    𝐿𝐿𝑍𝑍𝑍𝑍 =
0.026193(1 + 91𝑠𝑠)

𝑠𝑠
                                                                                          (25)

                                            𝐿𝐿𝐼𝐼𝐼𝐼𝐼𝐼 =
8.2346 ∗ 1015(1 + 3.5𝑠𝑠)(1 + 85𝑠𝑠)(1 + 75𝑠𝑠)(1 + 4𝑠𝑠 + (2.3𝑠𝑠)2)

(1 + 0.41𝑠𝑠)(1 + 5.8 ∗ 1017𝑠𝑠)(1 + 3.3𝑠𝑠)(1 + 3𝑠𝑠 + (2𝑠𝑠)2)
                                     (26) 

                                           𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
6.7426 ∗ 1014(1 + 0.0004𝑠𝑠)(1 + 75𝑠𝑠)(1 + 85𝑠𝑠)(1 + 3.9𝑠𝑠 + (2.2𝑠𝑠)2)

(1 + 3 ∗ 1016𝑠𝑠)(1 + 3.3𝑠𝑠 + (1.8𝑠𝑠)2)(1 + 3𝑠𝑠 + (4.1𝑠𝑠)2)
                           (27)



 

Table II. Performance parameters of ZN, IMC and LQG 
controllers for SISO1 
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ZN 12 218 65.3 7.24 

IMC 37.2 68.2 0 22.8 

LQG 5.74 18 7.05 4.12 
 

Table III. Performance parameters of ZN, IMC and LQG 
controllers for SISO 2  
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) 
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n(
d

B
) 

ZN 40 1030 65.5 1.8 
IMC 52 99.3 0 14.5 
LQG 14.5 50.9 8.67 1.88 

 

The above IMC controller has been designed with 
dominant closed loop time constant=16.9816. 

The set point tracking responses of these 
controllers are depicted in figure 7 and the 
corresponding Bode plots are shown in figure 8.The 
corresponding performance parameters are specified 
in table II. 

The above IMC controller has been designed with 
dominant closed loop time constant=23.87. 

The set point tracking responses of these 
controllers are depicted in figure 9 and the 
corresponding Bode plots are shown in figure 10.The 
corresponding performance parameters are specified 
in table III. 

5 CONCLUSION 

In the present paper a 2x2 MIMO boiler turbine 
process is taken up. Having done its decoupling to 
split it into two separate SISO systems, controllers are 
designed for both using ZN, IMC and LQG 
techniques and their performance is compared. It has 
been found that performance of IMC controller is 
much better than that of ZN controller in terms of 

both, transient and steady state responses. But, the 
LQG controller comes up with the best performance 
amongst all with least settling time and smallest peak 
overshoot.           
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